]> git.sesse.net Git - ffmpeg/blob - libavcodec/qcelpdec.c
098b8f6f69184ebd52b47a4df18aaeea7e8f7d04
[ffmpeg] / libavcodec / qcelpdec.c
1 /*
2  * QCELP decoder
3  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file qcelpdec.c
24  * QCELP decoder
25  * @author Reynaldo H. Verdejo Pinochet
26  * @remark FFmpeg merging spearheaded by Kenan Gillet
27  * @remark Development mentored by Benjamin Larson
28  */
29
30 #include <stddef.h>
31
32 #include "avcodec.h"
33 #include "internal.h"
34 #include "bitstream.h"
35
36 #include "qcelpdata.h"
37
38 #include "celp_math.h"
39 #include "celp_filters.h"
40
41 #undef NDEBUG
42 #include <assert.h>
43
44 typedef enum
45 {
46     I_F_Q = -1,    /*!< insufficient frame quality */
47     SILENCE,
48     RATE_OCTAVE,
49     RATE_QUARTER,
50     RATE_HALF,
51     RATE_FULL
52 } qcelp_packet_rate;
53
54 typedef struct
55 {
56     GetBitContext     gb;
57     qcelp_packet_rate bitrate;
58     QCELPFrame        frame;    /*!< unpacked data frame */
59
60     uint8_t  erasure_count;
61     uint8_t  octave_count;      /*!< count the consecutive RATE_OCTAVE frames */
62     float    prev_lspf[10];
63     float    predictor_lspf[10];/*!< LSP predictor for RATE_OCTAVE and I_F_Q */
64     float    pitch_synthesis_filter_mem[303];
65     float    pitch_pre_filter_mem[303];
66     float    rnd_fir_filter_mem[180];
67     float    formant_mem[170];
68     float    last_codebook_gain;
69     int      prev_g1[2];
70     int      prev_bitrate;
71     float    pitch_gain[4];
72     uint8_t  pitch_lag[4];
73     uint16_t first16bits;
74     uint8_t  warned_buf_mismatch_bitrate;
75 } QCELPContext;
76
77 /**
78  * Reconstructs LPC coefficients from the line spectral pair frequencies.
79  *
80  * TIA/EIA/IS-733 2.4.3.3.5
81  */
82 void ff_qcelp_lspf2lpc(const float *lspf, float *lpc);
83
84 static void weighted_vector_sumf(float *out, const float *in_a,
85                                  const float *in_b, float weight_coeff_a,
86                                  float weight_coeff_b, int length)
87 {
88     int i;
89
90     for(i=0; i<length; i++)
91         out[i] = weight_coeff_a * in_a[i]
92                + weight_coeff_b * in_b[i];
93 }
94
95 /**
96  * Initialize the speech codec according to the specification.
97  *
98  * TIA/EIA/IS-733 2.4.9
99  */
100 static av_cold int qcelp_decode_init(AVCodecContext *avctx)
101 {
102     QCELPContext *q = avctx->priv_data;
103     int i;
104
105     avctx->sample_fmt = SAMPLE_FMT_FLT;
106
107     for(i=0; i<10; i++)
108         q->prev_lspf[i] = (i+1)/11.;
109
110     return 0;
111 }
112
113 /**
114  * Decodes the 10 quantized LSP frequencies from the LSPV/LSP
115  * transmission codes of any bitrate and checks for badly received packets.
116  *
117  * @param q the context
118  * @param lspf line spectral pair frequencies
119  *
120  * @return 0 on success, -1 if the packet is badly received
121  *
122  * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
123  */
124 static int decode_lspf(QCELPContext *q, float *lspf)
125 {
126     int i;
127     float tmp_lspf, smooth, erasure_coeff;
128     const float *predictors;
129
130     if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q)
131     {
132         predictors = (q->prev_bitrate != RATE_OCTAVE &&
133                        q->prev_bitrate != I_F_Q ?
