2 * Apple ProRes compatible decoder
4 * Copyright (c) 2010-2011 Maxim Poliakovski
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26 * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
28 * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
35 #include "libavutil/intmath.h"
39 #include "proresdata.h"
40 #include "proresdsp.h"
44 const uint8_t *index; ///< pointers to the data of this slice
48 int prev_slice_sf; ///< scalefactor of the previous decoded slice
49 DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64];
50 DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64];
51 DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64];
58 int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
60 int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
61 int pic_format; ///< 2 = 422, 3 = 444
62 uint8_t qmat_luma[64]; ///< dequantization matrix for luma
63 uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
64 int qmat_changed; ///< 1 - global quantization matrices changed
65 int total_slices; ///< total number of slices in a picture
66 ProresThreadData *slice_data;
70 int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
73 int slice_width_factor;
74 int slice_height_factor;
81 static av_cold int decode_init(AVCodecContext *avctx)
83 ProresContext *ctx = avctx->priv_data;
85 ctx->total_slices = 0;
86 ctx->slice_data = NULL;
88 avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE;
89 ff_proresdsp_init(&ctx->dsp, avctx);
91 ctx->scantable_type = -1; // set scantable type to uninitialized
92 memset(ctx->qmat_luma, 4, 64);
93 memset(ctx->qmat_chroma, 4, 64);
99 static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
100 const int data_size, AVCodecContext *avctx)
102 int hdr_size, version, width, height, flags;
105 hdr_size = AV_RB16(buf);
106 if (hdr_size > data_size) {
107 av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
108 return AVERROR_INVALIDDATA;
111 version = AV_RB16(buf + 2);
113 av_log(avctx, AV_LOG_ERROR,
114 "unsupported header version: %d\n", version);
115 return AVERROR_INVALIDDATA;
118 width = AV_RB16(buf + 8);
119 height = AV_RB16(buf + 10);
120 if (width != avctx->width || height != avctx->height) {
121 av_log(avctx, AV_LOG_ERROR,
122 "picture dimension changed: old: %d x %d, new: %d x %d\n",
123 avctx->width, avctx->height, width, height);
124 return AVERROR_INVALIDDATA;
127 ctx->frame_type = (buf[12] >> 2) & 3;
128 if (ctx->frame_type > 2) {
129 av_log(avctx, AV_LOG_ERROR,
130 "unsupported frame type: %d\n", ctx->frame_type);
131 return AVERROR_INVALIDDATA;
134 ctx->chroma_factor = (buf[12] >> 6) & 3;
135 ctx->mb_chroma_factor = ctx->chroma_factor + 2;
136 ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
137 ctx->alpha_info = buf[17] & 0xf;
139 if (ctx->alpha_info > 2) {
140 av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
141 return AVERROR_INVALIDDATA;
143 if (avctx->skip_alpha) ctx->alpha_info = 0;
145 switch (ctx->chroma_factor) {
147 avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA422P10
148 : AV_PIX_FMT_YUV422P10;
151 avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA444P10
152 : AV_PIX_FMT_YUV444P10;
155 av_log(avctx, AV_LOG_ERROR,
156 "unsupported picture format: %d\n", ctx->pic_format);
157 return AVERROR_INVALIDDATA;
160 if (ctx->scantable_type != ctx->frame_type) {
161 if (!ctx->frame_type)
162 ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
163 ff_prores_progressive_scan);
165 ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
166 ff_prores_interlaced_scan);
167 ctx->scantable_type = ctx->frame_type;
170 if (ctx->frame_type) { /* if interlaced */
171 ctx->frame->interlaced_frame = 1;
172 ctx->frame->top_field_first = ctx->frame_type & 1;
174 ctx->frame->interlaced_frame = 0;
177 avctx->color_primaries = buf[14];
178 avctx->color_trc = buf[15];
179 avctx->colorspace = buf[16];
181 ctx->qmat_changed = 0;
185 if (ptr - buf > hdr_size - 64) {
186 av_log(avctx, AV_LOG_ERROR, "header data too small\n");
187 return AVERROR_INVALIDDATA;
189 if (memcmp(ctx->qmat_luma, ptr, 64)) {
190 memcpy(ctx->qmat_luma, ptr, 64);
191 ctx->qmat_changed = 1;
195 memset(ctx->qmat_luma, 4, 64);
196 ctx->qmat_changed = 1;
200 if (ptr - buf > hdr_size - 64) {
201 av_log(avctx, AV_LOG_ERROR, "header data too small\n");
204 if (memcmp(ctx->qmat_chroma, ptr, 64)) {
