]> git.sesse.net Git - ffmpeg/blob - libavcodec/mpegaudioenc_template.c
avformat/avio: Add Metacube support
[ffmpeg] / libavcodec / mpegaudioenc_template.c
1 /*
2  * The simplest mpeg audio layer 2 encoder
3  * Copyright (c) 2000, 2001 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * The simplest mpeg audio layer 2 encoder.
25  */
26
27 #include "libavutil/channel_layout.h"
28
29 #include "avcodec.h"
30 #include "internal.h"
31 #include "put_bits.h"
32
33 #define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
34 #define WFRAC_BITS  14   /* fractional bits for window */
35
36 #include "mpegaudio.h"
37 #include "mpegaudiodsp.h"
38 #include "mpegaudiodata.h"
39 #include "mpegaudiotab.h"
40
41 /* currently, cannot change these constants (need to modify
42    quantization stage) */
43 #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
44
45 #define SAMPLES_BUF_SIZE 4096
46
47 typedef struct MpegAudioContext {
48     PutBitContext pb;
49     int nb_channels;
50     int lsf;           /* 1 if mpeg2 low bitrate selected */
51     int bitrate_index; /* bit rate */
52     int freq_index;
53     int frame_size; /* frame size, in bits, without padding */
54     /* padding computation */
55     int frame_frac, frame_frac_incr, do_padding;
56     short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
57     int samples_offset[MPA_MAX_CHANNELS];       /* offset in samples_buf */
58     int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
59     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
60     /* code to group 3 scale factors */
61     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
62     int sblimit; /* number of used subbands */
63     const unsigned char *alloc_table;
64     int16_t filter_bank[512];
65     int scale_factor_table[64];
66     unsigned char scale_diff_table[128];
67 #if USE_FLOATS
68     float scale_factor_inv_table[64];
69 #else
70     int8_t scale_factor_shift[64];
71     unsigned short scale_factor_mult[64];
72 #endif
73     unsigned short total_quant_bits[17]; /* total number of bits per allocation group */
74 } MpegAudioContext;
75
76 static av_cold int MPA_encode_init(AVCodecContext *avctx)
77 {
78     MpegAudioContext *s = avctx->priv_data;
79     int freq = avctx->sample_rate;
80     int bitrate = avctx->bit_rate;
81     int channels = avctx->channels;
82     int i, v, table;
83     float a;
84
85     if (channels <= 0 || channels > 2){
86         av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
87         return AVERROR(EINVAL);
88     }
89     bitrate = bitrate / 1000;
90     s->nb_channels = channels;
91     avctx->frame_size = MPA_FRAME_SIZE;
92     avctx->initial_padding = 512 - 32 + 1;
93
94     /* encoding freq */
95     s->lsf = 0;
96     for(i=0;i<3;i++) {
97         if (avpriv_mpa_freq_tab[i] == freq)
98             break;
99         if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
100             s->lsf = 1;
101             break;
102         }
103     }
104     if (i == 3){
105         av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
106         return AVERROR(EINVAL);
107     }
108     s->freq_index = i;
109
110     /* encoding bitrate & frequency */
111     for(i=1;i<15;i++) {
112         if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
113             break;
114     }
115     if (i == 15 && !avctx->bit_rate) {
116         i = 14;
117         bitrate = avpriv_mpa_bitrate_tab[s->lsf][1][i];
118         avctx->bit_rate = bitrate * 1000;
119     }
120     if (i == 15){
121         av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
122         return AVERROR(EINVAL);
123     }
124     s->bitrate_index = i;
125
126     /* compute total header size & pad bit */
127
128     a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
129     s->frame_size = ((int)a) * 8;
130
131     /* frame fractional size to compute padding */
132     s->frame_frac = 0;
133     s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
134
135     /* select the right allocation table */
136     table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
137
138     /* number of used subbands */
139     s->sblimit = ff_mpa_sblimit_table[table];
140     s->alloc_table = ff_mpa_alloc_tables[table];
141
142     ff_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