134                        q->prev_lspf : q->predictor_lspf);
135
136         if(q->bitrate == RATE_OCTAVE)
137         {
138             q->octave_count++;
139
140             for(i=0; i<10; i++)
141             {
142                 q->predictor_lspf[i] =
143                              lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
144                                                          : -QCELP_LSP_SPREAD_FACTOR)
145                                      + predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR
146                                      + (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11);
147             }
148             smooth = (q->octave_count < 10 ? .875 : 0.1);
149         }else
150         {
151             erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
152
153             assert(q->bitrate == I_F_Q);
154
155             if(q->erasure_count > 1)
156                 erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7);
157
158             for(i=0; i<10; i++)
159             {
160                 q->predictor_lspf[i] =
161                              lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11
162                                      + erasure_coeff * predictors[i];
163             }
164             smooth = 0.125;
165         }
166
167         // Check the stability of the LSP frequencies.
168         lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
169         for(i=1; i<10; i++)
170             lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR));
171
172         lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR));
173         for(i=9; i>0; i--)
174             lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR));
175
176         // Low-pass filter the LSP frequencies.
177         weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10);
178     }else
179     {
180         q->octave_count = 0;
181
182         tmp_lspf = 0.;
183         for(i=0; i<5 ; i++)
184         {
185             lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
186             lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
187         }
188
189         // Check for badly received packets.
190         if(q->bitrate == RATE_QUARTER)
191         {
192             if(lspf[9] <= .70 || lspf[9] >=  .97)
193                 return -1;
194             for(i=3; i<10; i++)
195                 if(fabs(lspf[i] - lspf[i-2]) < .08)
196                     return -1;
197         }else
198         {
199             if(lspf[9] <= .66 || lspf[9] >= .985)
200                 return -1;
201             for(i=4; i<10; i++)
202                 if (fabs(lspf[i] - lspf[i-4]) < .0931)
203                     return -1;
204         }
205     }
206     return 0;
207 }
208
209 /**
210  * Converts codebook transmission codes to GAIN and INDEX.
211  *
212  * @param q the context
213  * @param gain array holding the decoded gain
214  *
215  * TIA/EIA/IS-733 2.4.6.2
216  */
217 static void decode_gain_and_index(QCELPContext  *q,
218                                   float *gain) {
219     int   i, subframes_count, g1[16];
220     float slope;
221
222     if(q->bitrate >= RATE_QUARTER)
223     {
224         switch(q->bitrate)
225         {
226             case RATE_FULL: subframes_count = 16; break;
227             case RATE_HALF: subframes_count = 4;  break;
228             default:        subframes_count = 5;
229         }
230         for(i=0; i<subframes_count; i++)
231         {
232             g1[i] = 4 * q->frame.cbgain[i];
233             if(q->bitrate == RATE_FULL && !((i+1) & 3))
234             {
235                 g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32);
236             }
237
238             gain[i] = qcelp_g12ga[g1[i]];
239
240             if(q->frame.cbsign[i])
241             {
242                 gain[i] = -gain[i];
243                 q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127;
244             }
245         }
246
247         q->prev_g1[0] = g1[i-2];
248         q->prev_g1[1] = g1[i-1];
249         q->last_codebook_gain = qcelp_g12ga[g1[i-1]];
250
251         if(q->bitrate == RATE_QUARTER)
252         {
253             // Provide smoothing of the unvoiced excitation energy.
254             gain[7] =     gain[4];
255             gain[6] = 0.4*gain[3] + 0.6*gain[4];
256             gain[5] =     gain[3];
257             gain[4] = 0.8*gain[2] + 0.2*gain[3];
258             gain[3] = 0.2*gain[1] + 0.8*gain[2];
259             gain[2] =     gain[1];
260             gain[1] = 0.6*gain[0] + 0.4*gain[1];
261         }
262     }else
263     {
264         if(q->bitrate == RATE_OCTAVE)
265         {
266             g1[0] = 2 * q->frame.cbgain[0]
267                   + av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
268             subframes_count = 8;
269         }else
270         {
271             assert(q->bitrate == I_F_Q);
272
273             g1[0] = q->prev_g1[1];
274             switch(q->erasure_count)
275             {
276                 case 1 : break;
277                 case 2 : g1[0] -= 1; break;
278                 case 3 : g1[0] -= 2; break;
279                 default: g1[0] -= 6;
280             }
281             if(g1[0] < 0)
282                 g1[0] = 0;
283             subframes_count = 4;
284         }
285         // This interpolation is done to produce smoother background noise.
