]> git.sesse.net Git - ffmpeg/blob - libavcodec/lagarith.c
d81e55cf4ca1f60ec42f46a44edc10daa4181e56
[ffmpeg] / libavcodec / lagarith.c
1 /*
2  * Lagarith lossless decoder
3  * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * Lagarith lossless decoder
25  * @author Nathan Caldwell
26  */
27
28 #include <inttypes.h>
29
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "mathops.h"
33 #include "lagarithrac.h"
34 #include "lossless_videodsp.h"
35 #include "thread.h"
36
37 enum LagarithFrameType {
38     FRAME_RAW           = 1,    /**< uncompressed */
39     FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
40     FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
41     FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
42     FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
43     FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
44     FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
45     FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
46     FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
47     FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
48     FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
49 };
50
51 typedef struct LagarithContext {
52     AVCodecContext *avctx;
53     LLVidDSPContext llviddsp;
54     int zeros;                  /**< number of consecutive zero bytes encountered */
55     int zeros_rem;              /**< number of zero bytes remaining to output */
56 } LagarithContext;
57
58 /**
59  * Compute the 52-bit mantissa of 1/(double)denom.
60  * This crazy format uses floats in an entropy coder and we have to match x86
61  * rounding exactly, thus ordinary floats aren't portable enough.
62  * @param denom denominator
63  * @return 52-bit mantissa
64  * @see softfloat_mul
65  */
66 static uint64_t softfloat_reciprocal(uint32_t denom)
67 {
68     int shift = av_log2(denom - 1) + 1;
69     uint64_t ret = (1ULL << 52) / denom;
70     uint64_t err = (1ULL << 52) - ret * denom;
71     ret <<= shift;
72     err <<= shift;
73     err +=  denom / 2;
74     return ret + err / denom;
75 }
76
77 /**
78  * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
79  * Used in combination with softfloat_reciprocal computes x/(double)denom.
80  * @param x 32-bit integer factor
81  * @param mantissa mantissa of f with exponent 0
82  * @return 32-bit integer value (x*f)
83  * @see softfloat_reciprocal
84  */
85 static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
86 {
87     uint64_t l = x * (mantissa & 0xffffffff);
88     uint64_t h = x * (mantissa >> 32);
89     h += l >> 32;
90     l &= 0xffffffff;
91     l += 1LL << av_log2(h >> 21);
92     h += l >> 32;
93     return h >> 20;
94 }
95
96 static uint8_t lag_calc_zero_run(int8_t x)
97 {
98     return (x * 2) ^ (x >> 7);
99 }
100
101 static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
102 {
103     static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
104     int i;
105     int bit     = 0;
106     int bits    = 0;
107     int prevbit = 0;
108     unsigned val;
109
110     for (i = 0; i < 7; i++) {
111         if (prevbit && bit)
112             break;
113         prevbit = bit;
114         bit = get_bits1(gb);
115         if (bit && !prevbit)
116             bits += series[i];
117     }
118     bits--;
119     if (bits < 0 || bits > 31) {
120         *value = 0;
121         return -1;
122     } else if (bits == 0) {
123         *value = 0;
124         return 0;
125     }
126
127     val  = get_bits_long(gb, bits);
128     val |= 1U << bits;
129
130     *value = val - 1;
131
132     return 0;
133 }
134
135 static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
136 {
137     int i, j, scale_factor;
138     unsigned prob, cumulative_target;
139     unsigned cumul_prob = 0;
140     unsigned scaled_cumul_prob = 0;
141     int nnz = 0;
142
143     rac->prob[0] = 0;
144     rac->prob[257] = UINT_MAX;
145     /* Read probabilities from bitstream */
146     for (i = 1; i < 257; i++) {
147         if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
148             av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
149             return -1;
150         }
151         if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
152             av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
153             return -1;
154         }
155         cumul_prob += rac->prob[i];
156         if (!rac->prob[i]) {
157             if (lag_decode_prob(gb, &prob)) {
158                 av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
159                 return -1;
160             }
161             if (prob > 256 - i)
162                 prob = 256 - i;
163             for (j = 0; j < prob; j++)
164                 rac->prob[++i] = 0;
165         }else {
166             nnz++;
167         }
168     }
169
170     if (!cumul_prob) {
171         av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
172         return -1;
173     }
174
175     if (nnz == 1 && (show_bits_long(gb, 32) & 0xFFFFFF)) {
176         return AVERROR_INVALIDDATA;
177     }
178
179     /* Scale probabilities so cumulative probability is an even power of 2. */
180     scale_factor = av_log2(cumul_prob);
181