205 memcpy(ctx->qmat_chroma, ptr, 64);
206 ctx->qmat_changed = 1;
209 memset(ctx->qmat_chroma, 4, 64);
210 ctx->qmat_changed = 1;
217 static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
218 const int data_size, AVCodecContext *avctx)
220 int i, hdr_size, pic_data_size, num_slices;
221 int slice_width_factor, slice_height_factor;
222 int remainder, num_x_slices;
223 const uint8_t *data_ptr, *index_ptr;
225 hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
226 if (hdr_size < 8 || hdr_size > data_size) {
227 av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
228 return AVERROR_INVALIDDATA;
231 pic_data_size = AV_RB32(buf + 1);
232 if (pic_data_size > data_size) {
233 av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
234 return AVERROR_INVALIDDATA;
237 slice_width_factor = buf[7] >> 4;
238 slice_height_factor = buf[7] & 0xF;
239 if (slice_width_factor > 3 || slice_height_factor) {
240 av_log(avctx, AV_LOG_ERROR,
241 "unsupported slice dimension: %d x %d\n",
242 1 << slice_width_factor, 1 << slice_height_factor);
243 return AVERROR_INVALIDDATA;
246 ctx->slice_width_factor = slice_width_factor;
247 ctx->slice_height_factor = slice_height_factor;
249 ctx->num_x_mbs = (avctx->width + 15) >> 4;
250 ctx->num_y_mbs = (avctx->height +
251 (1 << (4 + ctx->frame->interlaced_frame)) - 1) >>
252 (4 + ctx->frame->interlaced_frame);
254 remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
255 num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
256 ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
258 num_slices = num_x_slices * ctx->num_y_mbs;
259 if (num_slices != AV_RB16(buf + 5)) {
260 av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
261 return AVERROR_INVALIDDATA;
264 if (ctx->total_slices != num_slices) {
265 av_freep(&ctx->slice_data);
266 ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
267 if (!ctx->slice_data)
268 return AVERROR(ENOMEM);
269 ctx->total_slices = num_slices;
272 if (hdr_size + num_slices * 2 > data_size) {
273 av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
274 return AVERROR_INVALIDDATA;
277 /* parse slice table allowing quick access to the slice data */
278 index_ptr = buf + hdr_size;
279 data_ptr = index_ptr + num_slices * 2;
281 for (i = 0; i < num_slices; i++) {
282 ctx->slice_data[i].index = data_ptr;
283 ctx->slice_data[i].prev_slice_sf = 0;
284 data_ptr += AV_RB16(index_ptr + i * 2);
286 ctx->slice_data[i].index = data_ptr;
287 ctx->slice_data[i].prev_slice_sf = 0;
289 if (data_ptr > buf + data_size) {
290 av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
294 return pic_data_size;
299 * Read an unsigned rice/exp golomb codeword.
301 static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
303 unsigned int rice_order, exp_order, switch_bits;
304 unsigned int buf, code;
305 int log, prefix_len, len;
308 UPDATE_CACHE(re, gb);
309 buf = GET_CACHE(re, gb);
311 /* number of prefix bits to switch between Rice and expGolomb */
312 switch_bits = (codebook & 3) + 1;
313 rice_order = codebook >> 5; /* rice code order */
314 exp_order = (codebook >> 2) & 7; /* exp golomb code order */
316 log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
318 if (log < switch_bits) { /* ok, we got a rice code */
320 /* shortcut for faster decoding of rice codes without remainder */
322 LAST_SKIP_BITS(re, gb, log + 1);
324 prefix_len = log + 1;
325 code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
326 LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
328 } else { /* otherwise we got a exp golomb code */
329 len = (log << 1) - switch_bits + exp_order + 1;
330 code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
331 LAST_SKIP_BITS(re, gb, len);
334 CLOSE_READER(re, gb);
339 #define LSB2SIGN(x) (-((x) & 1))
340 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
343 * Decode DC coefficients for all blocks in a slice.
345 static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
353 code = decode_vlc_codeword(gb, FIRST_DC_CB);
354 out[0] = prev_dc = TOSIGNED(code);
356 out += 64; /* move to the DC coeff of the next block */
359 for (i = 1; i < nblocks; i++, out += 64) {
360 code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]);
362 sign = -(((delta >> 15) & 1) ^ (code & 1));
363 delta = (((code + 1) >> 1) ^ sign) - sign;
371 * Decode AC coefficients for all blocks in a slice.