286         slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
287         for(i=1; i<=subframes_count; i++)
288             gain[i-1] = q->last_codebook_gain + slope * i;
289
290         q->last_codebook_gain = gain[i-2];
291         q->prev_g1[0] = q->prev_g1[1];
292         q->prev_g1[1] = g1[0];
293     }
294 }
295
296 /**
297  * If the received packet is Rate 1/4 a further sanity check is made of the
298  * codebook gain.
299  *
300  * @param cbgain the unpacked cbgain array
301  * @return -1 if the sanity check fails, 0 otherwise
302  *
303  * TIA/EIA/IS-733 2.4.8.7.3
304  */
305 static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
306 {
307     int i, diff, prev_diff=0;
308
309     for(i=1; i<5; i++)
310     {
311         diff = cbgain[i] - cbgain[i-1];
312         if(FFABS(diff) > 10)
313             return -1;
314         else if(FFABS(diff - prev_diff) > 12)
315             return -1;
316         prev_diff = diff;
317     }
318     return 0;
319 }
320
321 /**
322  * Computes the scaled codebook vector Cdn From INDEX and GAIN
323  * for all rates.
324  *
325  * The specification lacks some information here.
326  *
327  * TIA/EIA/IS-733 has an omission on the codebook index determination
328  * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
329  * you have to subtract the decoded index parameter from the given scaled
330  * codebook vector index 'n' to get the desired circular codebook index, but
331  * it does not mention that you have to clamp 'n' to [0-9] in order to get
332  * RI-compliant results.
333  *
334  * The reason for this mistake seems to be the fact they forgot to mention you
335  * have to do these calculations per codebook subframe and adjust given
336  * equation values accordingly.
337  *
338  * @param q the context
339  * @param gain array holding the 4 pitch subframe gain values
340  * @param cdn_vector array for the generated scaled codebook vector
341  */
342 static void compute_svector(QCELPContext *q, const float *gain,
343                             float *cdn_vector)
344 {
345     int      i, j, k;
346     uint16_t cbseed, cindex;
347     float    *rnd, tmp_gain, fir_filter_value;
348
349     switch(q->bitrate)
350     {
351         case RATE_FULL:
352             for(i=0; i<16; i++)
353             {
354                 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
355                 cindex = -q->frame.cindex[i];
356                 for(j=0; j<10; j++)
357                     *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
358             }
359         break;
360         case RATE_HALF:
361             for(i=0; i<4; i++)
362             {
363                 tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
364                 cindex = -q->frame.cindex[i];
365                 for (j = 0; j < 40; j++)
366                 *cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
367             }
368         break;
369         case RATE_QUARTER:
370             cbseed = (0x0003 & q->frame.lspv[4])<<14 |
371                      (0x003F & q->frame.lspv[3])<< 8 |
372                      (0x0060 & q->frame.lspv[2])<< 1 |
373                      (0x0007 & q->frame.lspv[1])<< 3 |
374                      (0x0038 & q->frame.lspv[0])>> 3 ;
375             rnd = q->rnd_fir_filter_mem + 20;
376             for(i=0; i<8; i++)
377             {
378                 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
379                 for(k=0; k<20; k++)
380                 {
381                     cbseed = 521 * cbseed + 259;
382                     *rnd = (int16_t)cbseed;
383
384                     // FIR filter
385                     fir_filter_value = 0.0;
386                     for(j=0; j<10; j++)
387                         fir_filter_value += qcelp_rnd_fir_coefs[j ]
388                                           * (rnd[-j ] + rnd[-20+j]);
389
390                     fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
391                     *cdn_vector++ = tmp_gain * fir_filter_value;
392                     rnd++;
393                 }
394             }
395             memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
396         break;
397         case RATE_OCTAVE:
398             cbseed = q->first16bits;
399             for(i=0; i<8; i++)
400             {
401                 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
402                 for(j=0; j<20; j++)
403                 {
404                     cbseed = 521 * cbseed + 259;
405                     *cdn_vector++ = tmp_gain * (int16_t)cbseed;
406                 }
407             }
408         break;
409         case I_F_Q:
410             cbseed = -44; // random codebook index
411             for(i=0; i<4; i++)
412             {
413                 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
414                 for(j=0; j<40; j++)
415                     *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
416             }
417         break;
418     }
419 }
420
421 /**
422  * Apply generic gain control.
