2 * IMC compatible decoder
3 * Copyright (c) 2002-2004 Maxim Poliakovski
4 * Copyright (c) 2006 Benjamin Larsson
5 * Copyright (c) 2006 Konstantin Shishkov
7 * This file is part of Libav.
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * IMC - Intel Music Coder
27 * A mdct based codec using a 256 points large transform
28 * divied into 32 bands with some mix of scale factors.
29 * Only mono is supported.
42 #include "libavutil/audioconvert.h"
47 #define IMC_BLOCK_SIZE 64
48 #define IMC_FRAME_ID 0x21
55 float old_floor[BANDS];
56 float flcoeffs1[BANDS];
57 float flcoeffs2[BANDS];
58 float flcoeffs3[BANDS];
59 float flcoeffs4[BANDS];
60 float flcoeffs5[BANDS];
61 float flcoeffs6[BANDS];
62 float CWdecoded[COEFFS];
66 float mdct_sine_window[COEFFS];
67 float post_cos[COEFFS];
68 float post_sin[COEFFS];
69 float pre_coef1[COEFFS];
70 float pre_coef2[COEFFS];
71 float last_fft_im[COEFFS];
74 int bandWidthT[BANDS]; ///< codewords per band
75 int bitsBandT[BANDS]; ///< how many bits per codeword in band
76 int CWlengthT[COEFFS]; ///< how many bits in each codeword
77 int levlCoeffBuf[BANDS];
78 int bandFlagsBuf[BANDS]; ///< flags for each band
79 int sumLenArr[BANDS]; ///< bits for all coeffs in band
80 int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
81 int skipFlagBits[BANDS]; ///< bits used to code skip flags
82 int skipFlagCount[BANDS]; ///< skipped coeffients per band
83 int skipFlags[COEFFS]; ///< skip coefficient decoding or not
84 int codewords[COEFFS]; ///< raw codewords read from bitstream
92 DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS/2];
96 static VLC huffman_vlc[4][4];
98 #define VLC_TABLES_SIZE 9512
100 static const int vlc_offsets[17] = {
101 0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
102 4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE};
104 static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
106 static av_cold int imc_decode_init(AVCodecContext * avctx)
109 IMCContext *q = avctx->priv_data;
112 if (avctx->channels != 1) {
113 av_log_ask_for_sample(avctx, "Number of channels is not supported\n");
114 return AVERROR_PATCHWELCOME;
117 q->decoder_reset = 1;
119 for(i = 0; i < BANDS; i++)
120 q->old_floor[i] = 1.0;
122 /* Build mdct window, a simple sine window normalized with sqrt(2) */
123 ff_sine_window_init(q->mdct_sine_window, COEFFS);
124 for(i = 0; i < COEFFS; i++)
125 q->mdct_sine_window[i] *= sqrt(2.0);
126 for(i = 0; i < COEFFS/2; i++){
127 q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
128 q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
130 r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
131 r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
135 q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
136 q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
140 q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
141 q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
144 q->last_fft_im[i] = 0;
147 /* Generate a square root table */
149 for(i = 0; i < 30; i++) {
150 q->sqrt_tab[i] = sqrt(i);
153 /* initialize the VLC tables */
154 for(i = 0; i < 4 ; i++) {
155 for(j = 0; j < 4; j++) {
156 huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
157 huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
158 init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
159 imc_huffman_lens[i][j], 1, 1,
160 imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
163 q->one_div_log2 = 1/log(2);
165 if ((ret = ff_fft_init(&q->fft, 7, 1))) {
166 av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
169 dsputil_init(&q->dsp, avctx);
170 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
171 avctx->channel_layout = AV_CH_LAYOUT_MONO;
173 avcodec_get_frame_defaults(&q->frame);
174 avctx->coded_frame = &q->frame;
179 static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
180 float* flcoeffs3, float* flcoeffs5)
185 float snr_limit = 1.e-30;
189 for(i = 0; i < BANDS; i++) {
190 flcoeffs5[i] = workT2[i] = 0.0;
192 workT1[i] = flcoeffs1[i] * flcoeffs1[i];
193 flcoeffs3[i] = 2.0 * flcoeffs2[i];
196 flcoeffs3[i] = -30000.0;
198 workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
199 if (workT3[i] <= snr_limit)
203 for(i = 0; i < BANDS; i++) {
204 for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
205 flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
