]> git.sesse.net Git - ffmpeg/blob - libavcodec/magicyuv.c
avcodec: Constify AVCodecs
[ffmpeg] / libavcodec / magicyuv.c
1 /*
2  * MagicYUV decoder
3  * Copyright (c) 2016 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include <stdlib.h>
23 #include <string.h>
24
25 #define CACHED_BITSTREAM_READER !ARCH_X86_32
26
27 #include "libavutil/pixdesc.h"
28
29 #include "avcodec.h"
30 #include "bytestream.h"
31 #include "get_bits.h"
32 #include "huffyuvdsp.h"
33 #include "internal.h"
34 #include "lossless_videodsp.h"
35 #include "thread.h"
36
37 typedef struct Slice {
38     uint32_t start;
39     uint32_t size;
40 } Slice;
41
42 typedef enum Prediction {
43     LEFT = 1,
44     GRADIENT,
45     MEDIAN,
46 } Prediction;
47
48 typedef struct HuffEntry {
49     uint8_t  len;
50     uint16_t sym;
51 } HuffEntry;
52
53 typedef struct MagicYUVContext {
54     AVFrame          *p;
55     int               max;
56     int               bps;
57     int               slice_height;
58     int               nb_slices;
59     int               planes;         // number of encoded planes in bitstream
60     int               decorrelate;    // postprocessing work
61     int               color_matrix;   // video color matrix
62     int               flags;
63     int               interlaced;     // video is interlaced
64     const uint8_t    *buf;            // pointer to AVPacket->data
65     int               hshift[4];
66     int               vshift[4];
67     Slice            *slices[4];      // slice bitstream positions for each plane
68     unsigned int      slices_size[4]; // slice sizes for each plane
69     VLC               vlc[4];         // VLC for each plane
70     int (*magy_decode_slice)(AVCodecContext *avctx, void *tdata,
71                              int j, int threadnr);
72     LLVidDSPContext   llviddsp;
73 } MagicYUVContext;
74
75 static int huff_build(const uint8_t len[], uint16_t codes_pos[33],
76                       VLC *vlc, int nb_elems, void *logctx)
77 {
78     HuffEntry he[4096];
79
80     for (int i = 31; i > 0; i--)
81         codes_pos[i] += codes_pos[i + 1];
82
83     for (unsigned i = nb_elems; i-- > 0;)
84         he[--codes_pos[len[i]]] = (HuffEntry){ len[i], i };
85
86     ff_free_vlc(vlc);
87     return ff_init_vlc_from_lengths(vlc, FFMIN(he[0].len, 12), nb_elems,
88                                     &he[0].len, sizeof(he[0]),
89                                     &he[0].sym, sizeof(he[0]), sizeof(he[0].sym),
90                                     0, 0, logctx);
91 }
92
93 static void magicyuv_median_pred16(uint16_t *dst, const uint16_t *src1,
94                                    const uint16_t *diff, intptr_t w,
95                                    int *left, int *left_top, int max)
96 {
97     int i;
98     uint16_t l, lt;
99
100     l  = *left;
101     lt = *left_top;
102
103     for (i = 0; i < w; i++) {
104         l      = mid_pred(l, src1[i], (l + src1[i] - lt)) + diff[i];
105         l     &= max;
106         lt     = src1[i];
107         dst[i] = l;
108     }
109
110     *left     = l;
111     *left_top = lt;
112 }
113
114 static int magy_decode_slice10(AVCodecContext *avctx, void *tdata,
115                                int j, int threadnr)
116 {
117     MagicYUVContext *s = avctx->priv_data;
118     int interlaced = s->interlaced;
119     const int bps = s->bps;
120     const int max = s->max - 1;
121     AVFrame *p = s->p;
122     int i, k, x;
123     GetBitContext gb;
124     uint16_t *dst;
125
126     for (i = 0; i < s->planes; i++) {
127         int left, lefttop, top;
128         int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
129         int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
130         int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
131         ptrdiff_t fake_stride = (p->linesize[i] / 2) * (1 + interlaced);
132         ptrdiff_t stride = p->linesize[i] / 2;
133         int flags, pred;
134         int ret = init_get_bits8(&gb, s->buf + s->slices[i][j].start,
135                                  s->slices[i][j].size);
136
137         if (ret < 0)
138             return ret;
139
140         flags = get_bits(&gb, 8);