373 static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out,
374 int blocks_per_slice,
375 int plane_size_factor,
378 int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
379 int max_coeffs, bits_left;
381 /* set initial prediction values */
385 max_coeffs = blocks_per_slice << 6;
386 block_mask = blocks_per_slice - 1;
388 for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
389 run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)];
390 lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)];
392 bits_left = get_bits_left(gb);
393 if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
396 run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]);
398 return AVERROR_INVALIDDATA;
400 bits_left = get_bits_left(gb);
401 if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
402 return AVERROR_INVALIDDATA;
404 level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1;
406 return AVERROR_INVALIDDATA;
409 if (pos >= max_coeffs)
412 sign = get_sbits(gb, 1);
413 out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
414 (level ^ sign) - sign;
422 * Decode a slice plane (luma or chroma).
424 static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td,
426 int data_size, uint16_t *out_ptr,
427 int linesize, int mbs_per_slice,
428 int blocks_per_mb, int plane_size_factor,
429 const int16_t *qmat, int is_chroma)
433 int mb_num, blocks_per_slice, ret;
435 blocks_per_slice = mbs_per_slice * blocks_per_mb;
437 memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
439 init_get_bits(&gb, buf, data_size << 3);
441 decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
443 ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
444 plane_size_factor, ctx->scantable.permutated);
448 /* inverse quantization, inverse transform and output */
449 block_ptr = td->blocks;
452 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
453 ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
455 if (blocks_per_mb > 2) {
456 ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
459 ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
461 if (blocks_per_mb > 2) {
462 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
467 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
468 ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
470 ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
472 if (blocks_per_mb > 2) {
473 ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
475 ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
484 static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
487 const int mask = (1 << num_bits) - 1;
488 int i, idx, val, alpha_val;
495 val = get_bits(gb, num_bits);
498 val = get_bits(gb, num_bits == 16 ? 7 : 4);
500 val = (val + 2) >> 1;
504 alpha_val = (alpha_val + val) & mask;
506 dst[idx++] = alpha_val >> 6;
508 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
509 if (idx >= num_coeffs) {
512 } while (get_bits1(gb));
513 val = get_bits(gb, 4);
515 val = get_bits(gb, 11);
516 if (idx + val > num_coeffs)
517 val = num_coeffs - idx;
519 for (i = 0; i < val; i++)
520 dst[idx++] = alpha_val >> 6;
522 for (i = 0; i < val; i++)
523 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
524 } while (idx < num_coeffs);
528 * Decode alpha slice plane.
530 static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td,
531 const uint8_t *buf, int data_size,
532 uint16_t *out_ptr, int linesize,
539 memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
541 init_get_bits(&gb, buf, data_size << 3);
543 if (ctx->alpha_info == 2)
544 unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16);
546 unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8);
548 block_ptr = td->blocks;
550 for (i = 0; i < 16; i++) {
551 memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr));
552 out_ptr += linesize >> 1;
553 block_ptr += 16 * mbs_per_slice;
557 static int decode_slice(AVCodecContext *avctx, void *tdata)
559 ProresThreadData *td = tdata;
560 ProresContext *ctx = avctx->priv_data;
561 int mb_x_pos = td->x_pos;
562 int mb_y_pos = td->y_pos;
563 int pic_num = ctx->pic_num;
564 int slice_num = td->slice_num;
565 int mbs_per_slice = td->slice_width;
567 uint8_t *y_data, *u_data, *v_data, *a_data;
568 AVFrame *pic = ctx->frame;
569 int i, sf, slice_width_factor;
570 int slice_data_size, hdr_size;
571 int y_data_size, u_data_size, v_data_size, a_data_size;
572 int y_linesize, u_linesize, v_linesize, a_linesize;
576 buf = ctx->slice_data[slice_num].index;
577 slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
579 slice_width_factor = av_log2(mbs_per_slice);
581 y_data = pic->data[0];
582 u_data = pic->data[1];
583 v_data = pic->data[2];
584 a_data = pic->data[3];
585 y_linesize = pic->linesize[0];
586 u_linesize = pic->linesize[1];
587 v_linesize = pic->linesize[2];
