3 * Copyright (c) 2001, 2002 Fabrice Bellard
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include "libavutil/attributes.h"
28 #include "libavutil/avassert.h"
29 #include "libavutil/channel_layout.h"
30 #include "libavutil/float_dsp.h"
31 #include "libavutil/libm.h"
36 #include "mpegaudiodsp.h"
40 * - test lsf / mpeg25 extensively.
43 #include "mpegaudio.h"
44 #include "mpegaudiodecheader.h"
46 #define BACKSTEP_SIZE 512
48 #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
50 /* layer 3 "granule" */
51 typedef struct GranuleDef {
56 int scalefac_compress;
61 uint8_t scalefac_scale;
62 uint8_t count1table_select;
63 int region_size[3]; /* number of huffman codes in each region */
65 int short_start, long_end; /* long/short band indexes */
66 uint8_t scale_factors[40];
67 DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
70 typedef struct MPADecodeContext {
72 uint8_t last_buf[LAST_BUF_SIZE];
75 /* next header (used in free format parsing) */
76 uint32_t free_format_next_header;
79 DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
80 int synth_buf_offset[MPA_MAX_CHANNELS];
81 DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
82 INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
83 GranuleDef granules[2][2]; /* Used in Layer 3 */
84 int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
87 AVCodecContext* avctx;
89 AVFloatDSPContext *fdsp;
95 #include "mpegaudiodata.h"
96 #include "mpegaudiodectab.h"
98 /* vlc structure for decoding layer 3 huffman tables */
99 static VLC huff_vlc[16];
100 static VLC_TYPE huff_vlc_tables[
101 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
102 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
104 static const int huff_vlc_tables_sizes[16] = {
105 0, 128, 128, 128, 130, 128, 154, 166,
106 142, 204, 190, 170, 542, 460, 662, 414
108 static VLC huff_quad_vlc[2];
109 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
110 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
111 /* computed from band_size_long */
112 static uint16_t band_index_long[9][23];
113 #include "mpegaudio_tablegen.h"
114 /* intensity stereo coef table */
115 static INTFLOAT is_table[2][16];
116 static INTFLOAT is_table_lsf[2][2][16];
117 static INTFLOAT csa_table[8][4];
119 static int16_t division_tab3[1<<6 ];
120 static int16_t division_tab5[1<<8 ];
121 static int16_t division_tab9[1<<11];
123 static int16_t * const division_tabs[4] = {
124 division_tab3, division_tab5, NULL, division_tab9
127 /* lower 2 bits: modulo 3, higher bits: shift */
128 static uint16_t scale_factor_modshift[64];
129 /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
130 static int32_t scale_factor_mult[15][3];
131 /* mult table for layer 2 group quantization */
133 #define SCALE_GEN(v) \
134 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
136 static const int32_t scale_factor_mult2[3][3] = {
137 SCALE_GEN(4.0 / 3.0), /* 3 steps */
138 SCALE_GEN(4.0 / 5.0), /* 5 steps */
139 SCALE_GEN(4.0 / 9.0), /* 9 steps */
143 * Convert region offsets to region sizes and truncate
144 * size to big_values.
146 static void region_offset2size(GranuleDef *g)
149 g->region_size[2] = 576 / 2;
150 for (i = 0; i < 3; i++) {
151 k = FFMIN(g->region_size[i], g->big_values);
152 g->region_size[i] = k - j;
157 static void init_short_region(MPADecodeContext *s, GranuleDef *g)
159 if (g->block_type == 2) {
160 if (s->sample_rate_index != 8)
161 g->region_size[0] = (36 / 2);
163 g->region_size[0] = (72 / 2);
165 if (s->sample_rate_index <= 2)
166 g->region_size[0] = (36 / 2);
167 else if (s->sample_rate_index != 8)
168 g->region_size[0] = (54 / 2);
170 g->region_size[0] = (108 / 2);
172 g->region_size[1] = (576 / 2);
175 static void init_long_region(MPADecodeContext *s, GranuleDef *g,
179 g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
180 /* should not overflow */
181 l = FFMIN(ra1 + ra2 + 2, 22);
182 g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
185 static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
187 if (g->block_type == 2) {
188 if (g->switch_point) {
189 if(s->sample_rate_index == 8)
190 avpriv_request_sample(s->avctx, "switch point in 8khz");
191 /* if switched mode, we handle the 36 first samples as
192 long blocks. For 8000Hz, we handle the 72 first
193 exponents as long blocks */
194 if (s->sample_rate_index <= 2)
210 /* layer 1 unscaling */
211 /* n = number of bits of the mantissa minus 1 */
212 static inline int l1_unscale(int n, int mant, int scale_factor)
217 shift = scale_factor_modshift[scale_factor];
220 val = MUL64((int)(mant + (-1U << n) + 1), scale_factor_mult[n-1][mod]);
222 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
223 return (int)((val + (1LL << (shift - 1))) >> shift);
226 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
230 shift = scale_factor_modshift[scale_factor];
234 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
235 /* NOTE: at this point, 0 <= shift <= 21 */
237 val = (val + (1 << (shift - 1))) >> shift;
241 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
242 static inline int l3_unscale(int value, int exponent)
247 e = table_4_3_exp [4 * value + (exponent & 3)];
248 m = table_4_3_value[4 * value + (exponent & 3)];
252 av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
