]> git.sesse.net Git - ffmpeg/blob - libavcodec/lpc.c
avformat/avio: Add Metacube support
[ffmpeg] / libavcodec / lpc.c
1 /*
2  * LPC utility code
3  * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "libavutil/common.h"
23 #include "libavutil/lls.h"
24 #include "libavutil/mem_internal.h"
25
26 #define LPC_USE_DOUBLE
27 #include "lpc.h"
28 #include "libavutil/avassert.h"
29
30
31 /**
32  * Apply Welch window function to audio block
33  */
34 static void lpc_apply_welch_window_c(const int32_t *data, int len,
35                                      double *w_data)
36 {
37     int i, n2;
38     double w;
39     double c;
40
41     n2 = (len >> 1);
42     c = 2.0 / (len - 1.0);
43
44     if (len & 1) {
45         for(i=0; i<n2; i++) {
46             w = c - i - 1.0;
47             w = 1.0 - (w * w);
48             w_data[i] = data[i] * w;
49             w_data[len-1-i] = data[len-1-i] * w;
50         }
51         return;
52     }
53
54     w_data+=n2;
55       data+=n2;
56     for(i=0; i<n2; i++) {
57         w = c - n2 + i;
58         w = 1.0 - (w * w);
59         w_data[-i-1] = data[-i-1] * w;
60         w_data[+i  ] = data[+i  ] * w;
61     }
62 }
63
64 /**
65  * Calculate autocorrelation data from audio samples
66  * A Welch window function is applied before calculation.
67  */
68 static void lpc_compute_autocorr_c(const double *data, int len, int lag,
69                                    double *autoc)
70 {
71     int i, j;
72
73     for(j=0; j<lag; j+=2){
74         double sum0 = 1.0, sum1 = 1.0;
75         for(i=j; i<len; i++){
76             sum0 += data[i] * data[i-j];
77             sum1 += data[i] * data[i-j-1];
78         }
79         autoc[j  ] = sum0;
80         autoc[j+1] = sum1;
81     }
82
83     if(j==lag){
84         double sum = 1.0;
85         for(i=j-1; i<len; i+=2){
86             sum += data[i  ] * data[i-j  ]
87                  + data[i+1] * data[i-j+1];
88         }
89         autoc[j] = sum;
90     }
91 }
92
93 /**
94  * Quantize LPC coefficients
95  */
96 static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
97                                int32_t *lpc_out, int *shift, int min_shift,
98                                int max_shift, int zero_shift)
99 {
100     int i;
101     double cmax, error;
102     int32_t qmax;
103     int sh;
104
105     /* define maximum levels */
106     qmax = (1 << (precision - 1)) - 1;
107
108     /* find maximum coefficient value */
109     cmax = 0.0;
110     for(i=0; i<order; i++) {
111         cmax= FFMAX(cmax, fabs(lpc_in[i]));
112     }
113
114     /* if maximum value quantizes to zero, return all zeros */
115     if(cmax * (1 << max_shift) < 1.0) {
116         *shift = zero_shift;
117         memset(lpc_out, 0, sizeof(int32_t) * order);
118         return;
119     }
120
121     /* calculate level shift which scales max coeff to available bits */
122     sh = max_shift;
123     while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
124         sh--;
125     }
126
127     /* since negative shift values are unsupported in decoder, scale down
128        coefficients instead */
129     if(sh == 0 && cmax > qmax) {
130         double scale = ((double)qmax) / cmax;
131         for(i=0; i<order; i++) {
132             lpc_in[i] *= scale;
133         }
134     }
135
136     /* output quantized coefficients and level shift */
137     error=0;
138     for(i=0; i<order; i++) {
139         error -= lpc_in[i] * (1 << sh);
140         lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
141         error -= lpc_out[i];
142     }
143     *shift = sh;
144 }
145
146 static int estimate_best_order(double *ref, int min_order, int max_order)
147 {
148     int i, est;
149
150     est = min_order;
151     for(i=max_order-1; i>=min_order-1; i--) {
152         if(ref[i] > 0.10) {
153             est = i+1;
154             break;
155         }
156     }
157     return est;
158 }
159
160 int ff_lpc_calc_ref_coefs(LPCContext *s,
161                           const int32_t *samples, int order, double *ref)
162 {
163     double autoc[MAX_LPC_ORDER + 1];
164
165     s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
166     s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
167     compute_ref_coefs(autoc, order, ref, NULL);
168
169     return order;
170 }
171
172 double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
173                                int order, double *ref)
174 {
175     int i;
176     double signal = 0.0f, avg_err = 0.0f;
177     double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
178     const double a = 0.5f, b = 1.0f - a;
179
180     /* Apply windowing */
181     for (i = 0; i <= len / 2; i++) {
182         double weight = a - b*cos((2*M_PI*i)/(len - 1));
183         s->windowed_samples[i] = weight*samples[i];
184         s->windowed_samples[len-1-i] = weight*samples[len-1-i];
185     }
186
187     s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
188     signal = autoc[0];
189     compute_ref_coefs(autoc, order, ref, error);
190     for (i = 0; i < order; i++)
191         avg_err = (avg_err + error[i])/2.0f;
192     return signal/avg_err;
193 }
194
195 /**
196  * Calculate LPC coefficients for multiple orders
197  *
198  * @param lpc_type LPC method for determining coefficients,
199  *                 see #FFLPCType for details
200  */
201 int ff_lpc_calc_coefs(LPCContext *s,
202                       const int32_t *samples, int blocksize, int min_order,
203                       int max_order, int precision,
204                       int32_t coefs[][MAX_LPC_ORDER], int *shift,
205                       enum FFLPCType lpc_type, int lpc_passes,
206                       int omethod, int min_shift, int max_shift, int zero_shift)
207 {
208     double autoc[MAX_LPC_ORDER+1];
209     double ref[MAX_LPC_ORDER] = { 0 };
210     double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
211     int i, j, pass = 0;
212     int opt_order;
213
214     av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
215            lpc_type > FF_LPC_TYPE_FIXED);
216     av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
217
218     /* reinit LPC context if parameters have changed */
219     if (blocksize != s->blocksize || max_order != s->max_order ||
220         lpc_type  != s->lpc_type) {
221         ff_lpc_end(s);
222         ff_lpc_init(s, blocksize, max_order, lpc_type);
223     }
224
225     if(lpc_passes <= 0)
226         lpc_passes = 2;
227
228     if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
229         s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
230
231         s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
232
233         compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
234
235         for(i=0; i<max_order; i++)
236             ref[i] = fabs(lpc[i][i]);
237
238         pass++;
239     }
240
241     if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
242         LLSModel *m = s->lls_models;
243         LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
244         double av_uninit(weight);
245         memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
246
247         for(j=0; j<max_order; j++)
248             m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
249
250         for(; pass<lpc_passes; pass++){
251             avpriv_init_lls(&m[pass&1], max_order);
252
253             weight=0;
254             for(i=max_order; i<blocksize; i++){
255                 for(j=0; j<=max_order; j++)
256                     var[j]= samples[i-j];
257
258                 if(pass){
259                     double eval, inv, rinv;
260                     eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
261                     eval= (512>>pass) + fabs(eval - var[0]);
262                     inv = 1/eval;
263                     rinv = sqrt(inv);
264                     for(j=0; j<=max_order; j++)
265                         var[j] *= rinv;
266                     weight += inv;
267                 }else
268                     weight++;
269
270                 m[pass&1].update_lls(&m[pass&1], var);
271             }
272             avpriv_solve_lls(&m[pass&1], 0.001, 0);
273         }
274
275         for(i=0; i<max_order; i++){
276             for(j=0; j<max_order; j++)
277                 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
278             ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
279         }
280         for(i=max_order-1; i>0; i--)
281             ref[i] = ref[i-1] - ref[i];
282     }
283
284     opt_order = max_order;
285
286     if(omethod == ORDER_METHOD_EST) {
287         opt_order = estimate_best_order(ref, min_order, max_order);
288         i = opt_order-1;
289         quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
290                            min_shift, max_shift, zero_shift);
291     } else {
292         for(i=min_order-1; i<max_order; i++) {
293             quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
294                                min_shift, max_shift, zero_shift);
295         }
296     }
297
298     return opt_order;
299 }
300
301 av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
302                         enum FFLPCType lpc_type)
303 {
304     s->blocksize = blocksize;
305     s->max_order = max_order;
306     s->lpc_type  = lpc_type;
307
308     s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
309                                     sizeof(*s->windowed_samples));
310     if (!s->windowed_buffer)
311         return AVERROR(ENOMEM);
312     s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
313
314     s->lpc_apply_welch_window = lpc_apply_welch_window_c;
315     s->lpc_compute_autocorr   = lpc_compute_autocorr_c;
316
317     if (ARCH_X86)
318         ff_lpc_init_x86(s);
319
320     return 0;
321 }
322
323 av_cold void ff_lpc_end(LPCContext *s)
324 {
325     av_freep(&s->windowed_buffer);
326 }