206 workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
209 for(i = 1; i < BANDS; i++) {
210 accum = (workT2[i-1] + accum) * imc_weights1[i-1];
211 flcoeffs5[i] += accum;
214 for(i = 0; i < BANDS; i++)
217 for(i = 0; i < BANDS; i++) {
218 for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
219 flcoeffs5[cnt2] += workT3[i];
220 workT2[cnt2+1] += workT3[i];
225 for(i = BANDS-2; i >= 0; i--) {
226 accum = (workT2[i+1] + accum) * imc_weights2[i];
227 flcoeffs5[i] += accum;
228 //there is missing code here, but it seems to never be triggered
233 static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
238 const uint8_t *cb_sel;
241 s = stream_format_code >> 1;
242 hufftab[0] = &huffman_vlc[s][0];
243 hufftab[1] = &huffman_vlc[s][1];
244 hufftab[2] = &huffman_vlc[s][2];
245 hufftab[3] = &huffman_vlc[s][3];
246 cb_sel = imc_cb_select[s];
248 if(stream_format_code & 4)
251 levlCoeffs[0] = get_bits(&q->gb, 7);
252 for(i = start; i < BANDS; i++){
253 levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
254 if(levlCoeffs[i] == 17)
255 levlCoeffs[i] += get_bits(&q->gb, 4);
259 static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
264 //maybe some frequency division thingy
266 flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
267 flcoeffs2[0] = log(flcoeffs1[0])/log(2);
271 for(i = 1; i < BANDS; i++) {
272 level = levlCoeffBuf[i];
279 else if (level <= 24)
284 tmp *= imc_exp_tab[15 + level];
285 tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
293 static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
296 //FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
297 // and flcoeffs2 old scale factors
298 // might be incomplete due to a missing table that is in the binary code
299 for(i = 0; i < BANDS; i++) {
301 if(levlCoeffBuf[i] < 16) {
302 flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
303 flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
305 flcoeffs1[i] = old_floor[i];
311 * Perform bit allocation depending on bits available
313 static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
315 const float limit = -1.e20;
324 float lowest = 1.e10;
330 for(i = 0; i < BANDS; i++)
331 highest = FFMAX(highest, q->flcoeffs1[i]);
333 for(i = 0; i < BANDS-1; i++) {
334 q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
336 q->flcoeffs4[BANDS - 1] = limit;
338 highest = highest * 0.25;
340 for(i = 0; i < BANDS; i++) {
342 if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
345 if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
348 if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
352 return AVERROR_INVALIDDATA;
354 q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
357 if (stream_format_code & 0x2) {
358 q->flcoeffs4[0] = limit;
359 q->flcoeffs4[1] = limit;
360 q->flcoeffs4[2] = limit;
361 q->flcoeffs4[3] = limit;
364 for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
365 iacc += q->bandWidthT[i];
366 summa += q->bandWidthT[i] * q->flcoeffs4[i];
368 q->bandWidthT[BANDS-1] = 0;
369 summa = (summa * 0.5 - freebits) / iacc;
372 for(i = 0; i < BANDS/2; i++) {
373 rres = summer - freebits;
374 if((rres >= -8) && (rres <= 8)) break;
379 for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
380 cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
382 q->bitsBandT[j] = cwlen;
383 summer += q->bandWidthT[j] * cwlen;
386 iacc += q->bandWidthT[j];
391 if (freebits < summer)
398 summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
401 for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
402 for(j = band_tab[i]; j < band_tab[i+1]; j++)
403 q->CWlengthT[j] = q->bitsBandT[i];
406 if (freebits > summer) {
407 for(i = 0; i < BANDS; i++) {
408 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
414 if (highest <= -1.e20)
420 for(i = 0; i < BANDS; i++) {
421 if (workT[i] > highest) {
427 if (highest > -1.e20) {
428 workT[found_indx] -= 2.0;
429 if (++(q->bitsBandT[found_indx]) == 6)
430 workT[found_indx] = -1.e20;
432 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
437 }while (freebits > summer);
439 if (freebits < summer) {
440 for(i = 0; i < BANDS; i++) {
441 workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
443 if (stream_format_code & 0x2) {
449 while (freebits < summer){
452 for(i = 0; i < BANDS; i++) {
453 if (workT[i] < lowest) {
458 //if(lowest >= 1.e10) break;