256 m = (m + ((1U << e)>>1)) >> e;
261 static av_cold void decode_init_static(void)
266 /* scale factors table for layer 1/2 */
267 for (i = 0; i < 64; i++) {
269 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
272 scale_factor_modshift[i] = mod | (shift << 2);
275 /* scale factor multiply for layer 1 */
276 for (i = 0; i < 15; i++) {
279 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
280 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
281 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
282 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
283 ff_dlog(NULL, "%d: norm=%x s=%"PRIx32" %"PRIx32" %"PRIx32"\n", i,
285 scale_factor_mult[i][0],
286 scale_factor_mult[i][1],
287 scale_factor_mult[i][2]);
290 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
292 /* huffman decode tables */
294 for (i = 1; i < 16; i++) {
295 const HuffTable *h = &mpa_huff_tables[i];
297 uint8_t tmp_bits [512] = { 0 };
298 uint16_t tmp_codes[512] = { 0 };
303 for (x = 0; x < xsize; x++) {
304 for (y = 0; y < xsize; y++) {
305 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
306 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
311 huff_vlc[i].table = huff_vlc_tables+offset;
312 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
313 init_vlc(&huff_vlc[i], 7, 512,
314 tmp_bits, 1, 1, tmp_codes, 2, 2,
315 INIT_VLC_USE_NEW_STATIC);
316 offset += huff_vlc_tables_sizes[i];
318 av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
321 for (i = 0; i < 2; i++) {
322 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
323 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
324 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
325 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
326 INIT_VLC_USE_NEW_STATIC);
327 offset += huff_quad_vlc_tables_sizes[i];
329 av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
331 for (i = 0; i < 9; i++) {
333 for (j = 0; j < 22; j++) {
334 band_index_long[i][j] = k;
335 k += band_size_long[i][j];
337 band_index_long[i][22] = k;
340 /* compute n ^ (4/3) and store it in mantissa/exp format */
342 mpegaudio_tableinit();
344 for (i = 0; i < 4; i++) {
345 if (ff_mpa_quant_bits[i] < 0) {
346 for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
347 int val1, val2, val3, steps;
349 steps = ff_mpa_quant_steps[i];
354 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
360 for (i = 0; i < 7; i++) {
364 f = tan((double)i * M_PI / 12.0);
365 v = FIXR(f / (1.0 + f));
370 is_table[1][6 - i] = v;
373 for (i = 7; i < 16; i++)
374 is_table[0][i] = is_table[1][i] = 0.0;
376 for (i = 0; i < 16; i++) {
380 for (j = 0; j < 2; j++) {
381 e = -(j + 1) * ((i + 1) >> 1);
384 is_table_lsf[j][k ^ 1][i] = FIXR(f);
385 is_table_lsf[j][k ][i] = FIXR(1.0);
386 ff_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
387 i, j, (float) is_table_lsf[j][0][i],
388 (float) is_table_lsf[j][1][i]);
392 for (i = 0; i < 8; i++) {
395 cs = 1.0 / sqrt(1.0 + ci * ci);
398 csa_table[i][0] = FIXHR(cs/4);
399 csa_table[i][1] = FIXHR(ca/4);
400 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
401 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
403 csa_table[i][0] = cs;
404 csa_table[i][1] = ca;
405 csa_table[i][2] = ca + cs;
406 csa_table[i][3] = ca - cs;
412 static av_cold int decode_close(AVCodecContext * avctx)
414 MPADecodeContext *s = avctx->priv_data;
421 static av_cold int decode_init(AVCodecContext * avctx)
423 static int initialized_tables = 0;
424 MPADecodeContext *s = avctx->priv_data;
426 if (!initialized_tables) {
427 decode_init_static();
428 initialized_tables = 1;
434 s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
436 return AVERROR(ENOMEM);
439 ff_mpadsp_init(&s->mpadsp);
441 if (avctx->request_sample_fmt == OUT_FMT &&
442 avctx->codec_id != AV_CODEC_ID_MP3ON4)
443 avctx->sample_fmt = OUT_FMT;
445 avctx->sample_fmt = OUT_FMT_P;
446 s->err_recognition = avctx->err_recognition;
448 if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
454 #define C3 FIXHR(0.86602540378443864676/2)
455 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
456 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
457 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
459 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
461 static void imdct12(INTFLOAT *out, SUINTFLOAT *in)
463 SUINTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
466 in1 = in[1*3] + in[0*3];
467 in2 = in[2*3] + in[1*3];
468 in3 = in[3*3] + in[2*3];
469 in4 = in[4*3] + in[3*3];
470 in5 = in[5*3] + in[4*3];
474 in2 = MULH3(in2, C3, 2);
475 in3 = MULH3(in3, C3, 4);
478 t2 = MULH3(in1 - in5, C4, 2);
488 in1 = MULH3(in5 + in3, C5, 1);
495 in5 = MULH3(in5 - in3, C6, 2);
502 /* return the number of decoded frames */
503 static int mp_decode_layer1(MPADecodeContext *s)
505 int bound, i, v, n, ch, j, mant;
506 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
507 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
509 if (s->mode == MPA_JSTEREO)
510 bound = (s->mode_ext + 1) * 4;
514 /* allocation bits */
515 for (i = 0; i < bound; i++) {
516 for (ch = 0; ch < s->nb_channels; ch++) {
517 allocation[ch][i] = get_bits(&s->gb, 4);
520 for (i = bound; i < SBLIMIT; i++)
521 allocation[0][i] = get_bits(&s->gb, 4);
524 for (i = 0; i < bound; i++) {
525 for (ch = 0; ch < s->nb_channels; ch++) {