141         pred  = get_bits(&gb, 8);
142
143         dst = (uint16_t *)p->data[i] + j * sheight * stride;
144         if (flags & 1) {
145             if (get_bits_left(&gb) < bps * width * height)
146                 return AVERROR_INVALIDDATA;
147             for (k = 0; k < height; k++) {
148                 for (x = 0; x < width; x++)
149                     dst[x] = get_bits(&gb, bps);
150
151                 dst += stride;
152             }
153         } else {
154             for (k = 0; k < height; k++) {
155                 for (x = 0; x < width; x++) {
156                     int pix;
157                     if (get_bits_left(&gb) <= 0)
158                         return AVERROR_INVALIDDATA;
159
160                     pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
161                     if (pix < 0)
162                         return AVERROR_INVALIDDATA;
163
164                     dst[x] = pix;
165                 }
166                 dst += stride;
167             }
168         }
169
170         switch (pred) {
171         case LEFT:
172             dst = (uint16_t *)p->data[i] + j * sheight * stride;
173             s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
174             dst += stride;
175             if (interlaced) {
176                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
177                 dst += stride;
178             }
179             for (k = 1 + interlaced; k < height; k++) {
180                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, dst[-fake_stride]);
181                 dst += stride;
182             }
183             break;
184         case GRADIENT:
185             dst = (uint16_t *)p->data[i] + j * sheight * stride;
186             s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
187             dst += stride;
188             if (interlaced) {
189                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
190                 dst += stride;
191             }
192             for (k = 1 + interlaced; k < height; k++) {
193                 top = dst[-fake_stride];
194                 left = top + dst[0];
195                 dst[0] = left & max;
196                 for (x = 1; x < width; x++) {
197                     top = dst[x - fake_stride];
198                     lefttop = dst[x - (fake_stride + 1)];
199                     left += top - lefttop + dst[x];
200                     dst[x] = left & max;
201                 }
202                 dst += stride;
203             }
204             break;
205         case MEDIAN:
206             dst = (uint16_t *)p->data[i] + j * sheight * stride;
207             s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
208             dst += stride;
209             if (interlaced) {
210                 s->llviddsp.add_left_pred_int16(dst, dst, max, width, 0);
211                 dst += stride;
212             }
213             lefttop = left = dst[0];
214             for (k = 1 + interlaced; k < height; k++) {
215                 magicyuv_median_pred16(dst, dst - fake_stride, dst, width, &left, &lefttop, max);
216                 lefttop = left = dst[0];
217                 dst += stride;
218             }
219             break;
220         default:
221             avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
222         }
223     }
224
225     if (s->decorrelate) {
226         int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
227         int width = avctx->coded_width;
228         uint16_t *r = (uint16_t *)p->data[0] + j * s->slice_height * p->linesize[0] / 2;
229         uint16_t *g = (uint16_t *)p->data[1] + j * s->slice_height * p->linesize[1] / 2;
230         uint16_t *b = (uint16_t *)p->data[2] + j * s->slice_height * p->linesize[2] / 2;
231
232         for (i = 0; i < height; i++) {
233             for (k = 0; k < width; k++) {
234                 b[k] = (b[k] + g[k]) & max;
235                 r[k] = (r[k] + g[k]) & max;
236             }
237             b += p->linesize[0] / 2;
238             g += p->linesize[1] / 2;
239             r += p->linesize[2] / 2;
240         }
241     }
242
243     return 0;
244 }
245
246 static int magy_decode_slice(AVCodecContext *avctx, void *tdata,
247                              int j, int threadnr)
248 {
249     MagicYUVContext *s = avctx->priv_data;
250     int interlaced = s->interlaced;
251     AVFrame *p = s->p;
252     int i, k, x, min_width;
253     GetBitContext gb;
254     uint8_t *dst;
255
256     for (i = 0; i < s->planes; i++) {
257         int left, lefttop, top;
258         int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
259         int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
260         int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
261         ptrdiff_t fake_stride = p->linesize[i] * (1 + interlaced);
262         ptrdiff_t stride = p->linesize[i];
263         const uint8_t *slice = s->buf + s->slices[i][j].start;
264         int flags, pred;
265
266         flags = bytestream_get_byte(&slice);
267         pred  = bytestream_get_byte(&slice);
268
269         dst = p->data[i] + j * sheight * stride;
270         if (flags & 1) {
271             if (s->slices[i][j].size - 2 < width * height)
272                 return AVERROR_INVALIDDATA;
273             for (k = 0; k < height; k++) {
274                 bytestream_get_buffer(&slice, dst, width);
275                 dst += stride;
276             }
277         } else {
278             int ret = init_get_bits8(&gb, slice, s->slices[i][j].size - 2);
279
280             if (ret < 0)
281                 return ret;
282
283             for (k = 0; k < height; k++) {
284                 for (x = 0; x < width; x++) {
285                     int pix;
286                     if (get_bits_left(&gb) <= 0)
287                         return AVERROR_INVALIDDATA;
288
289                     pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
290                     if (pix < 0)
291                         return AVERROR_INVALIDDATA;
292
293                     dst[x] = pix;
294                 }
295                 dst += stride;
296             }
297         }
298
299         switch (pred) {
300         case LEFT:
301             dst = p->data[i] + j * sheight * stride;
302             s->llviddsp.add_left_pred(dst, dst, width, 0);
303             dst += stride;
304             if (interlaced) {
305                 s->llviddsp.add_left_pred(dst, dst, width, 0);
306                 dst += stride;
307             }
308             for (k = 1 + interlaced; k < height; k++) {
309                 s->llviddsp.add_left_pred(dst, dst, width, dst[-fake_stride]);
310                 dst += stride;
311             }
312             break;
313         case GRADIENT:
314             dst = p->data[i] + j * sheight * stride;
315             s->llviddsp.add_left_pred(dst, dst, width, 0);
316             dst += stride;
317             if (interlaced) {
318                 s->llviddsp.add_left_pred(dst, dst, width, 0);
319                 dst += stride;
320             }
321             min_width = FFMIN(width, 32);
322             for (k = 1 + interlaced; k < height; k++) {
323                 top = dst[-fake_stride];
324                 left = top + dst[0];
325                 dst[0] = left;
326                 for (x = 1; x < min_width; x++) { /* dsp need aligned 32 */
327                     top = dst[x - fake_stride];
328                     lefttop = dst[x - (fake_stride + 1)];
329                     left += top - lefttop + dst[x];
330                     dst[x] = left;
331                 }
332                 if (width > 32)
333                     s->llviddsp.add_gradient_pred(dst + 32, fake_stride, width - 32);
334                 dst += stride;
335             }
336             break;
337         case MEDIAN:
338             dst = p->data[i] + j * sheight * stride;
339             s->llviddsp.add_left_pred(dst, dst, width, 0);
340             dst += stride;
341             if (interlaced) {
342                 s->llviddsp.add_left_pred(dst, dst, width, 0);
343                 dst += stride;
344             }
345             lefttop = left = dst[0];
346             for (k = 1 + interlaced; k < height; k++) {
347                 s->llviddsp.add_median_pred(dst, dst - fake_stride,
348                                              dst, width, &left, &lefttop);
349                 lefttop = left = dst[0];
350                 dst += stride;
351             }
352             break;
353         default:
354             avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
355         }
356     }
357
358     if (s->decorrelate) {
359         int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
360         int width = avctx->coded_width;
361         uint8_t *b = p->data[0] + j * s->slice_height * p->linesize[0];
362         uint8_t *g = p->data[1] + j * s->slice_height * p->linesize[1];
363         uint8_t *r = p->data[2] + j * s->slice_height * p->linesize[2];
364
365         for (i = 0; i < height; i++) {
366             s->llviddsp.add_bytes(b, g, width);
367             s->llviddsp.add_bytes(r, g, width);
368             b += p->linesize[0];
369             g += p->linesize[1];
370             r += p->linesize[2];
371         }
372     }
373
374     return 0;
375 }
376
377 static int build_huffman(AVCodecContext *avctx, const uint8_t *table,
378                          int table_size, int max)
379 {
380     MagicYUVContext *s = avctx->priv_data;
381     GetByteContext gb;
382     uint8_t len[4096];
383     uint16_t length_count[33] = { 0 };
384     int i = 0, j = 0, k;
385
386     bytestream2_init(&gb, table, table_size);
387
388     while (bytestream2_get_bytes_left(&gb) > 0) {
389         int b = bytestream2_peek_byteu(&gb) &  0x80;
390         int x = bytestream2_get_byteu(&gb)  & ~0x80;
391         int l = 1;
392
393         if (b) {
394             if (bytestream2_get_bytes_left(&gb) <= 0)
395                 break;
396             l += bytestream2_get_byteu(&gb);
397         }
398         k = j + l;
399         if (k > max || x == 0 || x > 32) {
400             av_log(avctx, AV_LOG_ERROR, "Invalid Huffman codes\n");
401             return AVERROR_INVALIDDATA;
402         }
403
404         length_count[x] += l;
405         for (; j < k; j++)
406             len[j] = x;
407
408         if (j == max) {
409             j = 0;
410             if (huff_build(len, length_count, &s->vlc[i], max, avctx)) {
411                 av_log(avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
412                 return AVERROR_INVALIDDATA;
413             }
414             i++;
415             if (i == s->planes) {
416                 break;
417             }
418             memset(length_count, 0, sizeof(length_count));
419         }
420     }
421
422     if (i != s->planes) {
423         av_log(avctx, AV_LOG_ERROR, "Huffman tables too short\n");
424         return AVERROR_INVALIDDATA;
425     }
426
427     return 0;
428 }
429
430 static int magy_decode_frame(AVCodecContext *avctx, void *data,
431                              int *got_frame, AVPacket *avpkt)
432 {
433     MagicYUVContext *s = avctx->priv_data;
434     ThreadFrame frame = { .f = data };
435     AVFrame *p = data;
436     GetByteContext gb;
437     uint32_t first_offset, offset, next_offset, header_size, slice_width;
438     int width, height, format, version, table_size;
439     int ret, i, j;
440
441     if (avpkt->size < 36)
442         return AVERROR_INVALIDDATA;
443
444     bytestream2_init(&gb, avpkt->data, avpkt->size);
445     if (bytestream2_get_le32u(&gb) != MKTAG('M', 'A', 'G', 'Y'))
446         return AVERROR_INVALIDDATA;
447
448     header_size = bytestream2_get_le32u(&gb);
449     if (header_size < 32 || header_size >= avpkt->size) {
450         av_log(avctx, AV_LOG_ERROR,
451                "header or packet too small %"PRIu32"\n", header_size);
452         return AVERROR_INVALIDDATA;
453     }
454
455     version = bytestream2_get_byteu(&gb);
456     if (version != 7) {
457         avpriv_request_sample(avctx, "Version %d", version);
458         return AVERROR_PATCHWELCOME;
459     }
460
461     s->hshift[1] =
462     s->vshift[1] =
463     s->hshift[2] =
464     s->vshift[2] = 0;
465     s->decorrelate = 0;
466     s->bps = 8;
467
468     format = bytestream2_get_byteu(&gb);
469     switch (format) {
470     case 0x65:
471         avctx->pix_fmt = AV_PIX_FMT_GBRP;
472         s->decorrelate = 1;
473         break;
474     case 0x66:
475         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
476         s->decorrelate = 1;
477         break;
478     case 0x67:
479         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
480         break;
481     case 0x68:
482         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
483         s->hshift[1] =
484         s->hshift[2] = 1;
485         break;
486     case 0x69:
487         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
488         s->hshift[1] =
489         s->vshift[1] =
490         s->hshift[2] =
491         s->vshift[2] = 1;
492         break;
493     case 0x6a:
494         avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
495         break;
496     case 0x6b:
497         avctx->pix_fmt = AV_PIX_FMT_GRAY8;
498         break;
499     case 0x6c:
500         avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
501         s->hshift[1] =
502         s->hshift[2] = 1;
503         s->bps = 10;
504         break;
505     case 0x76:
506         avctx->pix_fmt = AV_PIX_FMT_YUV444P10;
507         s->bps = 10;
508         break;
509     case 0x6d:
510         avctx->pix_fmt = AV_PIX_FMT_GBRP10;
511         s->decorrelate = 1;
512         s->bps = 10;
513         break;
514     case 0x6e:
515         avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
516         s->decorrelate = 1;
517         s->bps = 10;
518         break;
519     case 0x6f:
520         avctx->pix_fmt = AV_PIX_FMT_GBRP12;
521         s->decorrelate = 1;
522         s->bps = 12;
523         break;
524     case 0x70:
525         avctx->pix_fmt = AV_PIX_FMT_GBRAP12;
526         s->decorrelate = 1;
527         s->bps = 12;
528         break;
529     case 0x73:
530         avctx->pix_fmt = AV_PIX_FMT_GRAY10;
531         s->bps = 10;
532         break;
533     case 0x7b:
534         avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
535         s->hshift[1] =
536         s->vshift[1] =
537         s->hshift[2] =
538         s->vshift[2] = 1;
539         s->bps = 10;
540         break;
541     default:
542         avpriv_request_sample(avctx, "Format 0x%X", format);
543         return AVERROR_PATCHWELCOME;
544     }
545     s->max = 1 << s->bps;
546     s->magy_decode_slice = s->bps == 8 ? magy_decode_slice : magy_decode_slice10;
547     s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
548
549     bytestream2_skipu(&gb, 1);
550     s->color_matrix = bytestream2_get_byteu(&gb);
551     s->flags        = bytestream2_get_byteu(&gb);
552     s->interlaced   = !!(s->flags & 2);
553     bytestream2_skipu(&gb, 3);
554
555     width  = bytestream2_get_le32u(&gb);
556     height = bytestream2_get_le32u(&gb);
557     ret = ff_set_dimensions(avctx, width, height);
558     if (ret < 0)
559         return ret;
560
561     slice_width = bytestream2_get_le32u(&gb);
562     if (slice_width != avctx->coded_width) {
563         avpriv_request_sample(avctx, "Slice width %"PRIu32, slice_width);
564         return AVERROR_PATCHWELCOME;
565     }
566     s->slice_height = bytestream2_get_le32u(&gb);
567     if (s->slice_height <= 0 || s->slice_height > INT_MAX - avctx->coded_height) {
568         av_log(avctx, AV_LOG_ERROR,
569                "invalid slice height: %d\n", s->slice_height);
570         return AVERROR_INVALIDDATA;
571     }
572
573     bytestream2_skipu(&gb, 4);
574
575     s->nb_slices = (avctx->coded_height + s->slice_height - 1) / s->slice_height;
576     if (s->nb_slices > INT_MAX / FFMAX(sizeof(Slice), 4 * 5)) {
577         av_log(avctx, AV_LOG_ERROR,
578                "invalid number of slices: %d\n", s->nb_slices);
579         return AVERROR_INVALIDDATA;
580     }
581
582     if (s->interlaced) {
583         if ((s->slice_height >> s->vshift[1]) < 2) {
584             av_log(avctx, AV_LOG_ERROR, "impossible slice height\n");
585             return AVERROR_INVALIDDATA;
586         }
587         if ((avctx->coded_height % s->slice_height) && ((avctx->coded_height % s->slice_height) >> s->vshift[1]) < 2) {
588             av_log(avctx, AV_LOG_ERROR, "impossible height\n");
589             return AVERROR_INVALIDDATA;