182     if (cumul_prob & (cumul_prob - 1)) {
183         uint64_t mul = softfloat_reciprocal(cumul_prob);
184         for (i = 1; i <= 128; i++) {
185             rac->prob[i] = softfloat_mul(rac->prob[i], mul);
186             scaled_cumul_prob += rac->prob[i];
187         }
188         if (scaled_cumul_prob <= 0) {
189             av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
190             return AVERROR_INVALIDDATA;
191         }
192         for (; i < 257; i++) {
193             rac->prob[i] = softfloat_mul(rac->prob[i], mul);
194             scaled_cumul_prob += rac->prob[i];
195         }
196
197         scale_factor++;
198         if (scale_factor >= 32U)
199             return AVERROR_INVALIDDATA;
200         cumulative_target = 1U << scale_factor;
201
202         if (scaled_cumul_prob > cumulative_target) {
203             av_log(rac->avctx, AV_LOG_ERROR,
204                    "Scaled probabilities are larger than target!\n");
205             return -1;
206         }
207
208         scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
209
210         for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
211             if (rac->prob[i]) {
212                 rac->prob[i]++;
213                 scaled_cumul_prob--;
214             }
215             /* Comment from reference source:
216              * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
217              *                          // since the compression change is negligible and fixing it
218              *                          // breaks backwards compatibility
219              *      b =- (signed int)b;
220              *      b &= 0xFF;
221              * } else {
222              *      b++;
223              *      b &= 0x7f;
224              * }
225              */
226         }
227     }
228
229     if (scale_factor > 23)
230         return AVERROR_INVALIDDATA;
231
232     rac->scale = scale_factor;
233
234     /* Fill probability array with cumulative probability for each symbol. */
235     for (i = 1; i < 257; i++)
236         rac->prob[i] += rac->prob[i - 1];
237
238     return 0;
239 }
240
241 static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
242                                       uint8_t *diff, int w, int *left,
243                                       int *left_top)
244 {
245     /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
246      * However the &0xFF on the gradient predictor yields incorrect output
247      * for lagarith.
248      */
249     int i;
250     uint8_t l, lt;
251
252     l  = *left;
253     lt = *left_top;
254
255     for (i = 0; i < w; i++) {
256         l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
257         lt = src1[i];
258         dst[i] = l;
259     }
260
261     *left     = l;
262     *left_top = lt;
263 }
264
265 static void lag_pred_line(LagarithContext *l, uint8_t *buf,
266                           int width, int stride, int line)
267 {
268     int L, TL;
269
270     if (!line) {
271         /* Left prediction only for first line */
272         L = l->llviddsp.add_left_pred(buf, buf, width, 0);
273     } else {
274         /* Left pixel is actually prev_row[width] */
275         L = buf[width - stride - 1];
276
277         if (line == 1) {
278             /* Second line, left predict first pixel, the rest of the line is median predicted
279              * NOTE: In the case of RGB this pixel is top predicted */
280             TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
281         } else {
282             /* Top left is 2 rows back, last pixel */
283             TL = buf[width - (2 * stride) - 1];
284         }
285
286         add_lag_median_prediction(buf, buf - stride, buf,
287                                   width, &L, &TL);
288     }
289 }
290
291 static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
292                                int width, int stride, int line,
293                                int is_luma)
294 {
295     int L, TL;
296
297     if (!line) {
298         L= buf[0];
299         if (is_luma)
300             buf[0] = 0;
301         l->llviddsp.add_left_pred(buf, buf, width, 0);
302         if (is_luma)
303             buf[0] = L;
304         return;
305     }
306     if (line == 1) {
307         const int HEAD = is_luma ? 4 : 2;
308         int i;
309
310         L  = buf[width - stride - 1];
311         TL = buf[HEAD  - stride - 1];
312         for (i = 0; i < HEAD; i++) {
313             L += buf[i];
314             buf[i] = L;
315         }
316         for (; i < width; i++) {
317             L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
318             TL     = buf[i - stride];
319             buf[i] = L;
320         }
321     } else {
322         TL = buf[width - (2 * stride) - 1];
323         L  = buf[width - stride - 1];
324         l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
325     }
326 }
327
328 static int lag_decode_line(LagarithContext *l, lag_rac *rac,
329                            uint8_t *dst, int width, int stride,
330                            int esc_count)
331 {
332     int i = 0;
333     int ret = 0;
334
335     if (!esc_count)
336         esc_count = -1;
337