526 if (allocation[ch][i])
527 scale_factors[ch][i] = get_bits(&s->gb, 6);
530 for (i = bound; i < SBLIMIT; i++) {
531 if (allocation[0][i]) {
532 scale_factors[0][i] = get_bits(&s->gb, 6);
533 scale_factors[1][i] = get_bits(&s->gb, 6);
537 /* compute samples */
538 for (j = 0; j < 12; j++) {
539 for (i = 0; i < bound; i++) {
540 for (ch = 0; ch < s->nb_channels; ch++) {
541 n = allocation[ch][i];
543 mant = get_bits(&s->gb, n + 1);
544 v = l1_unscale(n, mant, scale_factors[ch][i]);
548 s->sb_samples[ch][j][i] = v;
551 for (i = bound; i < SBLIMIT; i++) {
552 n = allocation[0][i];
554 mant = get_bits(&s->gb, n + 1);
555 v = l1_unscale(n, mant, scale_factors[0][i]);
556 s->sb_samples[0][j][i] = v;
557 v = l1_unscale(n, mant, scale_factors[1][i]);
558 s->sb_samples[1][j][i] = v;
560 s->sb_samples[0][j][i] = 0;
561 s->sb_samples[1][j][i] = 0;
568 static int mp_decode_layer2(MPADecodeContext *s)
570 int sblimit; /* number of used subbands */
571 const unsigned char *alloc_table;
572 int table, bit_alloc_bits, i, j, ch, bound, v;
573 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
574 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
575 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
576 int scale, qindex, bits, steps, k, l, m, b;
578 /* select decoding table */
579 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
580 s->sample_rate, s->lsf);
581 sblimit = ff_mpa_sblimit_table[table];
582 alloc_table = ff_mpa_alloc_tables[table];
584 if (s->mode == MPA_JSTEREO)
585 bound = (s->mode_ext + 1) * 4;
589 ff_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
595 /* parse bit allocation */
597 for (i = 0; i < bound; i++) {
598 bit_alloc_bits = alloc_table[j];
599 for (ch = 0; ch < s->nb_channels; ch++)
600 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
601 j += 1 << bit_alloc_bits;
603 for (i = bound; i < sblimit; i++) {
604 bit_alloc_bits = alloc_table[j];
605 v = get_bits(&s->gb, bit_alloc_bits);
608 j += 1 << bit_alloc_bits;
612 for (i = 0; i < sblimit; i++) {
613 for (ch = 0; ch < s->nb_channels; ch++) {
614 if (bit_alloc[ch][i])
615 scale_code[ch][i] = get_bits(&s->gb, 2);
620 for (i = 0; i < sblimit; i++) {
621 for (ch = 0; ch < s->nb_channels; ch++) {
622 if (bit_alloc[ch][i]) {
623 sf = scale_factors[ch][i];
624 switch (scale_code[ch][i]) {
627 sf[0] = get_bits(&s->gb, 6);
628 sf[1] = get_bits(&s->gb, 6);
629 sf[2] = get_bits(&s->gb, 6);
632 sf[0] = get_bits(&s->gb, 6);
637 sf[0] = get_bits(&s->gb, 6);
638 sf[2] = get_bits(&s->gb, 6);
642 sf[0] = get_bits(&s->gb, 6);
643 sf[2] = get_bits(&s->gb, 6);
652 for (k = 0; k < 3; k++) {
653 for (l = 0; l < 12; l += 3) {
655 for (i = 0; i < bound; i++) {
656 bit_alloc_bits = alloc_table[j];
657 for (ch = 0; ch < s->nb_channels; ch++) {
658 b = bit_alloc[ch][i];
660 scale = scale_factors[ch][i][k];
661 qindex = alloc_table[j+b];
662 bits = ff_mpa_quant_bits[qindex];
665 /* 3 values at the same time */
666 v = get_bits(&s->gb, -bits);
667 v2 = division_tabs[qindex][v];
668 steps = ff_mpa_quant_steps[qindex];
670 s->sb_samples[ch][k * 12 + l + 0][i] =
671 l2_unscale_group(steps, v2 & 15, scale);
672 s->sb_samples[ch][k * 12 + l + 1][i] =
673 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
674 s->sb_samples[ch][k * 12 + l + 2][i] =
675 l2_unscale_group(steps, v2 >> 8 , scale);
677 for (m = 0; m < 3; m++) {
678 v = get_bits(&s->gb, bits);
679 v = l1_unscale(bits - 1, v, scale);
680 s->sb_samples[ch][k * 12 + l + m][i] = v;
684 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
685 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
686 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
689 /* next subband in alloc table */
690 j += 1 << bit_alloc_bits;
692 /* XXX: find a way to avoid this duplication of code */
693 for (i = bound; i < sblimit; i++) {
694 bit_alloc_bits = alloc_table[j];
697 int mant, scale0, scale1;
698 scale0 = scale_factors[0][i][k];
699 scale1 = scale_factors[1][i][k];
700 qindex = alloc_table[j+b];
701 bits = ff_mpa_quant_bits[qindex];
703 /* 3 values at the same time */
704 v = get_bits(&s->gb, -bits);
705 steps = ff_mpa_quant_steps[qindex];
708 s->sb_samples[0][k * 12 + l + 0][i] =
709 l2_unscale_group(steps, mant, scale0);
710 s->sb_samples[1][k * 12 + l + 0][i] =
711 l2_unscale_group(steps, mant, scale1);
714 s->sb_samples[0][k * 12 + l + 1][i] =
715 l2_unscale_group(steps, mant, scale0);
716 s->sb_samples[1][k * 12 + l + 1][i] =
717 l2_unscale_group(steps, mant, scale1);
718 s->sb_samples[0][k * 12 + l + 2][i] =
719 l2_unscale_group(steps, v, scale0);
720 s->sb_samples[1][k * 12 + l + 2][i] =
721 l2_unscale_group(steps, v, scale1);
723 for (m = 0; m < 3; m++) {
724 mant = get_bits(&s->gb, bits);
725 s->sb_samples[0][k * 12 + l + m][i] =
726 l1_unscale(bits - 1, mant, scale0);
727 s->sb_samples[1][k * 12 + l + m][i] =
728 l1_unscale(bits - 1, mant, scale1);
732 s->sb_samples[0][k * 12 + l + 0][i] = 0;
733 s->sb_samples[0][k * 12 + l + 1][i] = 0;
734 s->sb_samples[0][k * 12 + l + 2][i] = 0;
735 s->sb_samples[1][k * 12 + l + 0][i] = 0;
736 s->sb_samples[1][k * 12 + l + 1][i] = 0;
737 s->sb_samples[1][k * 12 + l + 2][i] = 0;
739 /* next subband in alloc table */
740 j += 1 << bit_alloc_bits;
742 /* fill remaining samples to zero */
743 for (i = sblimit; i < SBLIMIT; i++) {