143             bitrate, freq, s->frame_size, table, s->frame_frac_incr);
144
145     for(i=0;i<s->nb_channels;i++)
146         s->samples_offset[i] = 0;
147
148     for(i=0;i<257;i++) {
149         int v;
150         v = ff_mpa_enwindow[i];
151 #if WFRAC_BITS != 16
152         v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
153 #endif
154         s->filter_bank[i] = v;
155         if ((i & 63) != 0)
156             v = -v;
157         if (i != 0)
158             s->filter_bank[512 - i] = v;
159     }
160
161     for(i=0;i<64;i++) {
162         v = (int)(exp2((3 - i) / 3.0) * (1 << 20));
163         if (v <= 0)
164             v = 1;
165         s->scale_factor_table[i] = v;
166 #if USE_FLOATS
167         s->scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20);
168 #else
169 #define P 15
170         s->scale_factor_shift[i] = 21 - P - (i / 3);
171         s->scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0);
172 #endif
173     }
174     for(i=0;i<128;i++) {
175         v = i - 64;
176         if (v <= -3)
177             v = 0;
178         else if (v < 0)
179             v = 1;
180         else if (v == 0)
181             v = 2;
182         else if (v < 3)
183             v = 3;
184         else
185             v = 4;
186         s->scale_diff_table[i] = v;
187     }
188
189     for(i=0;i<17;i++) {
190         v = ff_mpa_quant_bits[i];
191         if (v < 0)
192             v = -v;
193         else
194             v = v * 3;
195         s->total_quant_bits[i] = 12 * v;
196     }
197
198     return 0;
199 }
200
201 /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
202 static void idct32(int *out, int *tab)
203 {
204     int i, j;
205     int *t, *t1, xr;
206     const int *xp = costab32;
207
208     for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
209
210     t = tab + 30;
211     t1 = tab + 2;
212     do {
213         t[0] += t[-4];
214         t[1] += t[1 - 4];
215         t -= 4;
216     } while (t != t1);
217
218     t = tab + 28;
219     t1 = tab + 4;
220     do {
221         t[0] += t[-8];
222         t[1] += t[1-8];
223         t[2] += t[2-8];
224         t[3] += t[3-8];
225         t -= 8;
226     } while (t != t1);
227
228     t = tab;
229     t1 = tab + 32;
230     do {
231         t[ 3] = -t[ 3];
232         t[ 6] = -t[ 6];
233
234         t[11] = -t[11];
235         t[12] = -t[12];
236         t[13] = -t[13];
237         t[15] = -t[15];
238         t += 16;
239     } while (t != t1);
240
241
242     t = tab;
243     t1 = tab + 8;
244     do {
245         int x1, x2, x3, x4;
246
247         x3 = MUL(t[16], FIX(M_SQRT2*0.5));
248         x4 = t[0] - x3;
249         x3 = t[0] + x3;
250
251         x2 = MUL(-(t[24] + t[8]), FIX(M_SQRT2*0.5));
252         x1 = MUL((t[8] - x2), xp[0]);
253         x2 = MUL((t[8] + x2), xp[1]);
254
255         t[ 0] = x3 + x1;
256         t[ 8] = x4 - x2;
257         t[16] = x4 + x2;
258         t[24] = x3 - x1;
259         t++;
260     } while (t != t1);
261
262     xp += 2;
263     t = tab;
264     t1 = tab + 4;
265     do {
266         xr = MUL(t[28],xp[0]);
267         t[28] = (t[0] - xr);
268         t[0] = (t[0] + xr);
269
270         xr = MUL(t[4],xp[1]);
271         t[ 4] = (t[24] - xr);
272         t[24] = (t[24] + xr);
273
274         xr = MUL(t[20],xp[2]);
275         t[20] = (t[8] - xr);
276         t[ 8] = (t[8] + xr);
277
278         xr = MUL(t[12],xp[3]);
279         t[12] = (t[16] - xr);
280         t[16] = (t[16] + xr);
281         t++;
282     } while (t != t1);
283     xp += 4;
284
285     for (i = 0; i < 4; i++) {
286         xr = MUL(tab[30-i*4],xp[0]);
287         tab[30-i*4] = (tab[i*4] - xr);
288         tab[   i*4] = (tab[i*4] + xr);
289
290         xr = MUL(tab[ 2+i*4],xp[1]);
291         tab[ 2+i*4] = (tab[28-i*4] - xr);
292         tab[28-i*4] = (tab[28-i*4] + xr);
293
294         xr = MUL(tab[31-i*4],xp[0]);
295         tab[31-i*4] = (tab[1+i*4] - xr);
296         tab[ 1+i*4] = (tab[1+i*4] + xr);
297
298         xr = MUL(tab[ 3+i*4],xp[1]);
299         tab[ 3+i*4] = (tab[29-i*4] - xr);
300         tab[29-i*4] = (tab[29-i*4] + xr);
301
302         xp += 2;
303     }
304
305     t = tab + 30;
306     t1 = tab + 1;
307     do {
308         xr = MUL(t1[0], *xp);
309         t1[0] = (t[0] - xr);
