2 * Apple ProRes compatible decoder
4 * Copyright (c) 2010-2011 Maxim Poliakovski
6 * This file is part of Libav.
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26 * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
28 * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
35 #include "libavutil/intmath.h"
37 #include "proresdata.h"
38 #include "proresdsp.h"
42 const uint8_t *index; ///< pointers to the data of this slice
46 int prev_slice_sf; ///< scalefactor of the previous decoded slice
47 DECLARE_ALIGNED(16, DCTELEM, blocks)[8 * 4 * 64];
48 DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64];
49 DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64];
56 int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
58 int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
59 int pic_format; ///< 2 = 422, 3 = 444
60 uint8_t qmat_luma[64]; ///< dequantization matrix for luma
61 uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
62 int qmat_changed; ///< 1 - global quantization matrices changed
63 int total_slices; ///< total number of slices in a picture
64 ProresThreadData *slice_data;
68 int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
71 int slice_width_factor;
72 int slice_height_factor;
79 static av_cold int decode_init(AVCodecContext *avctx)
81 ProresContext *ctx = avctx->priv_data;
83 ctx->total_slices = 0;
84 ctx->slice_data = NULL;
86 avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE;
87 ff_proresdsp_init(&ctx->dsp);
89 avctx->coded_frame = &ctx->picture;
90 avcodec_get_frame_defaults(&ctx->picture);
91 ctx->picture.type = AV_PICTURE_TYPE_I;
92 ctx->picture.key_frame = 1;
94 ctx->scantable_type = -1; // set scantable type to uninitialized
95 memset(ctx->qmat_luma, 4, 64);
96 memset(ctx->qmat_chroma, 4, 64);
102 static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
103 const int data_size, AVCodecContext *avctx)
105 int hdr_size, version, width, height, flags;
108 hdr_size = AV_RB16(buf);
109 if (hdr_size > data_size) {
110 av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
111 return AVERROR_INVALIDDATA;
114 version = AV_RB16(buf + 2);
116 av_log(avctx, AV_LOG_ERROR,
117 "unsupported header version: %d\n", version);
118 return AVERROR_INVALIDDATA;
121 width = AV_RB16(buf + 8);
122 height = AV_RB16(buf + 10);
123 if (width != avctx->width || height != avctx->height) {
124 av_log(avctx, AV_LOG_ERROR,
125 "picture dimension changed: old: %d x %d, new: %d x %d\n",
126 avctx->width, avctx->height, width, height);
127 return AVERROR_INVALIDDATA;
130 ctx->frame_type = (buf[12] >> 2) & 3;
131 if (ctx->frame_type > 2) {
132 av_log(avctx, AV_LOG_ERROR,
133 "unsupported frame type: %d\n", ctx->frame_type);
134 return AVERROR_INVALIDDATA;
137 ctx->chroma_factor = (buf[12] >> 6) & 3;
138 ctx->mb_chroma_factor = ctx->chroma_factor + 2;
139 ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
140 switch (ctx->chroma_factor) {
142 avctx->pix_fmt = PIX_FMT_YUV422P10;
145 avctx->pix_fmt = PIX_FMT_YUV444P10;
148 av_log(avctx, AV_LOG_ERROR,
149 "unsupported picture format: %d\n", ctx->pic_format);
150 return AVERROR_INVALIDDATA;
153 if (ctx->scantable_type != ctx->frame_type) {
154 if (!ctx->frame_type)
155 ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
156 ff_prores_progressive_scan);
158 ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
159 ff_prores_interlaced_scan);
160 ctx->scantable_type = ctx->frame_type;
163 if (ctx->frame_type) { /* if interlaced */
164 ctx->picture.interlaced_frame = 1;
165 ctx->picture.top_field_first = ctx->frame_type & 1;
168 avctx->color_primaries = buf[14];
169 avctx->color_trc = buf[15];
170 avctx->colorspace = buf[16];
172 ctx->alpha_info = buf[17] & 0xf;
174 av_log_missing_feature(avctx, "alpha channel", 0);
176 ctx->qmat_changed = 0;
180 if (ptr - buf > hdr_size - 64) {
181 av_log(avctx, AV_LOG_ERROR, "header data too small\n");
182 return AVERROR_INVALIDDATA;
184 if (memcmp(ctx->qmat_luma, ptr, 64)) {
185 memcpy(ctx->qmat_luma, ptr, 64);
186 ctx->qmat_changed = 1;
190 memset(ctx->qmat_luma, 4, 64);