744 for (ch = 0; ch < s->nb_channels; ch++) {
745 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
746 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
747 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
755 #define SPLIT(dst,sf,n) \
757 int m = (sf * 171) >> 9; \
760 } else if (n == 4) { \
763 } else if (n == 5) { \
764 int m = (sf * 205) >> 10; \
767 } else if (n == 6) { \
768 int m = (sf * 171) >> 10; \
775 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
778 SPLIT(slen[3], sf, n3)
779 SPLIT(slen[2], sf, n2)
780 SPLIT(slen[1], sf, n1)
784 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
787 const uint8_t *bstab, *pretab;
788 int len, i, j, k, l, v0, shift, gain, gains[3];
792 gain = g->global_gain - 210;
793 shift = g->scalefac_scale + 1;
795 bstab = band_size_long[s->sample_rate_index];
796 pretab = mpa_pretab[g->preflag];
797 for (i = 0; i < g->long_end; i++) {
798 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
800 for (j = len; j > 0; j--)
804 if (g->short_start < 13) {
805 bstab = band_size_short[s->sample_rate_index];
806 gains[0] = gain - (g->subblock_gain[0] << 3);
807 gains[1] = gain - (g->subblock_gain[1] << 3);
808 gains[2] = gain - (g->subblock_gain[2] << 3);
810 for (i = g->short_start; i < 13; i++) {
812 for (l = 0; l < 3; l++) {
813 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
814 for (j = len; j > 0; j--)
821 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
824 if (s->in_gb.buffer && *pos >= s->gb.size_in_bits - s->extrasize * 8) {
826 s->in_gb.buffer = NULL;
828 av_assert2((get_bits_count(&s->gb) & 7) == 0);
829 skip_bits_long(&s->gb, *pos - *end_pos);
831 *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
832 *pos = get_bits_count(&s->gb);
836 /* Following is an optimized code for
838 if(get_bits1(&s->gb))
843 #define READ_FLIP_SIGN(dst,src) \
844 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
847 #define READ_FLIP_SIGN(dst,src) \
848 v = -get_bits1(&s->gb); \
849 *(dst) = (*(src) ^ v) - v;
852 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
853 int16_t *exponents, int end_pos2)
857 int last_pos, bits_left;
859 int end_pos = FFMIN(end_pos2, s->gb.size_in_bits - s->extrasize * 8);
861 /* low frequencies (called big values) */
863 for (i = 0; i < 3; i++) {
864 int j, k, l, linbits;
865 j = g->region_size[i];
868 /* select vlc table */
869 k = g->table_select[i];
870 l = mpa_huff_data[k][0];
871 linbits = mpa_huff_data[k][1];
875 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
880 /* read huffcode and compute each couple */
884 int pos = get_bits_count(&s->gb);
887 switch_buffer(s, &pos, &end_pos, &end_pos2);
891 y = get_vlc2(&s->gb, vlc->table, 7, 3);
894 g->sb_hybrid[s_index ] =
895 g->sb_hybrid[s_index+1] = 0;
900 exponent= exponents[s_index];
902 ff_dlog(s->avctx, "region=%d n=%d y=%d exp=%d\n",
903 i, g->region_size[i] - j, y, exponent);
908 READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
910 x += get_bitsz(&s->gb, linbits);
911 v = l3_unscale(x, exponent);
912 if (get_bits1(&s->gb))
914 g->sb_hybrid[s_index] = v;
917 READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
919 y += get_bitsz(&s->gb, linbits);
920 v = l3_unscale(y, exponent);
921 if (get_bits1(&s->gb))
923 g->sb_hybrid[s_index+1] = v;
930 READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
932 x += get_bitsz(&s->gb, linbits);
933 v = l3_unscale(x, exponent);
934 if (get_bits1(&s->gb))
936 g->sb_hybrid[s_index+!!y] = v;
938 g->sb_hybrid[s_index + !y] = 0;
944 /* high frequencies */
945 vlc = &huff_quad_vlc[g->count1table_select];
947 while (s_index <= 572) {
949 pos = get_bits_count(&s->gb);
950 if (pos >= end_pos) {
951 if (pos > end_pos2 && last_pos) {
952 /* some encoders generate an incorrect size for this
953 part. We must go back into the data */
955 skip_bits_long(&s->gb, last_pos - pos);
956 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
957 if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
961 switch_buffer(s, &pos, &end_pos, &end_pos2);
967 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
968 ff_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
969 g->sb_hybrid[s_index+0] =
970 g->sb_hybrid[s_index+1] =
971 g->sb_hybrid[s_index+2] =
972 g->sb_hybrid[s_index+3] = 0;
974 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
976 int pos = s_index + idxtab[code];
977 code ^= 8 >> idxtab[code];
978 READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
982 /* skip extension bits */
983 bits_left = end_pos2 - get_bits_count(&s->gb);
984 if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
985 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
987 } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
988 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
991 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
992 skip_bits_long(&s->gb, bits_left);
994 i = get_bits_count(&s->gb);
995 switch_buffer(s, &i, &end_pos, &end_pos2);
1000 /* Reorder short blocks from bitstream order to interleaved order. It
1001 would be faster to do it in parsing, but the code would be far more
1003 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1006 INTFLOAT *ptr, *dst, *ptr1;
1009 if (g->block_type != 2)
1012 if (g->switch_point) {
1013 if (s->sample_rate_index != 8)