310         t[0] = (t[0] + xr);
311         t -= 2;
312         t1 += 2;
313         xp++;
314     } while (t >= tab);
315
316     for(i=0;i<32;i++) {
317         out[i] = tab[bitinv32[i]];
318     }
319 }
320
321 #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
322
323 static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
324 {
325     short *p, *q;
326     int sum, offset, i, j;
327     int tmp[64];
328     int tmp1[32];
329     int *out;
330
331     offset = s->samples_offset[ch];
332     out = &s->sb_samples[ch][0][0][0];
333     for(j=0;j<36;j++) {
334         /* 32 samples at once */
335         for(i=0;i<32;i++) {
336             s->samples_buf[ch][offset + (31 - i)] = samples[0];
337             samples += incr;
338         }
339
340         /* filter */
341         p = s->samples_buf[ch] + offset;
342         q = s->filter_bank;
343         /* maxsum = 23169 */
344         for(i=0;i<64;i++) {
345             sum = p[0*64] * q[0*64];
346             sum += p[1*64] * q[1*64];
347             sum += p[2*64] * q[2*64];
348             sum += p[3*64] * q[3*64];
349             sum += p[4*64] * q[4*64];
350             sum += p[5*64] * q[5*64];
351             sum += p[6*64] * q[6*64];
352             sum += p[7*64] * q[7*64];
353             tmp[i] = sum;
354             p++;
355             q++;
356         }
357         tmp1[0] = tmp[16] >> WSHIFT;
358         for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
359         for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
360
361         idct32(out, tmp1);
362
363         /* advance of 32 samples */
364         offset -= 32;
365         out += 32;
366         /* handle the wrap around */
367         if (offset < 0) {
368             memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
369                     s->samples_buf[ch], (512 - 32) * 2);
370             offset = SAMPLES_BUF_SIZE - 512;
371         }
372     }
373     s->samples_offset[ch] = offset;
374 }
375
376 static void compute_scale_factors(MpegAudioContext *s,
377                                   unsigned char scale_code[SBLIMIT],
378                                   unsigned char scale_factors[SBLIMIT][3],
379                                   int sb_samples[3][12][SBLIMIT],
380                                   int sblimit)
381 {
382     int *p, vmax, v, n, i, j, k, code;
383     int index, d1, d2;
384     unsigned char *sf = &scale_factors[0][0];
385
386     for(j=0;j<sblimit;j++) {
387         for(i=0;i<3;i++) {
388             /* find the max absolute value */
389             p = &sb_samples[i][0][j];
390             vmax = abs(*p);
391             for(k=1;k<12;k++) {
392                 p += SBLIMIT;
393                 v = abs(*p);
394                 if (v > vmax)
395                     vmax = v;
396             }
397             /* compute the scale factor index using log 2 computations */
398             if (vmax > 1) {
399                 n = av_log2(vmax);
400                 /* n is the position of the MSB of vmax. now
401                    use at most 2 compares to find the index */
402                 index = (21 - n) * 3 - 3;
403                 if (index >= 0) {
404                     while (vmax <= s->scale_factor_table[index+1])
405                         index++;
406                 } else {
407                     index = 0; /* very unlikely case of overflow */
408                 }
409             } else {
410                 index = 62; /* value 63 is not allowed */
411             }
412
413             ff_dlog(NULL, "%2d:%d in=%x %x %d\n",
414                     j, i, vmax, s->scale_factor_table[index], index);
415             /* store the scale factor */
416             av_assert2(index >=0 && index <= 63);
417             sf[i] = index;
418         }
419
420         /* compute the transmission factor : look if the scale factors
421            are close enough to each other */
422         d1 = s->scale_diff_table[sf[0] - sf[1] + 64];
423         d2 = s->scale_diff_table[sf[1] - sf[2] + 64];
424
425         /* handle the 25 cases */
426         switch(d1 * 5 + d2) {
427         case 0*5+0:
428         case 0*5+4:
429         case 3*5+4:
430         case 4*5+0:
431         case 4*5+4:
432             code = 0;
433             break;