191 ctx->qmat_changed = 1;
195 if (ptr - buf > hdr_size - 64) {
196 av_log(avctx, AV_LOG_ERROR, "header data too small\n");
199 if (memcmp(ctx->qmat_chroma, ptr, 64)) {
200 memcpy(ctx->qmat_chroma, ptr, 64);
201 ctx->qmat_changed = 1;
204 memset(ctx->qmat_chroma, 4, 64);
205 ctx->qmat_changed = 1;
212 static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
213 const int data_size, AVCodecContext *avctx)
215 int i, hdr_size, pic_data_size, num_slices;
216 int slice_width_factor, slice_height_factor;
217 int remainder, num_x_slices;
218 const uint8_t *data_ptr, *index_ptr;
220 hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
221 if (hdr_size < 8 || hdr_size > data_size) {
222 av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
223 return AVERROR_INVALIDDATA;
226 pic_data_size = AV_RB32(buf + 1);
227 if (pic_data_size > data_size) {
228 av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
229 return AVERROR_INVALIDDATA;
232 slice_width_factor = buf[7] >> 4;
233 slice_height_factor = buf[7] & 0xF;
234 if (slice_width_factor > 3 || slice_height_factor) {
235 av_log(avctx, AV_LOG_ERROR,
236 "unsupported slice dimension: %d x %d\n",
237 1 << slice_width_factor, 1 << slice_height_factor);
238 return AVERROR_INVALIDDATA;
241 ctx->slice_width_factor = slice_width_factor;
242 ctx->slice_height_factor = slice_height_factor;
244 ctx->num_x_mbs = (avctx->width + 15) >> 4;
245 ctx->num_y_mbs = (avctx->height +
246 (1 << (4 + ctx->picture.interlaced_frame)) - 1) >>
247 (4 + ctx->picture.interlaced_frame);
249 remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
250 num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
251 ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
253 num_slices = num_x_slices * ctx->num_y_mbs;
254 if (num_slices != AV_RB16(buf + 5)) {
255 av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
256 return AVERROR_INVALIDDATA;
259 if (ctx->total_slices != num_slices) {
260 av_freep(&ctx->slice_data);
261 ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
262 if (!ctx->slice_data)
263 return AVERROR(ENOMEM);
264 ctx->total_slices = num_slices;
267 if (hdr_size + num_slices * 2 > data_size) {
268 av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
269 return AVERROR_INVALIDDATA;
272 /* parse slice table allowing quick access to the slice data */
273 index_ptr = buf + hdr_size;
274 data_ptr = index_ptr + num_slices * 2;
276 for (i = 0; i < num_slices; i++) {
277 ctx->slice_data[i].index = data_ptr;
278 ctx->slice_data[i].prev_slice_sf = 0;
279 data_ptr += AV_RB16(index_ptr + i * 2);
281 ctx->slice_data[i].index = data_ptr;
282 ctx->slice_data[i].prev_slice_sf = 0;
284 if (data_ptr > buf + data_size) {
285 av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
289 return pic_data_size;
294 * Read an unsigned rice/exp golomb codeword.
296 static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
298 unsigned int rice_order, exp_order, switch_bits;
299 unsigned int buf, code;
300 int log, prefix_len, len;
303 UPDATE_CACHE(re, gb);
304 buf = GET_CACHE(re, gb);
306 /* number of prefix bits to switch between Rice and expGolomb */
307 switch_bits = (codebook & 3) + 1;
308 rice_order = codebook >> 5; /* rice code order */
309 exp_order = (codebook >> 2) & 7; /* exp golomb code order */
311 log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
313 if (log < switch_bits) { /* ok, we got a rice code */
315 /* shortcut for faster decoding of rice codes without remainder */
317 LAST_SKIP_BITS(re, gb, log + 1);
319 prefix_len = log + 1;
320 code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
321 LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
323 } else { /* otherwise we got a exp golomb code */
324 len = (log << 1) - switch_bits + exp_order + 1;
325 code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
326 LAST_SKIP_BITS(re, gb, len);
329 CLOSE_READER(re, gb);
334 #define LSB2SIGN(x) (-((x) & 1))
335 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
338 * Decode DC coefficients for all blocks in a slice.