1014 ptr = g->sb_hybrid + 36;
1016 ptr = g->sb_hybrid + 72;
1021 for (i = g->short_start; i < 13; i++) {
1022 len = band_size_short[s->sample_rate_index][i];
1025 for (j = len; j > 0; j--) {
1026 *dst++ = ptr[0*len];
1027 *dst++ = ptr[1*len];
1028 *dst++ = ptr[2*len];
1032 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1036 #define ISQRT2 FIXR(0.70710678118654752440)
1038 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
1041 int sf_max, sf, len, non_zero_found;
1042 INTFLOAT (*is_tab)[16], *tab0, *tab1, v1, v2;
1043 SUINTFLOAT tmp0, tmp1;
1044 int non_zero_found_short[3];
1046 /* intensity stereo */
1047 if (s->mode_ext & MODE_EXT_I_STEREO) {
1052 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1056 tab0 = g0->sb_hybrid + 576;
1057 tab1 = g1->sb_hybrid + 576;
1059 non_zero_found_short[0] = 0;
1060 non_zero_found_short[1] = 0;
1061 non_zero_found_short[2] = 0;
1062 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1063 for (i = 12; i >= g1->short_start; i--) {
1064 /* for last band, use previous scale factor */
1067 len = band_size_short[s->sample_rate_index][i];
1068 for (l = 2; l >= 0; l--) {
1071 if (!non_zero_found_short[l]) {
1072 /* test if non zero band. if so, stop doing i-stereo */
1073 for (j = 0; j < len; j++) {
1075 non_zero_found_short[l] = 1;
1079 sf = g1->scale_factors[k + l];
1085 for (j = 0; j < len; j++) {
1087 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1088 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1092 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1093 /* lower part of the spectrum : do ms stereo
1095 for (j = 0; j < len; j++) {
1098 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1099 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1106 non_zero_found = non_zero_found_short[0] |
1107 non_zero_found_short[1] |
1108 non_zero_found_short[2];
1110 for (i = g1->long_end - 1;i >= 0;i--) {
1111 len = band_size_long[s->sample_rate_index][i];
1114 /* test if non zero band. if so, stop doing i-stereo */
1115 if (!non_zero_found) {
1116 for (j = 0; j < len; j++) {
1122 /* for last band, use previous scale factor */
1123 k = (i == 21) ? 20 : i;
1124 sf = g1->scale_factors[k];
1129 for (j = 0; j < len; j++) {
1131 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1132 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1136 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1137 /* lower part of the spectrum : do ms stereo
1139 for (j = 0; j < len; j++) {
1142 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1143 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1148 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1149 /* ms stereo ONLY */
1150 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1153 s->fdsp->butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
1155 tab0 = g0->sb_hybrid;
1156 tab1 = g1->sb_hybrid;
1157 for (i = 0; i < 576; i++) {
1160 tab0[i] = tmp0 + tmp1;
1161 tab1[i] = tmp0 - tmp1;
1169 # include "mips/compute_antialias_float.h"
1170 #endif /* HAVE_MIPSFPU */
1173 # include "mips/compute_antialias_fixed.h"
1174 #endif /* HAVE_MIPSDSP */
1175 #endif /* USE_FLOATS */
1177 #ifndef compute_antialias
1179 #define AA(j) do { \
1180 float tmp0 = ptr[-1-j]; \
1181 float tmp1 = ptr[ j]; \
1182 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
1183 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
1186 #define AA(j) do { \
1187 SUINT tmp0 = ptr[-1-j]; \
1188 SUINT tmp1 = ptr[ j]; \
1189 SUINT tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
1190 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
1191 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
1195 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
1200 /* we antialias only "long" bands */
1201 if (g->block_type == 2) {
1202 if (!g->switch_point)
1204 /* XXX: check this for 8000Hz case */
1210 ptr = g->sb_hybrid + 18;
1211 for (i = n; i > 0; i--) {
1224 #endif /* compute_antialias */
1226 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
1227 INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
1229 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1231 int i, j, mdct_long_end, sblimit;
1233 /* find last non zero block */
1234 ptr = g->sb_hybrid + 576;
1235 ptr1 = g->sb_hybrid + 2 * 18;
1236 while (ptr >= ptr1) {
1240 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1243 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1245 if (g->block_type == 2) {
1246 /* XXX: check for 8000 Hz */
1247 if (g->switch_point)
1252 mdct_long_end = sblimit;
1255 s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
1256 mdct_long_end, g->switch_point,
1259 buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1260 ptr = g->sb_hybrid + 18 * mdct_long_end;
1262 for (j = mdct_long_end; j < sblimit; j++) {
1263 /* select frequency inversion */
1264 win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
1265 out_ptr = sb_samples + j;
1267 for (i = 0; i < 6; i++) {
1268 *out_ptr = buf[4*i];
1271 imdct12(out2, ptr + 0);
1272 for (i = 0; i < 6; i++) {
1273 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
1274 buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
1277 imdct12(out2, ptr + 1);
1278 for (i = 0; i < 6; i++) {
1279 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