423  *
424  * @param v_out output vector
425  * @param v_in gain-controlled vector
426  * @param v_ref vector to control gain of
427  *
428  * FIXME: If v_ref is a zero vector, it energy is zero
429  *        and the behavior of the gain control is
430  *        undefined in the specs.
431  *
432  * TIA/EIA/IS-733 2.4.8.3-2/3/4/5, 2.4.8.6
433  */
434 static void apply_gain_ctrl(float *v_out, const float *v_ref,
435                             const float *v_in)
436 {
437     int   i, j, len;
438     float scalefactor;
439
440     for(i=0, j=0; i<4; i++)
441     {
442         scalefactor = ff_dot_productf(v_in + j, v_in + j, 40);
443         if(scalefactor)
444             scalefactor = sqrt(ff_dot_productf(v_ref + j, v_ref + j, 40)
445                         / scalefactor);
446         else
447             ff_log_missing_feature(NULL, "Zero energy for gain control", 1);
448         for(len=j+40; j<len; j++)
449             v_out[j] = scalefactor * v_in[j];
450     }
451 }
452
453 /**
454  * Apply filter in pitch-subframe steps.
455  *
456  * @param memory buffer for the previous state of the filter
457  *        - must be able to contain 303 elements
458  *        - the 143 first elements are from the previous state
459  *        - the next 160 are for output
460  * @param v_in input filter vector
461  * @param gain per-subframe gain array, each element is between 0.0 and 2.0
462  * @param lag per-subframe lag array, each element is
463  *        - between 16 and 143 if its corresponding pfrac is 0,
464  *        - between 16 and 139 otherwise
465  * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
466  *        otherwise
467  *
468  * @return filter output vector
469  */
470 static const float *do_pitchfilter(float memory[303], const float v_in[160],
471                                    const float gain[4], const uint8_t *lag,
472                                    const uint8_t pfrac[4])
473 {
474     int         i, j;
475     float       *v_lag, *v_out;
476     const float *v_len;
477
478     v_out = memory + 143; // Output vector starts at memory[143].
479
480     for(i=0; i<4; i++)
481     {
482         if(gain[i])
483         {
484             v_lag = memory + 143 + 40 * i - lag[i];
485             for(v_len=v_in+40; v_in<v_len; v_in++)
486             {
487                 if(pfrac[i]) // If it is a fractional lag...
488                 {
489                     for(j=0, *v_out=0.; j<4; j++)
490                         *v_out += qcelp_hammsinc_table[j] * (v_lag[j-4] + v_lag[3-j]);
491                 }else
492                     *v_out = *v_lag;
493
494                 *v_out = *v_in + gain[i] * *v_out;
495
496                 v_lag++;
497                 v_out++;
498             }
499         }else
500         {
501             memcpy(v_out, v_in, 40 * sizeof(float));
502             v_in  += 40;
503             v_out += 40;
504         }
505     }
506
507     memmove(memory, memory + 160, 143 * sizeof(float));
508     return memory + 143;
509 }
510
511 /**
512  * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
513  * TIA/EIA/IS-733 2.4.5.2
514  *
515  * @param q the context
516  * @param cdn_vector the scaled codebook vector
517  */
518 static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
519 {
520     int         i;
521     const float *v_synthesis_filtered, *v_pre_filtered;
522
523     if(q->bitrate >= RATE_HALF ||
524        (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF)))
525     {
526
527         if(q->bitrate >= RATE_HALF)
528         {
529
530             // Compute gain & lag for the whole frame.