459 workT[low_indx] = lowest + 2.0;
461 if (!(--q->bitsBandT[low_indx]))
462 workT[low_indx] = 1.e20;
464 for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
465 if(q->CWlengthT[j] > 0){
475 static void imc_get_skip_coeff(IMCContext* q) {
478 memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
479 memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
480 for(i = 0; i < BANDS; i++) {
481 if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
484 if (!q->skipFlagRaw[i]) {
485 q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
487 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
488 if ((q->skipFlags[j] = get_bits1(&q->gb)))
489 q->skipFlagCount[i]++;
492 for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
493 if(!get_bits1(&q->gb)){//0
494 q->skipFlagBits[i]++;
497 q->skipFlagCount[i] += 2;
499 if(get_bits1(&q->gb)){//11
500 q->skipFlagBits[i] +=2;
503 q->skipFlagCount[i]++;
505 q->skipFlagBits[i] +=3;
507 if(!get_bits1(&q->gb)){//100
509 q->skipFlagCount[i]++;
517 if (j < band_tab[i+1]) {
518 q->skipFlagBits[i]++;
519 if ((q->skipFlags[j] = get_bits1(&q->gb)))
520 q->skipFlagCount[i]++;
527 * Increase highest' band coefficient sizes as some bits won't be used
529 static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
536 for(i = 0; i < BANDS; i++) {
537 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
540 while (corrected < summer) {
541 if(highest <= -1.e20)
546 for(i = 0; i < BANDS; i++) {
547 if (workT[i] > highest) {
553 if (highest > -1.e20) {
554 workT[found_indx] -= 2.0;
555 if (++(q->bitsBandT[found_indx]) == 6)
556 workT[found_indx] = -1.e20;
558 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
559 if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
568 static void imc_imdct256(IMCContext *q) {
573 for(i=0; i < COEFFS/2; i++){
574 q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
575 (q->pre_coef2[i] * q->CWdecoded[i*2]);
576 q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
577 (q->pre_coef1[i] * q->CWdecoded[i*2]);
581 q->fft.fft_permute(&q->fft, q->samples);
582 q->fft.fft_calc (&q->fft, q->samples);
584 /* postrotation, window and reorder */
585 for(i = 0; i < COEFFS/2; i++){
586 re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
587 im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
588 q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
589 q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
590 q->last_fft_im[i] = im;
594 static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
596 int middle_value, cw_len, max_size;
597 const float* quantizer;
599 for(i = 0; i < BANDS; i++) {
600 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
602 cw_len = q->CWlengthT[j];
604 if (cw_len <= 0 || q->skipFlags[j])
607 max_size = 1 << cw_len;
608 middle_value = max_size >> 1;
610 if (q->codewords[j] >= max_size || q->codewords[j] < 0)
611 return AVERROR_INVALIDDATA;
614 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
615 if (q->codewords[j] >= middle_value)
616 q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
618 q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
620 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
621 if (q->codewords[j] >= middle_value)
622 q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
624 q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
632 static int imc_get_coeffs (IMCContext* q) {
633 int i, j, cw_len, cw;
635 for(i = 0; i < BANDS; i++) {
636 if(!q->sumLenArr[i]) continue;
637 if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
638 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
639 cw_len = q->CWlengthT[j];
642 if (get_bits_count(&q->gb) + cw_len > 512){
643 //av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
644 return AVERROR_INVALIDDATA;
647 if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
648 cw = get_bits(&q->gb, cw_len);
650 q->codewords[j] = cw;
657 static int imc_decode_frame(AVCodecContext * avctx, void *data,
658 int *got_frame_ptr, AVPacket *avpkt)
660 const uint8_t *buf = avpkt->data;
661 int buf_size = avpkt->size;
663 IMCContext *q = avctx->priv_data;
665 int stream_format_code;
666 int imc_hdr, i, j, ret;
669 int counter, bitscount;
670 LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
672 if (buf_size < IMC_BLOCK_SIZE) {
673 av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