1280 buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
1283 imdct12(out2, ptr + 2);
1284 for (i = 0; i < 6; i++) {
1285 buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
1286 buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
1287 buf[4*(i + 6*2)] = 0;
1290 buf += (j&3) != 3 ? 1 : (4*18-3);
1293 for (j = sblimit; j < SBLIMIT; j++) {
1295 out_ptr = sb_samples + j;
1296 for (i = 0; i < 18; i++) {
1297 *out_ptr = buf[4*i];
1301 buf += (j&3) != 3 ? 1 : (4*18-3);
1305 /* main layer3 decoding function */
1306 static int mp_decode_layer3(MPADecodeContext *s)
1308 int nb_granules, main_data_begin;
1309 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1311 int16_t exponents[576]; //FIXME try INTFLOAT
1313 /* read side info */
1315 main_data_begin = get_bits(&s->gb, 8);
1316 skip_bits(&s->gb, s->nb_channels);
1319 main_data_begin = get_bits(&s->gb, 9);
1320 if (s->nb_channels == 2)
1321 skip_bits(&s->gb, 3);
1323 skip_bits(&s->gb, 5);
1325 for (ch = 0; ch < s->nb_channels; ch++) {
1326 s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1327 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1331 for (gr = 0; gr < nb_granules; gr++) {
1332 for (ch = 0; ch < s->nb_channels; ch++) {
1333 ff_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1334 g = &s->granules[ch][gr];
1335 g->part2_3_length = get_bits(&s->gb, 12);
1336 g->big_values = get_bits(&s->gb, 9);
1337 if (g->big_values > 288) {
1338 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1339 return AVERROR_INVALIDDATA;
1342 g->global_gain = get_bits(&s->gb, 8);
1343 /* if MS stereo only is selected, we precompute the
1344 1/sqrt(2) renormalization factor */
1345 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1347 g->global_gain -= 2;
1349 g->scalefac_compress = get_bits(&s->gb, 9);
1351 g->scalefac_compress = get_bits(&s->gb, 4);
1352 blocksplit_flag = get_bits1(&s->gb);
1353 if (blocksplit_flag) {
1354 g->block_type = get_bits(&s->gb, 2);
1355 if (g->block_type == 0) {
1356 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1357 return AVERROR_INVALIDDATA;
1359 g->switch_point = get_bits1(&s->gb);
1360 for (i = 0; i < 2; i++)
1361 g->table_select[i] = get_bits(&s->gb, 5);
1362 for (i = 0; i < 3; i++)
1363 g->subblock_gain[i] = get_bits(&s->gb, 3);
1364 init_short_region(s, g);
1366 int region_address1, region_address2;
1368 g->switch_point = 0;
1369 for (i = 0; i < 3; i++)
1370 g->table_select[i] = get_bits(&s->gb, 5);
1371 /* compute huffman coded region sizes */
1372 region_address1 = get_bits(&s->gb, 4);
1373 region_address2 = get_bits(&s->gb, 3);
1374 ff_dlog(s->avctx, "region1=%d region2=%d\n",
1375 region_address1, region_address2);
1376 init_long_region(s, g, region_address1, region_address2);
1378 region_offset2size(g);
1379 compute_band_indexes(s, g);
1383 g->preflag = get_bits1(&s->gb);
1384 g->scalefac_scale = get_bits1(&s->gb);
1385 g->count1table_select = get_bits1(&s->gb);
1386 ff_dlog(s->avctx, "block_type=%d switch_point=%d\n",
1387 g->block_type, g->switch_point);
1393 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1394 s->extrasize = av_clip((get_bits_left(&s->gb) >> 3) - s->extrasize, 0,
1395 FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
1396 av_assert1((get_bits_count(&s->gb) & 7) == 0);
1397 /* now we get bits from the main_data_begin offset */
1398 ff_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
1399 main_data_begin, s->last_buf_size);
1401 memcpy(s->last_buf + s->last_buf_size, ptr, s->extrasize);
1403 init_get_bits(&s->gb, s->last_buf, (s->last_buf_size + s->extrasize) * 8);
1404 s->last_buf_size <<= 3;
1405 for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
1406 for (ch = 0; ch < s->nb_channels; ch++) {
1407 g = &s->granules[ch][gr];
1408 s->last_buf_size += g->part2_3_length;
1409 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
1410 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1413 skip = s->last_buf_size - 8 * main_data_begin;
1414 if (skip >= s->gb.size_in_bits - s->extrasize * 8 && s->in_gb.buffer) {
1415 skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits + s->extrasize * 8);
1417 s->in_gb.buffer = NULL;
1420 skip_bits_long(&s->gb, skip);
1427 for (; gr < nb_granules; gr++) {
1428 for (ch = 0; ch < s->nb_channels; ch++) {
1429 g = &s->granules[ch][gr];
1430 bits_pos = get_bits_count(&s->gb);
1434 int slen, slen1, slen2;
1436 /* MPEG-1 scale factors */
1437 slen1 = slen_table[0][g->scalefac_compress];
1438 slen2 = slen_table[1][g->scalefac_compress];
1439 ff_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
1440 if (g->block_type == 2) {
1441 n = g->switch_point ? 17 : 18;
1444 for (i = 0; i < n; i++)
1445 g->scale_factors[j++] = get_bits(&s->gb, slen1);
1447 for (i = 0; i < n; i++)
1448 g->scale_factors[j++] = 0;
1451 for (i = 0; i < 18; i++)
1452 g->scale_factors[j++] = get_bits(&s->gb, slen2);
1453 for (i = 0; i < 3; i++)
1454 g->scale_factors[j++] = 0;
1456 for (i = 0; i < 21; i++)
1457 g->scale_factors[j++] = 0;
1460 sc = s->granules[ch][0].scale_factors;
1462 for (k = 0; k < 4; k++) {
1464 if ((g->scfsi & (0x8 >> k)) == 0) {
1465 slen = (k < 2) ? slen1 : slen2;
1467 for (i = 0; i < n; i++)
1468 g->scale_factors[j++] = get_bits(&s->gb, slen);
1470 for (i = 0; i < n; i++)
1471 g->scale_factors[j++] = 0;