338     /* Output any zeros remaining from the previous run */
339 handle_zeros:
340     if (l->zeros_rem) {
341         int count = FFMIN(l->zeros_rem, width - i);
342         memset(dst + i, 0, count);
343         i += count;
344         l->zeros_rem -= count;
345     }
346
347     while (i < width) {
348         dst[i] = lag_get_rac(rac);
349         ret++;
350
351         if (dst[i])
352             l->zeros = 0;
353         else
354             l->zeros++;
355
356         i++;
357         if (l->zeros == esc_count) {
358             int index = lag_get_rac(rac);
359             ret++;
360
361             l->zeros = 0;
362
363             l->zeros_rem = lag_calc_zero_run(index);
364             goto handle_zeros;
365         }
366     }
367     return ret;
368 }
369
370 static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
371                                     const uint8_t *src, const uint8_t *src_end,
372                                     int width, int esc_count)
373 {
374     int i = 0;
375     int count;
376     uint8_t zero_run = 0;
377     const uint8_t *src_start = src;
378     uint8_t mask1 = -(esc_count < 2);
379     uint8_t mask2 = -(esc_count < 3);
380     uint8_t *end = dst + (width - 2);
381
382     avpriv_request_sample(l->avctx, "zero_run_line");
383
384     memset(dst, 0, width);
385
386 output_zeros:
387     if (l->zeros_rem) {
388         count = FFMIN(l->zeros_rem, width - i);
389         if (end - dst < count) {
390             av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
391             return AVERROR_INVALIDDATA;
392         }
393
394         memset(dst, 0, count);
395         l->zeros_rem -= count;
396         dst += count;
397     }
398
399     while (dst < end) {
400         i = 0;
401         while (!zero_run && dst + i < end) {
402             i++;
403             if (i+2 >= src_end - src)
404                 return AVERROR_INVALIDDATA;
405             zero_run =
406                 !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
407         }
408         if (zero_run) {
409             zero_run = 0;
410             i += esc_count;
411             memcpy(dst, src, i);
412             dst += i;
413             l->zeros_rem = lag_calc_zero_run(src[i]);
414
415             src += i + 1;
416             goto output_zeros;
417         } else {
418             memcpy(dst, src, i);
419             src += i;
420             dst += i;
421         }
422     }
423     return  src - src_start;
424 }
425
426
427
428 static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
429                                   int width, int height, int stride,
430                                   const uint8_t *src, int src_size)
431 {
432     int i = 0;
433     int read = 0;
434     uint32_t length;
435     uint32_t offset = 1;
436     int esc_count;
437     GetBitContext gb;
438     lag_rac rac;
439     const uint8_t *src_end = src + src_size;
440     int ret;
441
442     rac.avctx = l->avctx;
443     l->zeros = 0;
444
445     if(src_size < 2)
446         return AVERROR_INVALIDDATA;
447
448     esc_count = src[0];
449     if (esc_count < 4) {
450         length = width * height;
451         if(src_size < 5)
452             return AVERROR_INVALIDDATA;
453         if (esc_count && AV_RL32(src + 1) < length) {
454             length = AV_RL32(src + 1);
455             offset += 4;
456         }
457
458         if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
459             return ret;
460
461         if (lag_read_prob_header(&rac, &gb) < 0)
462             return -1;
463
464         ff_lag_rac_init(&rac, &gb, length - stride);
465         for (i = 0; i < height; i++) {
466             if (rac.overread > MAX_OVERREAD)
467                 return AVERROR_INVALIDDATA;
468             read += lag_decode_line(l, &rac, dst + (i * stride), width,
469                                     stride, esc_count);
470         }
471
472         if (read > length)
473             av_log(l->avctx, AV_LOG_WARNING,
474                    "Output more bytes than length (%d of %"PRIu32")\n", read,
475                    length);
476     } else if (esc_count < 8) {
477         esc_count -= 4;
478         src ++;
479         src_size --;
480         if (esc_count > 0) {
481             /* Zero run coding only, no range coding. */
482             for (i = 0; i < height; i++) {
483                 int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
484                                                    src_end, width, esc_count);
485                 if (res < 0)
486                     return res;
487                 src += res;
488             }
489         } else {
490             if (src_size < width * height)
491                 return AVERROR_INVALIDDATA; // buffer not big enough
492             /* Plane is stored uncompressed */
493             for (i = 0; i < height; i++) {
494                 memcpy(dst + (i * stride), src, width);
495                 src += width;
496             }
497         }
498     } else if (esc_count == 0xff) {
499         /* Plane is a solid run of given value */
500         for (i = 0; i < height; i++)
501             memset(dst + i * stride, src[1], width);
502         /* Do not apply prediction.