340 static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
348 code = decode_vlc_codeword(gb, FIRST_DC_CB);
349 out[0] = prev_dc = TOSIGNED(code);
351 out += 64; /* move to the DC coeff of the next block */
354 for (i = 1; i < nblocks; i++, out += 64) {
355 code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]);
357 sign = -(((delta >> 15) & 1) ^ (code & 1));
358 delta = (((code + 1) >> 1) ^ sign) - sign;
366 * Decode AC coefficients for all blocks in a slice.
368 static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out,
369 int blocks_per_slice,
370 int plane_size_factor,
373 int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
374 int max_coeffs, bits_left;
376 /* set initial prediction values */
380 max_coeffs = blocks_per_slice << 6;
381 block_mask = blocks_per_slice - 1;
383 for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
384 run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)];
385 lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)];
387 bits_left = get_bits_left(gb);
388 if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
391 run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]);
393 bits_left = get_bits_left(gb);
394 if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
397 level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1;
400 if (pos >= max_coeffs)
403 sign = get_sbits(gb, 1);
404 out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
405 (level ^ sign) - sign;
411 * Decode a slice plane (luma or chroma).
413 static void decode_slice_plane(ProresContext *ctx, ProresThreadData *td,
415 int data_size, uint16_t *out_ptr,
416 int linesize, int mbs_per_slice,
417 int blocks_per_mb, int plane_size_factor,
418 const int16_t *qmat, int is_chroma)
422 int mb_num, blocks_per_slice;
424 blocks_per_slice = mbs_per_slice * blocks_per_mb;
426 memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
428 init_get_bits(&gb, buf, data_size << 3);
430 decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
432 decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
433 plane_size_factor, ctx->scantable.permutated);
435 /* inverse quantization, inverse transform and output */
436 block_ptr = td->blocks;
439 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
440 ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
442 if (blocks_per_mb > 2) {
443 ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
446 ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
448 if (blocks_per_mb > 2) {
449 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
454 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
455 ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
457 ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
459 if (blocks_per_mb > 2) {
460 ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
462 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
470 static int decode_slice(AVCodecContext *avctx, void *tdata)
472 ProresThreadData *td = tdata;
473 ProresContext *ctx = avctx->priv_data;
474 int mb_x_pos = td->x_pos;
475 int mb_y_pos = td->y_pos;
476 int pic_num = ctx->pic_num;
477 int slice_num = td->slice_num;
478 int mbs_per_slice = td->slice_width;
480 uint8_t *y_data, *u_data, *v_data;
481 AVFrame *pic = avctx->coded_frame;
482 int i, sf, slice_width_factor;
483 int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size;
484 int y_linesize, u_linesize, v_linesize;
486 buf = ctx->slice_data[slice_num].index;
487 slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
489 slice_width_factor = av_log2(mbs_per_slice);
491 y_data = pic->data[0];
492 u_data = pic->data[1];
493 v_data = pic->data[2];
494 y_linesize = pic->linesize[0];
495 u_linesize = pic->linesize[1];
496 v_linesize = pic->linesize[2];
498 if (pic->interlaced_frame) {
499 if (!(pic_num ^ pic->top_field_first)) {
500 y_data += y_linesize;
501 u_data += u_linesize;
502 v_data += v_linesize;
509 if (slice_data_size < 6) {
510 av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
511 return AVERROR_INVALIDDATA;
514 /* parse slice header */
515 hdr_size = buf[0] >> 3;
516 y_data_size = AV_RB16(buf + 2);
517 u_data_size = AV_RB16(buf + 4);