531             for(i=0; i<4; i++)
532             {
533                 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
534
535                 q->pitch_lag[i] = q->frame.plag[i] + 16;
536             }
537         }else
538         {
539             float max_pitch_gain = q->erasure_count < 3 ? 0.9 - 0.3 * (q->erasure_count - 1) : 0.0;
540             for(i=0; i<4; i++)
541                 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
542
543             memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
544         }
545
546         // pitch synthesis filter
547         v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
548                                               cdn_vector, q->pitch_gain,
549                                               q->pitch_lag, q->frame.pfrac);
550
551         // pitch prefilter update
552         for(i=0; i<4; i++)
553             q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
554
555         v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
556                                         v_synthesis_filtered,
557                                         q->pitch_gain, q->pitch_lag,
558                                         q->frame.pfrac);
559
560         apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
561     }else
562     {
563         memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17,
564                143 * sizeof(float));
565         memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
566         memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
567         memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
568     }
569 }
570
571 /**
572  * Interpolates LSP frequencies and computes LPC coefficients
573  * for a given bitrate & pitch subframe.
574  *
575  * TIA/EIA/IS-733 2.4.3.3.4
576  *
577  * @param q the context
578  * @param curr_lspf LSP frequencies vector of the current frame
579  * @param lpc float vector for the resulting LPC
580  * @param subframe_num frame number in decoded stream
581  */
582 void interpolate_lpc(QCELPContext *q, const float *curr_lspf, float *lpc,
583                      const int subframe_num)
584 {
585     float interpolated_lspf[10];
586     float weight;
587
588     if(q->bitrate >= RATE_QUARTER)
589         weight = 0.25 * (subframe_num + 1);
590     else if(q->bitrate == RATE_OCTAVE && !subframe_num)
591         weight = 0.625;
592     else
593         weight = 1.0;
594
595     if(weight != 1.0)
596     {
597         weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
598                              weight, 1.0 - weight, 10);
599         ff_qcelp_lspf2lpc(interpolated_lspf, lpc);
600     }else if(q->bitrate >= RATE_QUARTER ||
601              (q->bitrate == I_F_Q && !subframe_num))
602         ff_qcelp_lspf2lpc(curr_lspf, lpc);
603 }
604
605 static qcelp_packet_rate buf_size2bitrate(const int buf_size)
606 {
607     switch(buf_size)
608     {
609         case 35: return RATE_FULL;
610         case 17: return RATE_HALF;
611         case  8: return RATE_QUARTER;
612         case  4: return RATE_OCTAVE;
613         case  1: return SILENCE;
614     }
615
616     return I_F_Q;
617 }
618
619 /**
620  * Determine the bitrate from the frame size and/or the first byte of the frame.
621  *
622  * @param avctx the AV codec context
623  * @param buf_size length of the buffer
624  * @param buf the bufffer
625  *
626  * @return the bitrate on success,
627  *         I_F_Q  if the bitrate cannot be satisfactorily determined
628  *
629  * TIA/EIA/IS-733 2.4.8.7.1
630  */
631 static int determine_bitrate(AVCodecContext *avctx, const int buf_size,
632                              const uint8_t **buf)
633 {
634     qcelp_packet_rate bitrate;
635
636     if((bitrate = buf_size2bitrate(buf_size)) >= 0)
637     {
638         if(bitrate > **buf)
639         {
640             QCELPContext *q = avctx->priv_data;
641             if (!q->warned_buf_mismatch_bitrate)
642             {
643             av_log(avctx, AV_LOG_WARNING,
644                    "Claimed bitrate and buffer size mismatch.\n");
645                 q->warned_buf_mismatch_bitrate = 1;
646             }
647             bitrate = **buf;
648         }else if(bitrate < **buf)
649         {
650             av_log(avctx, AV_LOG_ERROR,
651                    "Buffer is too small for the claimed bitrate.\n");
652             return I_F_Q;
653         }
654         (*buf)++;
655     }else if((bitrate = buf_size2bitrate(buf_size + 1)) >= 0)
656     {
657         av_log(avctx, AV_LOG_WARNING,
658                "Bitrate byte is missing, guessing the bitrate from packet size.\n");