434         case 0*5+1:
435         case 0*5+2:
436         case 4*5+1:
437         case 4*5+2:
438             code = 3;
439             sf[2] = sf[1];
440             break;
441         case 0*5+3:
442         case 4*5+3:
443             code = 3;
444             sf[1] = sf[2];
445             break;
446         case 1*5+0:
447         case 1*5+4:
448         case 2*5+4:
449             code = 1;
450             sf[1] = sf[0];
451             break;
452         case 1*5+1:
453         case 1*5+2:
454         case 2*5+0:
455         case 2*5+1:
456         case 2*5+2:
457             code = 2;
458             sf[1] = sf[2] = sf[0];
459             break;
460         case 2*5+3:
461         case 3*5+3:
462             code = 2;
463             sf[0] = sf[1] = sf[2];
464             break;
465         case 3*5+0:
466         case 3*5+1:
467         case 3*5+2:
468             code = 2;
469             sf[0] = sf[2] = sf[1];
470             break;
471         case 1*5+3:
472             code = 2;
473             if (sf[0] > sf[2])
474               sf[0] = sf[2];
475             sf[1] = sf[2] = sf[0];
476             break;
477         default:
478             av_assert2(0); //cannot happen
479             code = 0;           /* kill warning */
480         }
481
482         ff_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
483                 sf[0], sf[1], sf[2], d1, d2, code);
484         scale_code[j] = code;
485         sf += 3;
486     }
487 }
488
489 /* The most important function : psycho acoustic module. In this
490    encoder there is basically none, so this is the worst you can do,
491    but also this is the simpler. */
492 static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
493 {
494     int i;
495
496     for(i=0;i<s->sblimit;i++) {
497         smr[i] = (int)(fixed_smr[i] * 10);
498     }
499 }
500
501
502 #define SB_NOTALLOCATED  0
503 #define SB_ALLOCATED     1
504 #define SB_NOMORE        2
505
506 /* Try to maximize the smr while using a number of bits inferior to
507    the frame size. I tried to make the code simpler, faster and
508    smaller than other encoders :-) */
509 static void compute_bit_allocation(MpegAudioContext *s,
510                                    short smr1[MPA_MAX_CHANNELS][SBLIMIT],
511                                    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
512                                    int *padding)
513 {
514     int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
515     int incr;
516     short smr[MPA_MAX_CHANNELS][SBLIMIT];
517     unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
518     const unsigned char *alloc;
519
520     memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
521     memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
522     memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
523
524     /* compute frame size and padding */
525     max_frame_size = s->frame_size;
526     s->frame_frac += s->frame_frac_incr;
527     if (s->frame_frac >= 65536) {
528         s->frame_frac -= 65536;
529         s->do_padding = 1;
530         max_frame_size += 8;
531     } else {
532         s->do_padding = 0;
533     }
534
535     /* compute the header + bit alloc size */
536     current_frame_size = 32;
537     alloc = s->alloc_table;
538     for(i=0;i<s->sblimit;i++) {
539         incr = alloc[0];
540         current_frame_size += incr * s->nb_channels;
541         alloc += 1 << incr;
542     }
543     for(;;) {
544         /* look for the subband with the largest signal to mask ratio */
545         max_sb = -1;
546         max_ch = -1;
547         max_smr = INT_MIN;
548         for(ch=0;ch<s->nb_channels;ch++) {
549             for(i=0;i<s->sblimit;i++) {
550                 if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
551                     max_smr = smr[ch][i];
552                     max_sb = i;
553                     max_ch = ch;
554                 }
555             }
556         }
557         if (max_sb < 0)
558             break;
559         ff_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
560                 current_frame_size, max_frame_size, max_sb, max_ch,
561                 bit_alloc[max_ch][max_sb]);
562
563         /* find alloc table entry (XXX: not optimal, should use