674 return AVERROR_INVALIDDATA;
677 /* get output buffer */
678 q->frame.nb_samples = COEFFS;
679 if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
680 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
683 q->out_samples = (float *)q->frame.data[0];
685 q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
687 init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
689 /* Check the frame header */
690 imc_hdr = get_bits(&q->gb, 9);
691 if (imc_hdr != IMC_FRAME_ID) {
692 av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
693 av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
694 return AVERROR_INVALIDDATA;
696 stream_format_code = get_bits(&q->gb, 3);
698 if(stream_format_code & 1){
699 av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
700 return AVERROR_INVALIDDATA;
703 // av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
705 if (stream_format_code & 0x04)
706 q->decoder_reset = 1;
708 if(q->decoder_reset) {
709 memset(q->out_samples, 0, sizeof(q->out_samples));
710 for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
711 for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
712 q->decoder_reset = 0;
715 flag = get_bits1(&q->gb);
716 imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
718 if (stream_format_code & 0x4)
719 imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
721 imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
723 memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
726 for (i=0 ; i<BANDS ; i++) {
727 if (q->levlCoeffBuf[i] == 16) {
728 q->bandWidthT[i] = 0;
731 q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
733 memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
734 for(i = 0; i < BANDS-1; i++) {
735 if (q->bandWidthT[i])
736 q->bandFlagsBuf[i] = get_bits1(&q->gb);
739 imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
742 /* first 4 bands will be assigned 5 bits per coefficient */
743 if (stream_format_code & 0x2) {
750 for(i = 1; i < 4; i++){
751 bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
752 q->bitsBandT[i] = bits;
753 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
754 q->CWlengthT[j] = bits;
760 if((ret = bit_allocation (q, stream_format_code,
761 512 - bitscount - get_bits_count(&q->gb), flag)) < 0) {
762 av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
763 q->decoder_reset = 1;
767 for(i = 0; i < BANDS; i++) {
769 q->skipFlagRaw[i] = 0;
770 for(j = band_tab[i]; j < band_tab[i+1]; j++)
771 q->sumLenArr[i] += q->CWlengthT[j];
772 if (q->bandFlagsBuf[i])
773 if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
774 q->skipFlagRaw[i] = 1;
777 imc_get_skip_coeff(q);
779 for(i = 0; i < BANDS; i++) {
780 q->flcoeffs6[i] = q->flcoeffs1[i];
781 /* band has flag set and at least one coded coefficient */
782 if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
783 q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
784 q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
788 /* calculate bits left, bits needed and adjust bit allocation */
791 for(i = 0; i < BANDS; i++) {
792 if (q->bandFlagsBuf[i]) {
793 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
794 if(q->skipFlags[j]) {
795 summer += q->CWlengthT[j];
799 bits += q->skipFlagBits[i];
800 summer -= q->skipFlagBits[i];
803 imc_adjust_bit_allocation(q, summer);
805 for(i = 0; i < BANDS; i++) {
808 for(j = band_tab[i]; j < band_tab[i+1]; j++)
809 if (!q->skipFlags[j])
810 q->sumLenArr[i] += q->CWlengthT[j];
813 memset(q->codewords, 0, sizeof(q->codewords));
815 if(imc_get_coeffs(q) < 0) {
816 av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
817 q->decoder_reset = 1;
818 return AVERROR_INVALIDDATA;
821 if(inverse_quant_coeff(q, stream_format_code) < 0) {
822 av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
823 q->decoder_reset = 1;
824 return AVERROR_INVALIDDATA;
827 memset(q->skipFlags, 0, sizeof(q->skipFlags));
832 *(AVFrame *)data = q->frame;
834 return IMC_BLOCK_SIZE;
838 static av_cold int imc_decode_close(AVCodecContext * avctx)
840 IMCContext *q = avctx->priv_data;
848 AVCodec ff_imc_decoder = {
850 .type = AVMEDIA_TYPE_AUDIO,
852 .priv_data_size = sizeof(IMCContext),
853 .init = imc_decode_init,
854 .close = imc_decode_close,
855 .decode = imc_decode_frame,
856 .capabilities = CODEC_CAP_DR1,
857 .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),