518 v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) :
519 slice_data_size - y_data_size - u_data_size - hdr_size;
521 if (hdr_size + y_data_size + u_data_size + v_data_size > slice_data_size ||
522 v_data_size < 0 || hdr_size < 6) {
523 av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
524 return AVERROR_INVALIDDATA;
527 sf = av_clip(buf[1], 1, 224);
528 sf = sf > 128 ? (sf - 96) << 2 : sf;
530 /* scale quantization matrixes according with slice's scale factor */
531 /* TODO: this can be SIMD-optimized a lot */
532 if (ctx->qmat_changed || sf != td->prev_slice_sf) {
533 td->prev_slice_sf = sf;
534 for (i = 0; i < 64; i++) {
535 td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
536 td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
540 /* decode luma plane */
541 decode_slice_plane(ctx, td, buf + hdr_size, y_data_size,
542 (uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize +
543 (mb_x_pos << 5)), y_linesize,
544 mbs_per_slice, 4, slice_width_factor + 2,
545 td->qmat_luma_scaled, 0);
547 /* decode U chroma plane */
548 decode_slice_plane(ctx, td, buf + hdr_size + y_data_size, u_data_size,
549 (uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize +
550 (mb_x_pos << ctx->mb_chroma_factor)),
551 u_linesize, mbs_per_slice, ctx->num_chroma_blocks,
552 slice_width_factor + ctx->chroma_factor - 1,
553 td->qmat_chroma_scaled, 1);
555 /* decode V chroma plane */
556 decode_slice_plane(ctx, td, buf + hdr_size + y_data_size + u_data_size,
558 (uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize +
559 (mb_x_pos << ctx->mb_chroma_factor)),
560 v_linesize, mbs_per_slice, ctx->num_chroma_blocks,
561 slice_width_factor + ctx->chroma_factor - 1,
562 td->qmat_chroma_scaled, 1);
568 static int decode_picture(ProresContext *ctx, int pic_num,
569 AVCodecContext *avctx)
571 int slice_num, slice_width, x_pos, y_pos;
575 ctx->pic_num = pic_num;
576 for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
577 slice_width = 1 << ctx->slice_width_factor;
579 for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
580 x_pos += slice_width) {
581 while (ctx->num_x_mbs - x_pos < slice_width)
584 ctx->slice_data[slice_num].slice_num = slice_num;
585 ctx->slice_data[slice_num].x_pos = x_pos;
586 ctx->slice_data[slice_num].y_pos = y_pos;
587 ctx->slice_data[slice_num].slice_width = slice_width;
593 return avctx->execute(avctx, decode_slice,
594 ctx->slice_data, NULL, slice_num,
595 sizeof(ctx->slice_data[0]));
599 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
601 static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
604 ProresContext *ctx = avctx->priv_data;
605 AVFrame *picture = avctx->coded_frame;
606 const uint8_t *buf = avpkt->data;
607 int buf_size = avpkt->size;
608 int frame_hdr_size, pic_num, pic_data_size;
610 /* check frame atom container */
611 if (buf_size < 28 || buf_size < AV_RB32(buf) ||
612 AV_RB32(buf + 4) != FRAME_ID) {
613 av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
614 return AVERROR_INVALIDDATA;
619 frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
620 if (frame_hdr_size < 0)
621 return AVERROR_INVALIDDATA;
623 MOVE_DATA_PTR(frame_hdr_size);
625 if (picture->data[0])
626 avctx->release_buffer(avctx, picture);
628 picture->reference = 0;
629 if (avctx->get_buffer(avctx, picture) < 0)
632 for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) {
633 pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
634 if (pic_data_size < 0)
635 return AVERROR_INVALIDDATA;
637 if (decode_picture(ctx, pic_num, avctx))
640 MOVE_DATA_PTR(pic_data_size);
643 *data_size = sizeof(AVPicture);
644 *(AVFrame*) data = *avctx->coded_frame;
650 static av_cold int decode_close(AVCodecContext *avctx)
652 ProresContext *ctx = avctx->priv_data;
654 if (ctx->picture.data[0])
655 avctx->release_buffer(avctx, &ctx->picture);
657 av_freep(&ctx->slice_data);
663 AVCodec ff_prores_decoder = {
665 .type = AVMEDIA_TYPE_VIDEO,
666 .id = CODEC_ID_PRORES,
667 .priv_data_size = sizeof(ProresContext),
669 .close = decode_close,
670 .decode = decode_frame,
671 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
672 .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)")