564            pointer table) */
565         alloc = s->alloc_table;
566         for(i=0;i<max_sb;i++) {
567             alloc += 1 << alloc[0];
568         }
569
570         if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
571             /* nothing was coded for this band: add the necessary bits */
572             incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
573             incr += s->total_quant_bits[alloc[1]];
574         } else {
575             /* increments bit allocation */
576             b = bit_alloc[max_ch][max_sb];
577             incr = s->total_quant_bits[alloc[b + 1]] -
578                 s->total_quant_bits[alloc[b]];
579         }
580
581         if (current_frame_size + incr <= max_frame_size) {
582             /* can increase size */
583             b = ++bit_alloc[max_ch][max_sb];
584             current_frame_size += incr;
585             /* decrease smr by the resolution we added */
586             smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
587             /* max allocation size reached ? */
588             if (b == ((1 << alloc[0]) - 1))
589                 subband_status[max_ch][max_sb] = SB_NOMORE;
590             else
591                 subband_status[max_ch][max_sb] = SB_ALLOCATED;
592         } else {
593             /* cannot increase the size of this subband */
594             subband_status[max_ch][max_sb] = SB_NOMORE;
595         }
596     }
597     *padding = max_frame_size - current_frame_size;
598     av_assert0(*padding >= 0);
599 }
600
601 /*
602  * Output the MPEG audio layer 2 frame. Note how the code is small
603  * compared to other encoders :-)
604  */
605 static void encode_frame(MpegAudioContext *s,
606                          unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
607                          int padding)
608 {
609     int i, j, k, l, bit_alloc_bits, b, ch;
610     unsigned char *sf;
611     int q[3];
612     PutBitContext *p = &s->pb;
613
614     /* header */
615
616     put_bits(p, 12, 0xfff);
617     put_bits(p, 1, 1 - s->lsf); /* 1 = MPEG-1 ID, 0 = MPEG-2 lsf ID */
618     put_bits(p, 2, 4-2);  /* layer 2 */
619     put_bits(p, 1, 1); /* no error protection */
620     put_bits(p, 4, s->bitrate_index);
621     put_bits(p, 2, s->freq_index);
622     put_bits(p, 1, s->do_padding); /* use padding */
623     put_bits(p, 1, 0);             /* private_bit */
624     put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
625     put_bits(p, 2, 0); /* mode_ext */
626     put_bits(p, 1, 0); /* no copyright */
627     put_bits(p, 1, 1); /* original */
628     put_bits(p, 2, 0); /* no emphasis */
629
630     /* bit allocation */
631     j = 0;
632     for(i=0;i<s->sblimit;i++) {
633         bit_alloc_bits = s->alloc_table[j];
634         for(ch=0;ch<s->nb_channels;ch++) {
635             put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
636         }
637         j += 1 << bit_alloc_bits;
638     }
639
640     /* scale codes */
641     for(i=0;i<s->sblimit;i++) {
642         for(ch=0;ch<s->nb_channels;ch++) {
643             if (bit_alloc[ch][i])
644                 put_bits(p, 2, s->scale_code[ch][i]);
645         }
646     }
647
648     /* scale factors */
649     for(i=0;i<s->sblimit;i++) {
650         for(ch=0;ch<s->nb_channels;ch++) {
651             if (bit_alloc[ch][i]) {
652                 sf = &s->scale_factors[ch][i][0];
653                 switch(s->scale_code[ch][i]) {
654                 case 0:
655                     put_bits(p, 6, sf[0]);
656                     put_bits(p, 6, sf[1]);
657                     put_bits(p, 6, sf[2]);
658                     break;
659                 case 3:
660                 case 1:
661                     put_bits(p, 6, sf[0]);
662                     put_bits(p, 6, sf[2]);
663                     break;
664                 case 2:
665                     put_bits(p, 6, sf[0]);
666                     break;
667                 }
668             }
669         }
670     }
671
672     /* quantization & write sub band samples */
673
674     for(k=0;k<3;k++) {
675         for(l=0;l<12;l+=3) {
676             j = 0;
677             for(i=0;i<s->sblimit;i++) {
678                 bit_alloc_bits = s->alloc_table[j];
679                 for(ch=0;ch<s->nb_channels;ch++) {