503            Note: memset to 0 above, setting first value to src[1]
504            and applying prediction gives the same result. */
505         return 0;
506     } else {
507         av_log(l->avctx, AV_LOG_ERROR,
508                "Invalid zero run escape code! (%#x)\n", esc_count);
509         return -1;
510     }
511
512     if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
513         for (i = 0; i < height; i++) {
514             lag_pred_line(l, dst, width, stride, i);
515             dst += stride;
516         }
517     } else {
518         for (i = 0; i < height; i++) {
519             lag_pred_line_yuy2(l, dst, width, stride, i,
520                                width == l->avctx->width);
521             dst += stride;
522         }
523     }
524
525     return 0;
526 }
527
528 /**
529  * Decode a frame.
530  * @param avctx codec context
531  * @param data output AVFrame
532  * @param data_size size of output data or 0 if no picture is returned
533  * @param avpkt input packet
534  * @return number of consumed bytes on success or negative if decode fails
535  */
536 static int lag_decode_frame(AVCodecContext *avctx,
537                             void *data, int *got_frame, AVPacket *avpkt)
538 {
539     const uint8_t *buf = avpkt->data;
540     unsigned int buf_size = avpkt->size;
541     LagarithContext *l = avctx->priv_data;
542     ThreadFrame frame = { .f = data };
543     AVFrame *const p  = data;
544     uint8_t frametype;
545     uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
546     uint32_t offs[4];
547     uint8_t *srcs[4];
548     int i, j, planes = 3;
549     int ret;
550
551     p->key_frame = 1;
552     p->pict_type = AV_PICTURE_TYPE_I;
553
554     frametype = buf[0];
555
556     offset_gu = AV_RL32(buf + 1);
557     offset_bv = AV_RL32(buf + 5);
558
559     switch (frametype) {
560     case FRAME_SOLID_RGBA:
561         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
562     case FRAME_SOLID_GRAY:
563         if (frametype == FRAME_SOLID_GRAY)
564             if (avctx->bits_per_coded_sample == 24) {
565                 avctx->pix_fmt = AV_PIX_FMT_GBRP;
566             } else {
567                 avctx->pix_fmt = AV_PIX_FMT_GBRAP;
568                 planes = 4;
569             }
570
571         if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
572             return ret;
573
574         if (frametype == FRAME_SOLID_RGBA) {
575             for (i = 0; i < avctx->height; i++) {
576                 memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
577                 memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
578                 memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
579                 memset(p->data[3] + i * p->linesize[3], buf[4], avctx->width);
580             }
581         } else {
582             for (i = 0; i < avctx->height; i++) {
583                 for (j = 0; j < planes; j++)
584                     memset(p->data[j] + i * p->linesize[j], buf[1], avctx->width);
585             }
586         }
587         break;
588     case FRAME_SOLID_COLOR:
589         if (avctx->bits_per_coded_sample == 24) {
590             avctx->pix_fmt = AV_PIX_FMT_GBRP;
591         } else {
592             avctx->pix_fmt = AV_PIX_FMT_GBRAP;
593         }
594
595         if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
596             return ret;
597
598         for (i = 0; i < avctx->height; i++) {
599             memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
600             memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
601             memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
602             if (avctx->pix_fmt == AV_PIX_FMT_GBRAP)
603                 memset(p->data[3] + i * p->linesize[3], 0xFFu, avctx->width);
604         }
605         break;
606     case FRAME_ARITH_RGBA:
607         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
608         planes = 4;
609         offset_ry += 4;
610         offs[3] = AV_RL32(buf + 9);
611     case FRAME_ARITH_RGB24:
612     case FRAME_U_RGB24:
613         if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
614             avctx->pix_fmt = AV_PIX_FMT_GBRP;
615
616         if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
617             return ret;
618
619         offs[0] = offset_bv;
620         offs[1] = offset_gu;
