3 * Copyright (c) 2016 William Ma, Ted Ying, Jerry Jiang
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "libavutil/avassert.h"
26 #include "libavutil/common.h"
27 #include "libavutil/error.h"
28 #include "libavutil/qsort.h"
29 #include "mjpegenc_huffman.h"
32 * Comparison function for two PTables by prob
34 * @param a First PTable to compare
35 * @param b Second PTable to compare
36 * @return < 0 for less than, 0 for equals, > 0 for greater than
38 static int compare_by_prob(const void *a, const void *b)
40 PTable a_val = *(PTable *) a;
41 PTable b_val = *(PTable *) b;
42 return a_val.prob - b_val.prob;
46 * Comparison function for two HuffTables by length
48 * @param a First HuffTable to compare
49 * @param b Second HuffTable to compare
50 * @return < 0 for less than, 0 for equals, > 0 for greater than
52 static int compare_by_length(const void *a, const void *b)
54 HuffTable a_val = *(HuffTable *) a;
55 HuffTable b_val = *(HuffTable *) b;
56 return a_val.length - b_val.length;
60 * Computes the length of the Huffman encoding for each distinct input value.
61 * Uses package merge algorithm as follows:
62 * 1. start with an empty list, lets call it list(0), set i = 0
63 * 2. add 1 entry to list(i) for each symbol we have and give each a score equal to the probability of the respective symbol
64 * 3. merge the 2 symbols of least score and put them in list(i+1), and remove them from list(i). The new score will be the sum of the 2 scores
65 * 4. if there is more than 1 symbol left in the current list(i), then goto 3
68 * 7. select the n-1 elements in the last list with the lowest score (n = the number of symbols)
69 * 8. the length of the huffman code for symbol s will be equal to the number of times the symbol occurs in the select elements
70 * Go to guru.multimedia.cx/small-tasks-for-ffmpeg/ for more details
72 * All probabilities should be positive integers. The output is sorted by code,
75 * @param prob_table input array of a PTable for each distinct input value
76 * @param distincts output array of a HuffTable that will be populated by this function
77 * @param size size of the prob_table array
78 * @param max_length max length of an encoding
80 void ff_mjpegenc_huffman_compute_bits(PTable *prob_table, HuffTable *distincts, int size, int max_length)
82 PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
90 av_assert0(max_length > 0);
95 from->item_idx[0] = 0;
96 AV_QSORT(prob_table, size, PTable, compare_by_prob);
98 for (times = 0; times <= max_length; times++) {
105 if (times < max_length) {
108 while (i < size || j + 1 < from->nitems) {
110 to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
112 (j + 1 >= from->nitems ||
114 from->probability[j] + from->probability[j + 1])) {
115 to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
116 to->probability[to->nitems - 1] = prob_table[i].prob;
119 for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
120 to->items[to->item_idx[to->nitems]++] = from->items[k];
122 to->probability[to->nitems - 1] =
123 from->probability[j] + from->probability[j + 1];
132 min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
133 for (i = 0; i < from->item_idx[min]; i++) {
134 nbits[from->items[i]]++;
136 // we don't want to return the 256 bit count (it was just in here to prevent
139 for (i = 0; i < 256; i++) {
141 distincts[j].code = i;
142 distincts[j].length = nbits[i];
148 void ff_mjpeg_encode_huffman_init(MJpegEncHuffmanContext *s)
150 memset(s->val_count, 0, sizeof(s->val_count));
154 * Produces a Huffman encoding with a given input
156 * @param s input to encode
157 * @param bits output array where the ith character represents how many input values have i length encoding
158 * @param val output array of input values sorted by their encoded length
159 * @param max_nval maximum number of distinct input values
161 void ff_mjpeg_encode_huffman_close(MJpegEncHuffmanContext *s, uint8_t bits[17],
162 uint8_t val[], int max_nval)
166 PTable val_counts[257];
167 HuffTable distincts[256];
169 for (i = 0; i < 256; i++) {
170 if (s->val_count[i]) nval++;
172 av_assert0 (nval <= max_nval);
175 for (i = 0; i < 256; i++) {
176 if (s->val_count[i]) {
177 val_counts[j].value = i;
178 val_counts[j].prob = s->val_count[i];
182 val_counts[j].value = 256;
183 val_counts[j].prob = 0;
184 ff_mjpegenc_huffman_compute_bits(val_counts, distincts, nval + 1, 16);
185 AV_QSORT(distincts, nval, HuffTable, compare_by_length);
187 memset(bits, 0, sizeof(bits[0]) * 17);
188 for (i = 0; i < nval; i++) {
189 val[i] = distincts[i].code;
190 bits[distincts[i].length]++;