659     }else
660         return I_F_Q;
661
662     if(bitrate == SILENCE)
663     {
664         // FIXME: the decoder should not handle SILENCE frames as I_F_Q frames
665         ff_log_missing_feature(avctx, "Blank frame", 1);
666         bitrate = I_F_Q;
667     }
668     return bitrate;
669 }
670
671 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
672                                             const char *message)
673 {
674     av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n", avctx->frame_number,
675            message);
676 }
677
678 static int qcelp_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
679                               const uint8_t *buf, int buf_size)
680 {
681     QCELPContext *q = avctx->priv_data;
682     float *outbuffer = data;
683     int   i;
684     float quantized_lspf[10], lpc[10];
685     float gain[16];
686     float *formant_mem;
687
688     if((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q)
689     {
690         warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
691         goto erasure;
692     }
693
694     if(q->bitrate == RATE_OCTAVE &&
695        (q->first16bits = AV_RB16(buf)) == 0xFFFF)
696     {
697         warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
698         goto erasure;
699     }
700
701     if(q->bitrate > SILENCE)
702     {
703         const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
704         const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate]
705                                        + qcelp_unpacking_bitmaps_lengths[q->bitrate];
706         uint8_t           *unpacked_data = (uint8_t *)&q->frame;
707
708         init_get_bits(&q->gb, buf, 8*buf_size);
709
710         memset(&q->frame, 0, sizeof(QCELPFrame));
711
712         for(; bitmaps < bitmaps_end; bitmaps++)
713             unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
714
715         // Check for erasures/blanks on rates 1, 1/4 and 1/8.
716         if(q->frame.reserved)
717         {
718             warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
719             goto erasure;
720         }
721         if(q->bitrate == RATE_QUARTER &&
722            codebook_sanity_check_for_rate_quarter(q->frame.cbgain))
723         {
724             warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
725             goto erasure;
726         }
727
728         if(q->bitrate >= RATE_HALF)
729         {
730             for(i=0; i<4; i++)
731             {
732                 if(q->frame.pfrac[i] && q->frame.plag[i] >= 124)
733                 {
734                     warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
735                     goto erasure;
736                 }
737             }
738         }
739     }
740
741     decode_gain_and_index(q, gain);
742     compute_svector(q, gain, outbuffer);
743
744     if(decode_lspf(q, quantized_lspf) < 0)
745     {
746         warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
747         goto erasure;
748     }
749
750
751     apply_pitch_filters(q, outbuffer);
752
753     if(q->bitrate == I_F_Q)
754     {
755 erasure:
756         q->bitrate = I_F_Q;
757         q->erasure_count++;
758         decode_gain_and_index(q, gain);
759         compute_svector(q, gain, outbuffer);
760         decode_lspf(q, quantized_lspf);
761         apply_pitch_filters(q, outbuffer);
762     }else
763         q->erasure_count = 0;
764
765     formant_mem = q->formant_mem + 10;
766     for(i=0; i<4; i++)
767     {
768         interpolate_lpc(q, quantized_lspf, lpc, i);
769         ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40,
770                                      10);
771         formant_mem += 40;
772     }
773     memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
774
775     // FIXME: postfilter and final gain control should be here.
776     // TIA/EIA/IS-733 2.4.8.6
777
778     formant_mem = q->formant_mem + 10;
779     for(i=0; i<160; i++)
780         *outbuffer++ = av_clipf(*formant_mem++, QCELP_CLIP_LOWER_BOUND,
781                                 QCELP_CLIP_UPPER_BOUND);
782
783     memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
784     q->prev_bitrate = q->bitrate;
785
786     *data_size = 160 * sizeof(*outbuffer);
787
788     return *data_size;
789 }
790
791 AVCodec qcelp_decoder =
792 {
793     .name   = "qcelp",
794     .type   = CODEC_TYPE_AUDIO,
795     .id     = CODEC_ID_QCELP,
796     .init   = qcelp_decode_init,
797     .decode = qcelp_decode_frame,
798     .priv_data_size = sizeof(QCELPContext),
799     .long_name = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
800 };