621         offs[2] = offset_ry;
622
623         for (i = 0; i < planes; i++)
624             srcs[i] = p->data[i] + (avctx->height - 1) * p->linesize[i];
625         for (i = 0; i < planes; i++)
626             if (buf_size <= offs[i]) {
627                 av_log(avctx, AV_LOG_ERROR,
628                         "Invalid frame offsets\n");
629                 return AVERROR_INVALIDDATA;
630             }
631
632         for (i = 0; i < planes; i++)
633             lag_decode_arith_plane(l, srcs[i],
634                                    avctx->width, avctx->height,
635                                    -p->linesize[i], buf + offs[i],
636                                    buf_size - offs[i]);
637         for (i = 0; i < avctx->height; i++) {
638             l->llviddsp.add_bytes(p->data[0] + i * p->linesize[0], p->data[1] + i * p->linesize[1], avctx->width);
639             l->llviddsp.add_bytes(p->data[2] + i * p->linesize[2], p->data[1] + i * p->linesize[1], avctx->width);
640         }
641         FFSWAP(uint8_t*, p->data[0], p->data[1]);
642         FFSWAP(int, p->linesize[0], p->linesize[1]);
643         FFSWAP(uint8_t*, p->data[2], p->data[1]);
644         FFSWAP(int, p->linesize[2], p->linesize[1]);
645         break;
646     case FRAME_ARITH_YUY2:
647         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
648
649         if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
650             return ret;
651
652         if (offset_ry >= buf_size ||
653             offset_gu >= buf_size ||
654             offset_bv >= buf_size) {
655             av_log(avctx, AV_LOG_ERROR,
656                    "Invalid frame offsets\n");
657             return AVERROR_INVALIDDATA;
658         }
659
660         lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
661                                p->linesize[0], buf + offset_ry,
662                                buf_size - offset_ry);
663         lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
664                                avctx->height, p->linesize[1],
665                                buf + offset_gu, buf_size - offset_gu);
666         lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
667                                avctx->height, p->linesize[2],
668                                buf + offset_bv, buf_size - offset_bv);
669         break;
670     case FRAME_ARITH_YV12:
671         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
672
673         if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
674             return ret;
675
676         if (offset_ry >= buf_size ||
677             offset_gu >= buf_size ||
678             offset_bv >= buf_size) {
679             av_log(avctx, AV_LOG_ERROR,
680                    "Invalid frame offsets\n");
681             return AVERROR_INVALIDDATA;
682         }
683
684         lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
685                                p->linesize[0], buf + offset_ry,
686                                buf_size - offset_ry);
687         lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
688                                (avctx->height + 1) / 2, p->linesize[2],
689                                buf + offset_gu, buf_size - offset_gu);
690         lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
691                                (avctx->height + 1) / 2, p->linesize[1],
692                                buf + offset_bv, buf_size - offset_bv);
693         break;
694     default:
695         av_log(avctx, AV_LOG_ERROR,
696                "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
697         return AVERROR_PATCHWELCOME;
698     }
699
700     *got_frame = 1;
701
702     return buf_size;
703 }
704
705 static av_cold int lag_decode_init(AVCodecContext *avctx)
706 {
707     LagarithContext *l = avctx->priv_data;
708     l->avctx = avctx;
709
710     ff_llviddsp_init(&l->llviddsp);
711
712     return 0;
713 }
714
715 AVCodec ff_lagarith_decoder = {
716     .name           = "lagarith",
717     .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
718     .type           = AVMEDIA_TYPE_VIDEO,
719     .id             = AV_CODEC_ID_LAGARITH,
720     .priv_data_size = sizeof(LagarithContext),
721     .init           = lag_decode_init,
722     .decode         = lag_decode_frame,
723     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
724 };