1474 /* simply copy from last granule */
1475 for (i = 0; i < n; i++) {
1476 g->scale_factors[j] = sc[j];
1481 g->scale_factors[j++] = 0;
1484 int tindex, tindex2, slen[4], sl, sf;
1486 /* LSF scale factors */
1487 if (g->block_type == 2)
1488 tindex = g->switch_point ? 2 : 1;
1492 sf = g->scalefac_compress;
1493 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
1494 /* intensity stereo case */
1497 lsf_sf_expand(slen, sf, 6, 6, 0);
1499 } else if (sf < 244) {
1500 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
1503 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
1509 lsf_sf_expand(slen, sf, 5, 4, 4);
1511 } else if (sf < 500) {
1512 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
1515 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
1522 for (k = 0; k < 4; k++) {
1523 n = lsf_nsf_table[tindex2][tindex][k];
1526 for (i = 0; i < n; i++)
1527 g->scale_factors[j++] = get_bits(&s->gb, sl);
1529 for (i = 0; i < n; i++)
1530 g->scale_factors[j++] = 0;
1533 /* XXX: should compute exact size */
1535 g->scale_factors[j] = 0;
1538 exponents_from_scale_factors(s, g, exponents);
1540 /* read Huffman coded residue */
1541 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
1544 if (s->mode == MPA_JSTEREO)
1545 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
1547 for (ch = 0; ch < s->nb_channels; ch++) {
1548 g = &s->granules[ch][gr];
1550 reorder_block(s, g);
1551 compute_antialias(s, g);
1552 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1555 if (get_bits_count(&s->gb) < 0)
1556 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
1557 return nb_granules * 18;
1560 static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
1561 const uint8_t *buf, int buf_size)
1563 int i, nb_frames, ch, ret;
1564 OUT_INT *samples_ptr;
1566 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
1568 /* skip error protection field */
1569 if (s->error_protection)
1570 skip_bits(&s->gb, 16);
1574 s->avctx->frame_size = 384;
1575 nb_frames = mp_decode_layer1(s);
1578 s->avctx->frame_size = 1152;
1579 nb_frames = mp_decode_layer2(s);
1582 s->avctx->frame_size = s->lsf ? 576 : 1152;
1584 nb_frames = mp_decode_layer3(s);
1587 if (s->in_gb.buffer) {
1588 align_get_bits(&s->gb);
1589 i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
1590 if (i >= 0 && i <= BACKSTEP_SIZE) {
1591 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
1594 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
1596 s->in_gb.buffer = NULL;
1600 align_get_bits(&s->gb);
1601 av_assert1((get_bits_count(&s->gb) & 7) == 0);
1602 i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
1603 if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
1605 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
1606 i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
1608 av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
1609 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
1610 s->last_buf_size += i;
1616 /* get output buffer */
1618 av_assert0(s->frame);
1619 s->frame->nb_samples = s->avctx->frame_size;
1620 if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
1622 samples = (OUT_INT **)s->frame->extended_data;
1625 /* apply the synthesis filter */
1626 for (ch = 0; ch < s->nb_channels; ch++) {
1628 if (s->avctx->sample_fmt == OUT_FMT_P) {
1629 samples_ptr = samples[ch];
1632 samples_ptr = samples[0] + ch;
1633 sample_stride = s->nb_channels;
1635 for (i = 0; i < nb_frames; i++) {
1636 RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
1637 &(s->synth_buf_offset[ch]),
1638 RENAME(ff_mpa_synth_window),
1639 &s->dither_state, samples_ptr,
1640 sample_stride, s->sb_samples[ch][i]);
1641 samples_ptr += 32 * sample_stride;
1645 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
1648 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
1651 const uint8_t *buf = avpkt->data;
1652 int buf_size = avpkt->size;
1653 MPADecodeContext *s = avctx->priv_data;
1658 while(buf_size && !*buf){
1664 if (buf_size < HEADER_SIZE)
1665 return AVERROR_INVALIDDATA;
1667 header = AV_RB32(buf);
1668 if (header>>8 == AV_RB32("TAG")>>8) {
1669 av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
1670 return buf_size + skipped;
1672 ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1674 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
1675 return AVERROR_INVALIDDATA;
1676 } else if (ret == 1) {
1677 /* free format: prepare to compute frame size */
1679 return AVERROR_INVALIDDATA;
1681 /* update codec info */
1682 avctx->channels = s->nb_channels;
1683 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1684 if (!avctx->bit_rate)
1685 avctx->bit_rate = s->bit_rate;
1687 if (s->frame_size <= 0) {
1688 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1689 return AVERROR_INVALIDDATA;
1690 } else if (s->frame_size < buf_size) {
1691 av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
1692 buf_size= s->frame_size;
1697 ret = mp_decode_frame(s, NULL, buf, buf_size);
1699 s->frame->nb_samples = avctx->frame_size;
1701 avctx->sample_rate = s->sample_rate;
1702 //FIXME maybe move the other codec info stuff from above here too
1704 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1705 /* Only return an error if the bad frame makes up the whole packet or
1706 * the error is related to buffer management.
