]> git.sesse.net Git - ffmpeg/blob - libavcodec/opusenc.c
8bc9e9dc4a27cf6ce377fdc1b0c292ce644e5f84
[ffmpeg] / libavcodec / opusenc.c
1 /*
2  * Opus encoder
3  * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "opusenc.h"
23 #include "opus_pvq.h"
24 #include "opusenc_psy.h"
25 #include "opustab.h"
26
27 #include "libavutil/float_dsp.h"
28 #include "libavutil/mem_internal.h"
29 #include "libavutil/opt.h"
30 #include "internal.h"
31 #include "bytestream.h"
32 #include "audio_frame_queue.h"
33
34 typedef struct OpusEncContext {
35     AVClass *av_class;
36     OpusEncOptions options;
37     OpusPsyContext psyctx;
38     AVCodecContext *avctx;
39     AudioFrameQueue afq;
40     AVFloatDSPContext *dsp;
41     MDCT15Context *mdct[CELT_BLOCK_NB];
42     CeltPVQ *pvq;
43     struct FFBufQueue bufqueue;
44
45     uint8_t enc_id[64];
46     int enc_id_bits;
47
48     OpusPacketInfo packet;
49
50     int channels;
51
52     CeltFrame *frame;
53     OpusRangeCoder *rc;
54
55     /* Actual energy the decoder will have */
56     float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS];
57
58     DECLARE_ALIGNED(32, float, scratch)[2048];
59 } OpusEncContext;
60
61 static void opus_write_extradata(AVCodecContext *avctx)
62 {
63     uint8_t *bs = avctx->extradata;
64
65     bytestream_put_buffer(&bs, "OpusHead", 8);
66     bytestream_put_byte  (&bs, 0x1);
67     bytestream_put_byte  (&bs, avctx->channels);
68     bytestream_put_le16  (&bs, avctx->initial_padding);
69     bytestream_put_le32  (&bs, avctx->sample_rate);
70     bytestream_put_le16  (&bs, 0x0);
71     bytestream_put_byte  (&bs, 0x0); /* Default layout */
72 }
73
74 static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
75 {
76     int tmp = 0x0, extended_toc = 0;
77     static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = {
78         /*  Silk                    Hybrid                  Celt                    Layer     */
79         /*  NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      Bandwidth */
80         { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 17,  0, 21, 25, 29 } }, /* 2.5 ms */
81         { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 18,  0, 22, 26, 30 } }, /*   5 ms */
82         { {  1,  5,  9,  0,  0 }, {  0,  0,  0, 13, 15 }, { 19,  0, 23, 27, 31 } }, /*  10 ms */
83         { {  2,  6, 10,  0,  0 }, {  0,  0,  0, 14, 16 }, { 20,  0, 24, 28, 32 } }, /*  20 ms */
84         { {  3,  7, 11,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  40 ms */
85         { {  4,  8, 12,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  60 ms */
86     };
87     int cfg = toc_cfg[s->packet.framesize][s->packet.mode][s->packet.bandwidth];
88     *fsize_needed = 0;
89     if (!cfg)
90         return 1;
91     if (s->packet.frames == 2) {                                       /* 2 packets */
92         if (s->frame[0].framebits == s->frame[1].framebits) {          /* same size */
93             tmp = 0x1;
94         } else {                                                  /* different size */
95             tmp = 0x2;
96             *fsize_needed = 1;                     /* put frame sizes in the packet */
97         }
98     } else if (s->packet.frames > 2) {
99         tmp = 0x3;
100         extended_toc = 1;
101     }
102     tmp |= (s->channels > 1) << 2;                                /* Stereo or mono */
103     tmp |= (cfg - 1)         << 3;                           /* codec configuration */
104     *toc++ = tmp;
105     if (extended_toc) {
106         for (int i = 0; i < (s->packet.frames - 1); i++)
107             *fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits);
108         tmp = (*fsize_needed) << 7;                                /* vbr flag */
109         tmp |= (0) << 6;                                       /* padding flag */
110         tmp |= s->packet.frames;
111         *toc++ = tmp;
112     }
113     *size = 1 + extended_toc;
114     return 0;
115 }
116
117 static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
118 {
119     AVFrame *cur = NULL;
120     const int subframesize = s->avctx->frame_size;
121     int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;
122
123     cur = ff_bufqueue_get(&s->bufqueue);
124
125     for (int ch = 0; ch < f->channels; ch++) {
126         CeltBlock *b = &f->block[ch];
127         const void *input = cur->extended_data[ch];
128         size_t bps = av_get_bytes_per_sample(cur->format);
129         memcpy(b->overlap, input, bps*cur->nb_samples);
130     }
131
132     av_frame_free(&cur);
133
134     for (int sf = 0; sf < subframes; sf++) {
135         if (sf != (subframes - 1))
136             cur = ff_bufqueue_get(&s->bufqueue);
137         else
138             cur = ff_bufqueue_peek(&s->bufqueue, 0);
139
140         for (int ch = 0; ch < f->channels; ch++) {
141             CeltBlock *b = &f->block[ch];
142             const void *input = cur->extended_data[ch];
143             const size_t bps  = av_get_bytes_per_sample(cur->format);
144             const size_t left = (subframesize - cur->nb_samples)*bps;
145             const size_t len  = FFMIN(subframesize, cur->nb_samples)*bps;
146             memcpy(&b->samples[sf*subframesize], input, len);
147             memset(&b->samples[cur->nb_samples], 0, left);
148         }
149
150         /* Last frame isn't popped off and freed yet - we need it for overlap */
151         if (sf != (subframes - 1))
152             av_frame_free(&cur);
153     }
154 }
155
156 /* Apply the pre emphasis filter */
157 static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
158 {
159     const int subframesize = s->avctx->frame_size;
160     const int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;
161
162     /* Filter overlap */
163     for (int ch = 0; ch < f->channels; ch++) {
164         CeltBlock *b = &f->block[ch];
165         float m = b->emph_coeff;
166         for (int i = 0; i < CELT_OVERLAP; i++) {
167             float sample = b->overlap[i];
168             b->overlap[i] = sample - m;
169             m = sample * CELT_EMPH_COEFF;
170         }
171         b->emph_coeff = m;
172     }
173
174     /* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */
175     for (int sf = 0; sf < subframes; sf++) {
176         for (int ch = 0; ch < f->channels; ch++) {
177             CeltBlock *b = &f->block[ch];
178             float m = b->emph_coeff;
179             for (int i = 0; i < subframesize; i++) {
180                 float sample = b->samples[sf*subframesize + i];
181                 b->samples[sf*subframesize + i] = sample - m;
182                 m = sample * CELT_EMPH_COEFF;
183             }
184             if (sf != (subframes - 1))
185                 b->emph_coeff = m;
186         }
187     }
188 }
189
190 /* Create the window and do the mdct */
191 static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
192 {
193     float *win = s->scratch, *temp = s->scratch + 1920;
194
195     if (f->transient) {
196         for (int ch = 0; ch < f->channels; ch++) {
197             CeltBlock *b = &f->block[ch];
198             float *src1 = b->overlap;
199             for (int t = 0; t < f->blocks; t++) {
200                 float *src2 = &b->samples[CELT_OVERLAP*t];
201                 s->dsp->vector_fmul(win, src1, ff_celt_window, 128);
202                 s->dsp->vector_fmul_reverse(&win[CELT_OVERLAP], src2,
203                                             ff_celt_window - 8, 128);
204                 src1 = src2;
205                 s->mdct[0]->mdct(s->mdct[0], b->coeffs + t, win, f->blocks);
206             }
207         }
208     } else {
209         int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1);
210         int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1;
211         memset(win, 0, wlen*sizeof(float));
212         for (int ch = 0; ch < f->channels; ch++) {
213             CeltBlock *b = &f->block[ch];
214
215             /* Overlap */
216             s->dsp->vector_fmul(temp, b->overlap, ff_celt_window, 128);
217             memcpy(win + lap_dst, temp, CELT_OVERLAP*sizeof(float));
218
219             /* Samples, flat top window */
220             memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float));
221
222             /* Samples, windowed */
223             s->dsp->vector_fmul_reverse(temp, b->samples + rwin,
224                                         ff_celt_window - 8, 128);
225             memcpy(win + lap_dst + blk_len, temp, CELT_OVERLAP*sizeof(float));
226
227             s->mdct[f->size]->mdct(s->mdct[f->size], b->coeffs, win, 1);
228         }
229     }
230
231     for (int ch = 0; ch < f->channels; ch++) {
232         CeltBlock *block = &f->block[ch];
233         for (int i = 0; i < CELT_MAX_BANDS; i++) {
234             float ener = 0.0f;
235             int band_offset = ff_celt_freq_bands[i] << f->size;
236             int band_size   = ff_celt_freq_range[i] << f->size;
237             float *coeffs   = &block->coeffs[band_offset];
238
239             for (int j = 0; j < band_size; j++)
240                 ener += coeffs[j]*coeffs[j];
241
242             block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON;
243             ener = 1.0f/block->lin_energy[i];
244
245             for (int j = 0; j < band_size; j++)
246                 coeffs[j] *= ener;
247
248             block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i];
249
250             /* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */
251             block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE);
252         }
253     }
254 }
255
256 static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc)
257 {
258     int tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed;
259     int bits = f->transient ? 2 : 4;
260
261     tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits));
262
263     for (int i = f->start_band; i < f->end_band; i++) {
264         if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) {
265             const int tbit = (diff ^ 1) == f->tf_change[i];
266             ff_opus_rc_enc_log(rc, tbit, bits);
267             diff ^= tbit;
268             tf_changed |= diff;
269         }
270         bits = f->transient ? 4 : 5;
271     }
272
273     if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
274                             ff_celt_tf_select[f->size][f->transient][1][tf_changed]) {
275         ff_opus_rc_enc_log(rc, f->tf_select, 1);
276         tf_select = f->tf_select;
277     }
278
279     for (int i = f->start_band; i < f->end_band; i++)
280         f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
281 }
282
283 static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f)
284 {
285     float gain = f->pf_gain;
286     int txval, octave = f->pf_octave, period = f->pf_period, tapset = f->pf_tapset;
287
288     ff_opus_rc_enc_log(rc, f->pfilter, 1);
289     if (!f->pfilter)
290         return;
291
292     /* Octave */
293     txval = FFMIN(octave, 6);
294     ff_opus_rc_enc_uint(rc, txval, 6);
295     octave = txval;
296     /* Period */
297     txval = av_clip(period - (16 << octave) + 1, 0, (1 << (4 + octave)) - 1);
298     ff_opus_rc_put_raw(rc, period, 4 + octave);
299     period = txval + (16 << octave) - 1;
300     /* Gain */
301     txval = FFMIN(((int)(gain / 0.09375f)) - 1, 7);
302     ff_opus_rc_put_raw(rc, txval, 3);
303     gain   = 0.09375f * (txval + 1);
304     /* Tapset */
305     if ((opus_rc_tell(rc) + 2) <= f->framebits)
306         ff_opus_rc_enc_cdf(rc, tapset, ff_celt_model_tapset);
307     else
308         tapset = 0;
309     /* Finally create the coeffs */
310     for (int i = 0; i < 2; i++) {
311         CeltBlock *block = &f->block[i];
312
313         block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
314         block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
315         block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
316         block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
317     }
318 }
319
320 static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f,
321                              float last_energy[][CELT_MAX_BANDS], int intra)
322 {
323     float alpha, beta, prev[2] = { 0, 0 };
324     const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][intra];
325
326     /* Inter is really just differential coding */
327     if (opus_rc_tell(rc) + 3 <= f->framebits)
328         ff_opus_rc_enc_log(rc, intra, 3);
329     else
330         intra = 0;
331
332     if (intra) {
333         alpha = 0.0f;
334         beta  = 1.0f - (4915.0f/32768.0f);
335     } else {
336         alpha = ff_celt_alpha_coef[f->size];
337         beta  = ff_celt_beta_coef[f->size];
338     }
339
340     for (int i = f->start_band; i < f->end_band; i++) {
341         for (int ch = 0; ch < f->channels; ch++) {
342             CeltBlock *block = &f->block[ch];
343             const int left = f->framebits - opus_rc_tell(rc);
344             const float last = FFMAX(-9.0f, last_energy[ch][i]);
345             float diff = block->energy[i] - prev[ch] - last*alpha;
346             int q_en = lrintf(diff);
347             if (left >= 15) {
348                 ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6);
349             } else if (left >= 2) {
350                 q_en = av_clip(q_en, -1, 1);
351                 ff_opus_rc_enc_cdf(rc, 2*q_en + 3*(q_en < 0), ff_celt_model_energy_small);
352             } else if (left >= 1) {
353                 q_en = av_clip(q_en, -1, 0);
354                 ff_opus_rc_enc_log(rc, (q_en & 1), 1);
355             } else q_en = -1;
356
357             block->error_energy[i] = q_en - diff;
358             prev[ch] += beta * q_en;
359         }
360     }
361 }
362
363 static void celt_quant_coarse(CeltFrame *f, OpusRangeCoder *rc,
364                               float last_energy[][CELT_MAX_BANDS])
365 {
366     uint32_t inter, intra;
367     OPUS_RC_CHECKPOINT_SPAWN(rc);
368
369     exp_quant_coarse(rc, f, last_energy, 1);
370     intra = OPUS_RC_CHECKPOINT_BITS(rc);
371
372     OPUS_RC_CHECKPOINT_ROLLBACK(rc);
373
374     exp_quant_coarse(rc, f, last_energy, 0);
375     inter = OPUS_RC_CHECKPOINT_BITS(rc);
376
377     if (inter > intra) { /* Unlikely */
378         OPUS_RC_CHECKPOINT_ROLLBACK(rc);
379         exp_quant_coarse(rc, f, last_energy, 1);
380     }
381 }
382
383 static void celt_quant_fine(CeltFrame *f, OpusRangeCoder *rc)
384 {
385     for (int i = f->start_band; i < f->end_band; i++) {
386         if (!f->fine_bits[i])
387             continue;
388         for (int ch = 0; ch < f->channels; ch++) {
389             CeltBlock *block = &f->block[ch];
390             int quant, lim = (1 << f->fine_bits[i]);
391             float offset, diff = 0.5f - block->error_energy[i];
392             quant = av_clip(floor(diff*lim), 0, lim - 1);
393             ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]);
394             offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f);
395             block->error_energy[i] -= offset;
396         }
397     }
398 }
399
400 static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
401 {
402     for (int priority = 0; priority < 2; priority++) {
403         for (int i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) {
404             if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
405                 continue;
406             for (int ch = 0; ch < f->channels; ch++) {
407                 CeltBlock *block = &f->block[ch];
408                 const float err = block->error_energy[i];
409                 const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
410                 const int sign = FFABS(err + offset) < FFABS(err - offset);
411                 ff_opus_rc_put_raw(rc, sign, 1);
412                 block->error_energy[i] -= offset*(1 - 2*sign);
413             }
414         }
415     }
416 }
417
418 static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc,
419                               CeltFrame *f, int index)
420 {
421     ff_opus_rc_enc_init(rc);
422
423     ff_opus_psy_celt_frame_init(&s->psyctx, f, index);
424
425     celt_frame_setup_input(s, f);
426
427     if (f->silence) {
428         if (f->framebits >= 16)
429             ff_opus_rc_enc_log(rc, 1, 15); /* Silence (if using explicit singalling) */
430         for (int ch = 0; ch < s->channels; ch++)
431             memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
432         return;
433     }
434
435     /* Filters */
436     celt_apply_preemph_filter(s, f);
437     if (f->pfilter) {
438         ff_opus_rc_enc_log(rc, 0, 15);
439         celt_enc_quant_pfilter(rc, f);
440     }
441
442     /* Transform */
443     celt_frame_mdct(s, f);
444
445     /* Need to handle transient/non-transient switches at any point during analysis */
446     while (ff_opus_psy_celt_frame_process(&s->psyctx, f, index))
447         celt_frame_mdct(s, f);
448
449     ff_opus_rc_enc_init(rc);
450
451     /* Silence */
452     ff_opus_rc_enc_log(rc, 0, 15);
453
454     /* Pitch filter */
455     if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits)
456         celt_enc_quant_pfilter(rc, f);
457
458     /* Transient flag */
459     if (f->size && opus_rc_tell(rc) + 3 <= f->framebits)
460         ff_opus_rc_enc_log(rc, f->transient, 3);
461
462     /* Main encoding */
463     celt_quant_coarse  (f, rc, s->last_quantized_energy);
464     celt_enc_tf        (f, rc);
465     ff_celt_bitalloc   (f, rc, 1);
466     celt_quant_fine    (f, rc);
467     ff_celt_quant_bands(f, rc);
468
469     /* Anticollapse bit */
470     if (f->anticollapse_needed)
471         ff_opus_rc_put_raw(rc, f->anticollapse, 1);
472
473     /* Final per-band energy adjustments from leftover bits */
474     celt_quant_final(s, rc, f);
475
476     for (int ch = 0; ch < f->channels; ch++) {
477         CeltBlock *block = &f->block[ch];
478         for (int i = 0; i < CELT_MAX_BANDS; i++)
479             s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i];
480     }
481 }
482
483 static inline int write_opuslacing(uint8_t *dst, int v)
484 {
485     dst[0] = FFMIN(v - FFALIGN(v - 255, 4), v);
486     dst[1] = v - dst[0] >> 2;
487     return 1 + (v >= 252);
488 }
489
490 static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
491 {
492     int offset, fsize_needed;
493
494     /* Write toc */
495     opus_gen_toc(s, avpkt->data, &offset, &fsize_needed);
496
497     /* Frame sizes if needed */
498     if (fsize_needed) {
499         for (int i = 0; i < s->packet.frames - 1; i++) {
500             offset += write_opuslacing(avpkt->data + offset,
501                                        s->frame[i].framebits >> 3);
502         }
503     }
504
505     /* Packets */
506     for (int i = 0; i < s->packet.frames; i++) {
507         ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset,
508                            s->frame[i].framebits >> 3);
509         offset += s->frame[i].framebits >> 3;
510     }
511
512     avpkt->size = offset;
513 }
514
515 /* Used as overlap for the first frame and padding for the last encoded packet */
516 static AVFrame *spawn_empty_frame(OpusEncContext *s)
517 {
518     AVFrame *f = av_frame_alloc();
519     if (!f)
520         return NULL;
521     f->format         = s->avctx->sample_fmt;
522     f->nb_samples     = s->avctx->frame_size;
523     f->channel_layout = s->avctx->channel_layout;
524     if (av_frame_get_buffer(f, 4)) {
525         av_frame_free(&f);
526         return NULL;
527     }
528     for (int i = 0; i < s->channels; i++) {
529         size_t bps = av_get_bytes_per_sample(f->format);
530         memset(f->extended_data[i], 0, bps*f->nb_samples);
531     }
532     return f;
533 }
534
535 static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
536                              const AVFrame *frame, int *got_packet_ptr)
537 {
538     OpusEncContext *s = avctx->priv_data;
539     int ret, frame_size, alloc_size = 0;
540
541     if (frame) { /* Add new frame to queue */
542         if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
543             return ret;
544         ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame));
545     } else {
546         ff_opus_psy_signal_eof(&s->psyctx);
547         if (!s->afq.remaining_samples || !avctx->frame_number)
548             return 0; /* We've been flushed and there's nothing left to encode */
549     }
550
551     /* Run the psychoacoustic system */
552     if (ff_opus_psy_process(&s->psyctx, &s->packet))
553         return 0;
554
555     frame_size = OPUS_BLOCK_SIZE(s->packet.framesize);
556
557     if (!frame) {
558         /* This can go negative, that's not a problem, we only pad if positive */
559         int pad_empty = s->packet.frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1;
560         /* Pad with empty 2.5 ms frames to whatever framesize was decided,
561          * this should only happen at the very last flush frame. The frames
562          * allocated here will be freed (because they have no other references)
563          * after they get used by celt_frame_setup_input() */
564         for (int i = 0; i < pad_empty; i++) {
565             AVFrame *empty = spawn_empty_frame(s);
566             if (!empty)
567                 return AVERROR(ENOMEM);
568             ff_bufqueue_add(avctx, &s->bufqueue, empty);
569         }
570     }
571
572     for (int i = 0; i < s->packet.frames; i++) {
573         celt_encode_frame(s, &s->rc[i], &s->frame[i], i);
574         alloc_size += s->frame[i].framebits >> 3;
575     }
576
577     /* Worst case toc + the frame lengths if needed */
578     alloc_size += 2 + s->packet.frames*2;
579
580     if ((ret = ff_alloc_packet2(avctx, avpkt, alloc_size, 0)) < 0)
581         return ret;
582
583     /* Assemble packet */
584     opus_packet_assembler(s, avpkt);
585
586     /* Update the psychoacoustic system */
587     ff_opus_psy_postencode_update(&s->psyctx, s->frame, s->rc);
588
589     /* Remove samples from queue and skip if needed */
590     ff_af_queue_remove(&s->afq, s->packet.frames*frame_size, &avpkt->pts, &avpkt->duration);
591     if (s->packet.frames*frame_size > avpkt->duration) {
592         uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
593         if (!side)
594             return AVERROR(ENOMEM);
595         AV_WL32(&side[4], s->packet.frames*frame_size - avpkt->duration + 120);
596     }
597
598     *got_packet_ptr = 1;
599
600     return 0;
601 }
602
603 static av_cold int opus_encode_end(AVCodecContext *avctx)
604 {
605     OpusEncContext *s = avctx->priv_data;
606
607     for (int i = 0; i < CELT_BLOCK_NB; i++)
608         ff_mdct15_uninit(&s->mdct[i]);
609
610     ff_celt_pvq_uninit(&s->pvq);
611     av_freep(&s->dsp);
612     av_freep(&s->frame);
613     av_freep(&s->rc);
614     ff_af_queue_close(&s->afq);
615     ff_opus_psy_end(&s->psyctx);
616     ff_bufqueue_discard_all(&s->bufqueue);
617     av_freep(&avctx->extradata);
618
619     return 0;
620 }
621
622 static av_cold int opus_encode_init(AVCodecContext *avctx)
623 {
624     int ret, max_frames;
625     OpusEncContext *s = avctx->priv_data;
626
627     s->avctx = avctx;
628     s->channels = avctx->channels;
629
630     /* Opus allows us to change the framesize on each packet (and each packet may
631      * have multiple frames in it) but we can't change the codec's frame size on
632      * runtime, so fix it to the lowest possible number of samples and use a queue
633      * to accumulate AVFrames until we have enough to encode whatever the encoder
634      * decides is the best */
635     avctx->frame_size = 120;
636     /* Initial padding will change if SILK is ever supported */
637     avctx->initial_padding = 120;
638
639     if (!avctx->bit_rate) {
640         int coupled = ff_opus_default_coupled_streams[s->channels - 1];
641         avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000);
642     } else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) {
643         int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels);
644         av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %"PRId64" kbps, clipping to %"PRId64" kbps\n",
645                avctx->bit_rate/1000, clipped_rate/1000);
646         avctx->bit_rate = clipped_rate;
647     }
648
649     /* Extradata */
650     avctx->extradata_size = 19;
651     avctx->extradata = av_malloc(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
652     if (!avctx->extradata)
653         return AVERROR(ENOMEM);
654     opus_write_extradata(avctx);
655
656     ff_af_queue_init(avctx, &s->afq);
657
658     if ((ret = ff_celt_pvq_init(&s->pvq, 1)) < 0)
659         return ret;
660
661     if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
662         return AVERROR(ENOMEM);
663
664     /* I have no idea why a base scaling factor of 68 works, could be the twiddles */
665     for (int i = 0; i < CELT_BLOCK_NB; i++)
666         if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i))))
667             return AVERROR(ENOMEM);
668
669     /* Zero out previous energy (matters for inter first frame) */
670     for (int ch = 0; ch < s->channels; ch++)
671         memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
672
673     /* Allocate an empty frame to use as overlap for the first frame of audio */
674     ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s));
675     if (!ff_bufqueue_peek(&s->bufqueue, 0))
676         return AVERROR(ENOMEM);
677
678     if ((ret = ff_opus_psy_init(&s->psyctx, s->avctx, &s->bufqueue, &s->options)))
679         return ret;
680
681     /* Frame structs and range coder buffers */
682     max_frames = ceilf(FFMIN(s->options.max_delay_ms, 120.0f)/2.5f);
683     s->frame = av_malloc(max_frames*sizeof(CeltFrame));
684     if (!s->frame)
685         return AVERROR(ENOMEM);
686     s->rc = av_malloc(max_frames*sizeof(OpusRangeCoder));
687     if (!s->rc)
688         return AVERROR(ENOMEM);
689
690     for (int i = 0; i < max_frames; i++) {
691         s->frame[i].dsp = s->dsp;
692         s->frame[i].avctx = s->avctx;
693         s->frame[i].seed = 0;
694         s->frame[i].pvq = s->pvq;
695         s->frame[i].apply_phase_inv = s->options.apply_phase_inv;
696         s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f;
697     }
698
699     return 0;
700 }
701
702 #define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
703 static const AVOption opusenc_options[] = {
704     { "opus_delay", "Maximum delay in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS, "max_delay_ms" },
705     { "apply_phase_inv", "Apply intensity stereo phase inversion", offsetof(OpusEncContext, options.apply_phase_inv), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, OPUSENC_FLAGS, "apply_phase_inv" },
706     { NULL },
707 };
708
709 static const AVClass opusenc_class = {
710     .class_name = "Opus encoder",
711     .item_name  = av_default_item_name,
712     .option     = opusenc_options,
713     .version    = LIBAVUTIL_VERSION_INT,
714 };
715
716 static const AVCodecDefault opusenc_defaults[] = {
717     { "b", "0" },
718     { "compression_level", "10" },
719     { NULL },
720 };
721
722 AVCodec ff_opus_encoder = {
723     .name           = "opus",
724     .long_name      = NULL_IF_CONFIG_SMALL("Opus"),
725     .type           = AVMEDIA_TYPE_AUDIO,
726     .id             = AV_CODEC_ID_OPUS,
727     .defaults       = opusenc_defaults,
728     .priv_class     = &opusenc_class,
729     .priv_data_size = sizeof(OpusEncContext),
730     .init           = opus_encode_init,
731     .encode2        = opus_encode_frame,
732     .close          = opus_encode_end,
733     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
734     .capabilities   = AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
735     .supported_samplerates = (const int []){ 48000, 0 },
736     .channel_layouts = (const uint64_t []){ AV_CH_LAYOUT_MONO,
737                                             AV_CH_LAYOUT_STEREO, 0 },
738     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
739                                                      AV_SAMPLE_FMT_NONE },
740 };