680                     b = bit_alloc[ch][i];
681                     if (b) {
682                         int qindex, steps, m, sample, bits;
683                         /* we encode 3 sub band samples of the same sub band at a time */
684                         qindex = s->alloc_table[j+b];
685                         steps = ff_mpa_quant_steps[qindex];
686                         for(m=0;m<3;m++) {
687                             sample = s->sb_samples[ch][k][l + m][i];
688                             /* divide by scale factor */
689 #if USE_FLOATS
690                             {
691                                 float a;
692                                 a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]];
693                                 q[m] = (int)((a + 1.0) * steps * 0.5);
694                             }
695 #else
696                             {
697                                 int q1, e, shift, mult;
698                                 e = s->scale_factors[ch][i][k];
699                                 shift = s->scale_factor_shift[e];
700                                 mult = s->scale_factor_mult[e];
701
702                                 /* normalize to P bits */
703                                 if (shift < 0)
704                                     q1 = sample * (1 << -shift);
705                                 else
706                                     q1 = sample >> shift;
707                                 q1 = (q1 * mult) >> P;
708                                 q1 += 1 << P;
709                                 if (q1 < 0)
710                                     q1 = 0;
711                                 q[m] = (q1 * (unsigned)steps) >> (P + 1);
712                             }
713 #endif
714                             if (q[m] >= steps)
715                                 q[m] = steps - 1;
716                             av_assert2(q[m] >= 0 && q[m] < steps);
717                         }
718                         bits = ff_mpa_quant_bits[qindex];
719                         if (bits < 0) {
720                             /* group the 3 values to save bits */
721                             put_bits(p, -bits,
722                                      q[0] + steps * (q[1] + steps * q[2]));
723                         } else {
724                             put_bits(p, bits, q[0]);
725                             put_bits(p, bits, q[1]);
726                             put_bits(p, bits, q[2]);
727                         }
728                     }
729                 }
730                 /* next subband in alloc table */
731                 j += 1 << bit_alloc_bits;
732             }
733         }
734     }
735
736     /* padding */
737     for(i=0;i<padding;i++)
738         put_bits(p, 1, 0);
739 }
740
741 static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
742                             const AVFrame *frame, int *got_packet_ptr)
743 {
744     MpegAudioContext *s = avctx->priv_data;
745     const int16_t *samples = (const int16_t *)frame->data[0];
746     short smr[MPA_MAX_CHANNELS][SBLIMIT];
747     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
748     int padding, i, ret;
749
750     for(i=0;i<s->nb_channels;i++) {
751         filter(s, i, samples + i, s->nb_channels);
752     }
753
754     for(i=0;i<s->nb_channels;i++) {
755         compute_scale_factors(s, s->scale_code[i], s->scale_factors[i],
756                               s->sb_samples[i], s->sblimit);
757     }
758     for(i=0;i<s->nb_channels;i++) {
759         psycho_acoustic_model(s, smr[i]);
760     }
761     compute_bit_allocation(s, smr, bit_alloc, &padding);
762
763     if ((ret = ff_alloc_packet2(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE, 0)) < 0)
764         return ret;
765
766     init_put_bits(&s->pb, avpkt->data, avpkt->size);
767
768     encode_frame(s, bit_alloc, padding);
769
770     /* flush */
771     flush_put_bits(&s->pb);
772     avpkt->size = put_bytes_output(&s->pb);
773
774     if (frame->pts != AV_NOPTS_VALUE)
775         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
776
777     *got_packet_ptr = 1;
778     return 0;
779 }
780
781 static const AVCodecDefault mp2_defaults[] = {
782     { "b", "0" },
783     { NULL },
784 };
785