1707 * If there is more data in the packet, just consume the bad frame
1708 * instead of returning an error, which would discard the whole
1711 if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
1715 return buf_size + skipped;
1718 static void mp_flush(MPADecodeContext *ctx)
1720 memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
1721 memset(ctx->mdct_buf, 0, sizeof(ctx->mdct_buf));
1722 ctx->last_buf_size = 0;
1723 ctx->dither_state = 0;
1726 static void flush(AVCodecContext *avctx)
1728 mp_flush(avctx->priv_data);
1731 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
1732 static int decode_frame_adu(AVCodecContext *avctx, void *data,
1733 int *got_frame_ptr, AVPacket *avpkt)
1735 const uint8_t *buf = avpkt->data;
1736 int buf_size = avpkt->size;
1737 MPADecodeContext *s = avctx->priv_data;
1740 int av_unused out_size;
1744 // Discard too short frames
1745 if (buf_size < HEADER_SIZE) {
1746 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1747 return AVERROR_INVALIDDATA;
1751 if (len > MPA_MAX_CODED_FRAME_SIZE)
1752 len = MPA_MAX_CODED_FRAME_SIZE;
1754 // Get header and restore sync word
1755 header = AV_RB32(buf) | 0xffe00000;
1757 ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1759 av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
1762 /* update codec info */
1763 avctx->sample_rate = s->sample_rate;
1764 avctx->channels = s->nb_channels;
1765 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1766 if (!avctx->bit_rate)
1767 avctx->bit_rate = s->bit_rate;
1769 s->frame_size = len;
1773 ret = mp_decode_frame(s, NULL, buf, buf_size);
1775 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1783 #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
1785 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1788 * Context for MP3On4 decoder
1790 typedef struct MP3On4DecodeContext {
1791 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
1792 int syncword; ///< syncword patch
1793 const uint8_t *coff; ///< channel offsets in output buffer
1794 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
1795 } MP3On4DecodeContext;
1797 #include "mpeg4audio.h"
1799 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
1801 /* number of mp3 decoder instances */
1802 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1804 /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
1805 static const uint8_t chan_offset[8][5] = {
1810 { 2, 0, 3 }, // C FLR BS
1811 { 2, 0, 3 }, // C FLR BLRS
1812 { 2, 0, 4, 3 }, // C FLR BLRS LFE
1813 { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
1816 /* mp3on4 channel layouts */
1817 static const int16_t chan_layout[8] = {
1820 AV_CH_LAYOUT_STEREO,
1821 AV_CH_LAYOUT_SURROUND,
1822 AV_CH_LAYOUT_4POINT0,
1823 AV_CH_LAYOUT_5POINT0,
1824 AV_CH_LAYOUT_5POINT1,
1825 AV_CH_LAYOUT_7POINT1
1828 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
1830 MP3On4DecodeContext *s = avctx->priv_data;
1833 if (s->mp3decctx[0])
1834 av_freep(&s->mp3decctx[0]->fdsp);
1836 for (i = 0; i < s->frames; i++)
1837 av_freep(&s->mp3decctx[i]);
1843 static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
1845 MP3On4DecodeContext *s = avctx->priv_data;
1846 MPEG4AudioConfig cfg;
1849 if ((avctx->extradata_size < 2) || !avctx->extradata) {
1850 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
1851 return AVERROR_INVALIDDATA;
1854 avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
1855 avctx->extradata_size * 8, 1);
1856 if (!cfg.chan_config || cfg.chan_config > 7) {
1857 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
1858 return AVERROR_INVALIDDATA;
1860 s->frames = mp3Frames[cfg.chan_config];
1861 s->coff = chan_offset[cfg.chan_config];
1862 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
1863 avctx->channel_layout = chan_layout[cfg.chan_config];
1865 if (cfg.sample_rate < 16000)
1866 s->syncword = 0xffe00000;
1868 s->syncword = 0xfff00000;
1870 /* Init the first mp3 decoder in standard way, so that all tables get builded
1871 * We replace avctx->priv_data with the context of the first decoder so that
1872 * decode_init() does not have to be changed.
1873 * Other decoders will be initialized here copying data from the first context
1875 // Allocate zeroed memory for the first decoder context
1876 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
1877 if (!s->mp3decctx[0])
1879 // Put decoder context in place to make init_decode() happy
1880 avctx->priv_data = s->mp3decctx[0];
1882 // Restore mp3on4 context pointer
1883 avctx->priv_data = s;
1884 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
1886 /* Create a separate codec/context for each frame (first is already ok).
1887 * Each frame is 1 or 2 channels - up to 5 frames allowed
1889 for (i = 1; i < s->frames; i++) {
1890 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
1891 if (!s->mp3decctx[i])
1893 s->mp3decctx[i]->adu_mode = 1;
1894 s->mp3decctx[i]->avctx = avctx;
1895 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1896 s->mp3decctx[i]->fdsp = s->mp3decctx[0]->fdsp;
1901 decode_close_mp3on4(avctx);
1902 return AVERROR(ENOMEM);
1906 static void flush_mp3on4(AVCodecContext *avctx)
1909 MP3On4DecodeContext *s = avctx->priv_data;
1911 for (i = 0; i < s->frames; i++)
1912 mp_flush(s->mp3decctx[i]);
1916 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
1917 int *got_frame_ptr, AVPacket *avpkt)
1919 AVFrame *frame = data;
1920 const uint8_t *buf = avpkt->data;
1921 int buf_size = avpkt->size;
1922 MP3On4DecodeContext *s = avctx->priv_data;
1923 MPADecodeContext *m;
1924 int fsize, len = buf_size, out_size = 0;
1926 OUT_INT **out_samples;
1930 /* get output buffer */
1931 frame->nb_samples = MPA_FRAME_SIZE;
1932 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1934 out_samples = (OUT_INT **)frame->extended_data;
1936 // Discard too short frames
1937 if (buf_size < HEADER_SIZE)
1938 return AVERROR_INVALIDDATA;
1940 avctx->bit_rate = 0;
1943 for (fr = 0; fr < s->frames; fr++) {
1944 fsize = AV_RB16(buf) >> 4;
1945 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
1946 m = s->mp3decctx[fr];
1949 if (fsize < HEADER_SIZE) {
1950 av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
1951 return AVERROR_INVALIDDATA;
1953 header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
1955 ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
1957 av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n");
1958 return AVERROR_INVALIDDATA;
1961 if (ch + m->nb_channels > avctx->channels ||
1962 s->coff[fr] + m->nb_channels > avctx->channels) {
1963 av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
1965 return AVERROR_INVALIDDATA;
1967 ch += m->nb_channels;
1969 outptr[0] = out_samples[s->coff[fr]];
1970 if (m->nb_channels > 1)
1971 outptr[1] = out_samples[s->coff[fr] + 1];
1973 if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) {
1974 av_log(avctx, AV_LOG_ERROR, "failed to decode channel %d\n", ch);
1975 memset(outptr[0], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1976 if (m->nb_channels > 1)
1977 memset(outptr[1], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
1978 ret = m->nb_channels * MPA_FRAME_SIZE*sizeof(OUT_INT);
1985 avctx->bit_rate += m->bit_rate;
1987 if (ch != avctx->channels) {
1988 av_log(avctx, AV_LOG_ERROR, "failed to decode all channels\n");
1989 return AVERROR_INVALIDDATA;
1992 /* update codec info */
1993 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
1995 frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
2000 #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */