]> git.sesse.net Git - ffmpeg/blob - libavcodec/ppc/fft_init.c
lavf/segment: fix crash when failing to open segment list
[ffmpeg] / libavcodec / ppc / fft_init.c
1 /*
2  * FFT/IFFT transforms
3  * AltiVec-enabled
4  * Copyright (c) 2009 Loren Merritt
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 #include "config.h"
24 #include "libavutil/cpu.h"
25 #include "libavutil/ppc/cpu.h"
26 #include "libavutil/ppc/types_altivec.h"
27 #include "libavutil/ppc/util_altivec.h"
28 #include "libavcodec/fft.h"
29
30 /**
31  * Do a complex FFT with the parameters defined in ff_fft_init().
32  * The input data must be permuted before with s->revtab table.
33  * No 1.0 / sqrt(n) normalization is done.
34  * AltiVec-enabled:
35  * This code assumes that the 'z' pointer is 16 bytes-aligned.
36  * It also assumes all FFTComplex are 8 bytes-aligned pairs of floats.
37  */
38
39 #if HAVE_VSX
40 #include "fft_vsx.h"
41 #else
42 void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
43 void ff_fft_calc_interleave_altivec(FFTContext *s, FFTComplex *z);
44 #endif
45
46 #if HAVE_GNU_AS && HAVE_ALTIVEC
47 static void imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
48 {
49     int j, k;
50     int n = 1 << s->mdct_bits;
51     int n4 = n >> 2;
52     int n8 = n >> 3;
53     int n32 = n >> 5;
54     const uint16_t *revtabj = s->revtab;
55     const uint16_t *revtabk = s->revtab+n4;
56     const vec_f *tcos = (const vec_f*)(s->tcos+n8);
57     const vec_f *tsin = (const vec_f*)(s->tsin+n8);
58     const vec_f *pin = (const vec_f*)(input+n4);
59     vec_f *pout = (vec_f*)(output+n4);
60
61     /* pre rotation */
62     k = n32-1;
63     do {
64         vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
65 #define CMULA(p,o0,o1,o2,o3)\
66         a = pin[ k*2+p];                       /* { z[k].re,    z[k].im,    z[k+1].re,  z[k+1].im  } */\
67         b = pin[-k*2-p-1];                     /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
68         re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re,    z[k+1].re,  z[-k-2].re, z[-k-1].re } */\
69         im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im,  z[k].im    } */\
70         cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
71         sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
72         r##p = im*cos - re*sin;\
73         i##p = re*cos + im*sin;
74 #define STORE2(v,dst)\
75         j = dst;\
76         vec_ste(v, 0, output+j*2);\
77         vec_ste(v, 4, output+j*2);
78 #define STORE8(p)\
79         a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
80         b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
81         c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
82         d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
83         STORE2(a, revtabk[ p*2-4]);\
84         STORE2(b, revtabk[ p*2-3]);\
85         STORE2(c, revtabj[-p*2+2]);\
86         STORE2(d, revtabj[-p*2+3]);
87
88         cos0 = tcos[k];
89         sin0 = tsin[k];
90         cos1 = tcos[-k-1];
91         sin1 = tsin[-k-1];
92         CMULA(0, 0,1,2,3);
93         CMULA(1, 2,3,0,1);
94         STORE8(0);
95         STORE8(1);
96         revtabj += 4;
97         revtabk -= 4;
98         k--;
99     } while(k >= 0);
100
101 #if HAVE_VSX
102     ff_fft_calc_vsx(s, (FFTComplex*)output);
103 #else
104     ff_fft_calc_altivec(s, (FFTComplex*)output);
105 #endif
106
107     /* post rotation + reordering */
108     j = -n32;
109     k = n32-1;
110     do {
111         vec_f cos,sin,re,im,a,b,c,d;
112 #define CMULB(d0,d1,o)\
113         re = pout[o*2];\
114         im = pout[o*2+1];\
115         cos = tcos[o];\
116         sin = tsin[o];\
117         d0 = im*sin - re*cos;\
118         d1 = re*sin + im*cos;
119
120         CMULB(a,b,j);
121         CMULB(c,d,k);
122         pout[2*j]   = vec_perm(a, d, vcprm(0,s3,1,s2));
123         pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
124         pout[2*k]   = vec_perm(c, b, vcprm(0,s3,1,s2));
125         pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
126         j++;
127         k--;
128     } while(k >= 0);
129 }
130
131 static void imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
132 {
133     int k;
134     int n = 1 << s->mdct_bits;
135     int n4 = n >> 2;
136     int n16 = n >> 4;
137     vec_u32 sign = {1U<<31,1U<<31,1U<<31,1U<<31};
138     vec_u32 *p0 = (vec_u32*)(output+n4);
139     vec_u32 *p1 = (vec_u32*)(output+n4*3);
140
141     imdct_half_altivec(s, output + n4, input);
142
143     for (k = 0; k < n16; k++) {
144         vec_u32 a = p0[k] ^ sign;
145         vec_u32 b = p1[-k-1];
146         p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
147         p1[k]    = vec_perm(b, b, vcprm(3,2,1,0));
148     }
149 }
150 #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
151
152 av_cold void ff_fft_init_ppc(FFTContext *s)
153 {
154 #if HAVE_GNU_AS && HAVE_ALTIVEC
155     if (!PPC_ALTIVEC(av_get_cpu_flags()))
156         return;
157
158 #if HAVE_VSX
159     s->fft_calc = ff_fft_calc_interleave_vsx;
160 #else
161     s->fft_calc   = ff_fft_calc_interleave_altivec;
162 #endif
163     if (s->mdct_bits >= 5) {
164         s->imdct_calc = imdct_calc_altivec;
165         s->imdct_half = imdct_half_altivec;
166     }
167 #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
168 }