588 a_linesize = pic->linesize[3];
590 if (pic->interlaced_frame) {
591 if (!(pic_num ^ pic->top_field_first)) {
592 y_data += y_linesize;
593 u_data += u_linesize;
594 v_data += v_linesize;
596 a_data += a_linesize;
603 y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5);
604 u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor);
605 v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor);
607 a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5);
609 if (slice_data_size < 6) {
610 av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
611 return AVERROR_INVALIDDATA;
614 /* parse slice header */
615 hdr_size = buf[0] >> 3;
617 y_data_size = AV_RB16(buf + 2);
618 coff[1] = coff[0] + y_data_size;
619 u_data_size = AV_RB16(buf + 4);
620 coff[2] = coff[1] + u_data_size;
621 v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2];
622 coff[3] = coff[2] + v_data_size;
623 a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0;
625 /* if V or alpha component size is negative that means that previous
626 component sizes are too large */
627 if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) {
628 av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
629 return AVERROR_INVALIDDATA;
632 sf = av_clip(buf[1], 1, 224);
633 sf = sf > 128 ? (sf - 96) << 2 : sf;
635 /* scale quantization matrixes according with slice's scale factor */
636 /* TODO: this can be SIMD-optimized a lot */
637 if (ctx->qmat_changed || sf != td->prev_slice_sf) {
638 td->prev_slice_sf = sf;
639 for (i = 0; i < 64; i++) {
640 td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
641 td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
645 /* decode luma plane */
646 ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size,
647 (uint16_t*) y_data, y_linesize,
648 mbs_per_slice, 4, slice_width_factor + 2,
649 td->qmat_luma_scaled, 0);
654 /* decode U chroma plane */
655 ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size,
656 (uint16_t*) u_data, u_linesize,
657 mbs_per_slice, ctx->num_chroma_blocks,
658 slice_width_factor + ctx->chroma_factor - 1,
659 td->qmat_chroma_scaled, 1);
663 /* decode V chroma plane */
664 ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size,
665 (uint16_t*) v_data, v_linesize,
666 mbs_per_slice, ctx->num_chroma_blocks,
667 slice_width_factor + ctx->chroma_factor - 1,
668 td->qmat_chroma_scaled, 1);
672 /* decode alpha plane if available */
673 if (a_data && a_data_size)
674 decode_alpha_plane(ctx, td, buf + coff[3], a_data_size,
675 (uint16_t*) a_data, a_linesize,
682 static int decode_picture(ProresContext *ctx, int pic_num,
683 AVCodecContext *avctx)
685 int slice_num, slice_width, x_pos, y_pos;
689 ctx->pic_num = pic_num;
690 for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
691 slice_width = 1 << ctx->slice_width_factor;
693 for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
694 x_pos += slice_width) {
695 while (ctx->num_x_mbs - x_pos < slice_width)
698 ctx->slice_data[slice_num].slice_num = slice_num;
699 ctx->slice_data[slice_num].x_pos = x_pos;
700 ctx->slice_data[slice_num].y_pos = y_pos;
701 ctx->slice_data[slice_num].slice_width = slice_width;
707 return avctx->execute(avctx, decode_slice,
708 ctx->slice_data, NULL, slice_num,
709 sizeof(ctx->slice_data[0]));
713 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
715 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
718 ProresContext *ctx = avctx->priv_data;
719 const uint8_t *buf = avpkt->data;
720 int buf_size = avpkt->size;
721 int frame_hdr_size, pic_num, pic_data_size;
724 ctx->frame->pict_type = AV_PICTURE_TYPE_I;
725 ctx->frame->key_frame = 1;
727 /* check frame atom container */
728 if (buf_size < 28 || buf_size < AV_RB32(buf) ||
729 AV_RB32(buf + 4) != FRAME_ID) {
730 av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
731 return AVERROR_INVALIDDATA;
736 frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
737 if (frame_hdr_size < 0)
738 return AVERROR_INVALIDDATA;
740 MOVE_DATA_PTR(frame_hdr_size);
742 if (ff_get_buffer(avctx, ctx->frame, 0) < 0)
745 for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) {
746 pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
747 if (pic_data_size < 0)
748 return AVERROR_INVALIDDATA;
750 if (decode_picture(ctx, pic_num, avctx))
753 MOVE_DATA_PTR(pic_data_size);
763 static av_cold int decode_close(AVCodecContext *avctx)
765 ProresContext *ctx = avctx->priv_data;
767 av_freep(&ctx->slice_data);
773 AVCodec ff_prores_lgpl_decoder = {
774 .name = "prores_lgpl",
775 .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
776 .type = AVMEDIA_TYPE_VIDEO,
777 .id = AV_CODEC_ID_PRORES,
778 .priv_data_size = sizeof(ProresContext),
780 .close = decode_close,
781 .decode = decode_frame,
782 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,