590         }
591     }
592
593     if (bytestream2_get_bytes_left(&gb) <= s->nb_slices * s->planes * 5)
594         return AVERROR_INVALIDDATA;
595     for (i = 0; i < s->planes; i++) {
596         av_fast_malloc(&s->slices[i], &s->slices_size[i], s->nb_slices * sizeof(Slice));
597         if (!s->slices[i])
598             return AVERROR(ENOMEM);
599
600         offset = bytestream2_get_le32u(&gb);
601         if (offset >= avpkt->size - header_size)
602             return AVERROR_INVALIDDATA;
603
604         if (i == 0)
605             first_offset = offset;
606
607         for (j = 0; j < s->nb_slices - 1; j++) {
608             s->slices[i][j].start = offset + header_size;
609
610             next_offset = bytestream2_get_le32u(&gb);
611             if (next_offset <= offset || next_offset >= avpkt->size - header_size)
612                 return AVERROR_INVALIDDATA;
613
614             s->slices[i][j].size = next_offset - offset;
615             if (s->slices[i][j].size < 2)
616                 return AVERROR_INVALIDDATA;
617             offset = next_offset;
618         }
619
620         s->slices[i][j].start = offset + header_size;
621         s->slices[i][j].size  = avpkt->size - s->slices[i][j].start;
622
623         if (s->slices[i][j].size < 2)
624             return AVERROR_INVALIDDATA;
625     }
626
627     if (bytestream2_get_byteu(&gb) != s->planes)
628         return AVERROR_INVALIDDATA;
629
630     bytestream2_skipu(&gb, s->nb_slices * s->planes);
631
632     table_size = header_size + first_offset - bytestream2_tell(&gb);
633     if (table_size < 2)
634         return AVERROR_INVALIDDATA;
635
636     ret = build_huffman(avctx, avpkt->data + bytestream2_tell(&gb),
637                         table_size, s->max);
638     if (ret < 0)
639         return ret;
640
641     p->pict_type = AV_PICTURE_TYPE_I;
642     p->key_frame = 1;
643
644     if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
645         return ret;
646
647     s->buf = avpkt->data;
648     s->p = p;
649     avctx->execute2(avctx, s->magy_decode_slice, NULL, NULL, s->nb_slices);
650
651     if (avctx->pix_fmt == AV_PIX_FMT_GBRP   ||
652         avctx->pix_fmt == AV_PIX_FMT_GBRAP  ||
653         avctx->pix_fmt == AV_PIX_FMT_GBRP10 ||
654         avctx->pix_fmt == AV_PIX_FMT_GBRAP10||
655         avctx->pix_fmt == AV_PIX_FMT_GBRAP12||
656         avctx->pix_fmt == AV_PIX_FMT_GBRP12) {
657         FFSWAP(uint8_t*, p->data[0], p->data[1]);
658         FFSWAP(int, p->linesize[0], p->linesize[1]);
659     } else {
660         switch (s->color_matrix) {
661         case 1:
662             p->colorspace = AVCOL_SPC_BT470BG;
663             break;
664         case 2:
665             p->colorspace = AVCOL_SPC_BT709;
666             break;
667         }
668         p->color_range = (s->flags & 4) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
669     }
670
671     *got_frame = 1;
672
673     return avpkt->size;
674 }
675
676 static av_cold int magy_decode_init(AVCodecContext *avctx)
677 {
678     MagicYUVContext *s = avctx->priv_data;
679     ff_llviddsp_init(&s->llviddsp);
680     return 0;
681 }
682
683 static av_cold int magy_decode_end(AVCodecContext *avctx)
684 {
685     MagicYUVContext * const s = avctx->priv_data;
686     int i;
687
688     for (i = 0; i < FF_ARRAY_ELEMS(s->slices); i++) {
689         av_freep(&s->slices[i]);
690         s->slices_size[i] = 0;
691         ff_free_vlc(&s->vlc[i]);
692     }
693
694     return 0;
695 }
696
697 const AVCodec ff_magicyuv_decoder = {
698     .name             = "magicyuv",
699     .long_name        = NULL_IF_CONFIG_SMALL("MagicYUV video"),
700     .type             = AVMEDIA_TYPE_VIDEO,
701     .id               = AV_CODEC_ID_MAGICYUV,
702     .priv_data_size   = sizeof(MagicYUVContext),
703     .init             = magy_decode_init,
704     .close            = magy_decode_end,
705     .decode           = magy_decode_frame,
706     .capabilities     = AV_CODEC_CAP_DR1 |
707                         AV_CODEC_CAP_FRAME_THREADS |
708                         AV_CODEC_CAP_SLICE_THREADS,
709     .caps_internal    = FF_CODEC_CAP_INIT_THREADSAFE,
710 };