]> git.sesse.net Git - ffmpeg/blob - libavcodec/mdct_template.c
lavc: Add coded bitstream read/write support for AV1
[ffmpeg] / libavcodec / mdct_template.c
1 /*
2  * MDCT/IMDCT transforms
3  * Copyright (c) 2002 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include <stdlib.h>
23 #include <string.h>
24 #include "libavutil/common.h"
25 #include "libavutil/libm.h"
26 #include "libavutil/mathematics.h"
27 #include "fft.h"
28 #include "fft-internal.h"
29
30 /**
31  * @file
32  * MDCT/IMDCT transforms.
33  */
34
35 #if FFT_FLOAT
36 #   define RSCALE(x, y) ((x) + (y))
37 #else
38 #if FFT_FIXED_32
39 #   define RSCALE(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6)
40 #else /* FFT_FIXED_32 */
41 #   define RSCALE(x, y) ((int)((x) + (unsigned)(y)) >> 1)
42 #endif /* FFT_FIXED_32 */
43 #endif
44
45 /**
46  * init MDCT or IMDCT computation.
47  */
48 av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
49 {
50     int n, n4, i;
51     double alpha, theta;
52     int tstep;
53
54     memset(s, 0, sizeof(*s));
55     n = 1 << nbits;
56     s->mdct_bits = nbits;
57     s->mdct_size = n;
58     n4 = n >> 2;
59     s->mdct_permutation = FF_MDCT_PERM_NONE;
60
61     if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
62         goto fail;
63
64     s->tcos = av_malloc_array(n/2, sizeof(FFTSample));
65     if (!s->tcos)
66         goto fail;
67
68     switch (s->mdct_permutation) {
69     case FF_MDCT_PERM_NONE:
70         s->tsin = s->tcos + n4;
71         tstep = 1;
72         break;
73     case FF_MDCT_PERM_INTERLEAVE:
74         s->tsin = s->tcos + 1;
75         tstep = 2;
76         break;
77     default:
78         goto fail;
79     }
80
81     theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
82     scale = sqrt(fabs(scale));
83     for(i=0;i<n4;i++) {
84         alpha = 2 * M_PI * (i + theta) / n;
85 #if FFT_FIXED_32
86         s->tcos[i*tstep] = lrint(-cos(alpha) * 2147483648.0);
87         s->tsin[i*tstep] = lrint(-sin(alpha) * 2147483648.0);
88 #else
89         s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
90         s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
91 #endif
92     }
93     return 0;
94  fail:
95     ff_mdct_end(s);
96     return -1;
97 }
98
99 /**
100  * Compute the middle half of the inverse MDCT of size N = 2^nbits,
101  * thus excluding the parts that can be derived by symmetry
102  * @param output N/2 samples
103  * @param input N/2 samples
104  */
105 void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
106 {
107     int k, n8, n4, n2, n, j;
108     const uint16_t *revtab = s->revtab;
109     const FFTSample *tcos = s->tcos;
110     const FFTSample *tsin = s->tsin;
111     const FFTSample *in1, *in2;
112     FFTComplex *z = (FFTComplex *)output;
113
114     n = 1 << s->mdct_bits;
115     n2 = n >> 1;
116     n4 = n >> 2;
117     n8 = n >> 3;
118
119     /* pre rotation */
120     in1 = input;
121     in2 = input + n2 - 1;
122     for(k = 0; k < n4; k++) {
123         j=revtab[k];
124         CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
125         in1 += 2;
126         in2 -= 2;
127     }
128     s->fft_calc(s, z);
129
130     /* post rotation + reordering */
131     for(k = 0; k < n8; k++) {
132         FFTSample r0, i0, r1, i1;
133         CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
134         CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
135         z[n8-k-1].re = r0;
136         z[n8-k-1].im = i0;
137         z[n8+k  ].re = r1;
138         z[n8+k  ].im = i1;
139     }
140 }
141
142 /**
143  * Compute inverse MDCT of size N = 2^nbits
144  * @param output N samples
145  * @param input N/2 samples
146  */
147 void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
148 {
149     int k;
150     int n = 1 << s->mdct_bits;
151     int n2 = n >> 1;
152     int n4 = n >> 2;
153
154     ff_imdct_half_c(s, output+n4, input);
155
156     for(k = 0; k < n4; k++) {
157         output[k] = -output[n2-k-1];
158         output[n-k-1] = output[n2+k];
159     }
160 }
161
162 /**
163  * Compute MDCT of size N = 2^nbits
164  * @param input N samples
165  * @param out N/2 samples
166  */
167 void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
168 {
169     int i, j, n, n8, n4, n2, n3;
170     FFTDouble re, im;
171     const uint16_t *revtab = s->revtab;
172     const FFTSample *tcos = s->tcos;
173     const FFTSample *tsin = s->tsin;
174     FFTComplex *x = (FFTComplex *)out;
175
176     n = 1 << s->mdct_bits;
177     n2 = n >> 1;
178     n4 = n >> 2;
179     n8 = n >> 3;
180     n3 = 3 * n4;
181
182     /* pre rotation */
183     for(i=0;i<n8;i++) {
184         re = RSCALE(-input[2*i+n3], - input[n3-1-2*i]);
185         im = RSCALE(-input[n4+2*i], + input[n4-1-2*i]);
186         j = revtab[i];
187         CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
188
189         re = RSCALE( input[2*i]   , - input[n2-1-2*i]);
190         im = RSCALE(-input[n2+2*i], - input[ n-1-2*i]);
191         j = revtab[n8 + i];
192         CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
193     }
194
195     s->fft_calc(s, x);
196
197     /* post rotation */
198     for(i=0;i<n8;i++) {
199         FFTSample r0, i0, r1, i1;
200         CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
201         CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
202         x[n8-i-1].re = r0;
203         x[n8-i-1].im = i0;
204         x[n8+i  ].re = r1;
205         x[n8+i  ].im = i1;
206     }
207 }
208
209 av_cold void ff_mdct_end(FFTContext *s)
210 {
211     av_freep(&s->tcos);
212     ff_fft_end(s);
213 }