]> git.sesse.net Git - ffmpeg/blob - libavcodec/qcelpdec.c
avcodec: Constify AVCodecs
[ffmpeg] / libavcodec / qcelpdec.c
1 /*
2  * QCELP decoder
3  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * QCELP decoder
25  * @author Reynaldo H. Verdejo Pinochet
26  * @remark FFmpeg merging spearheaded by Kenan Gillet
27  * @remark Development mentored by Benjamin Larson
28  */
29
30 #include <stddef.h>
31
32 #include "libavutil/avassert.h"
33 #include "libavutil/channel_layout.h"
34 #include "libavutil/float_dsp.h"
35 #include "avcodec.h"
36 #include "internal.h"
37 #include "get_bits.h"
38 #include "qcelpdata.h"
39 #include "celp_filters.h"
40 #include "acelp_filters.h"
41 #include "acelp_vectors.h"
42 #include "lsp.h"
43
44 typedef enum {
45     I_F_Q = -1,    /**< insufficient frame quality */
46     SILENCE,
47     RATE_OCTAVE,
48     RATE_QUARTER,
49     RATE_HALF,
50     RATE_FULL
51 } qcelp_packet_rate;
52
53 typedef struct QCELPContext {
54     GetBitContext     gb;
55     qcelp_packet_rate bitrate;
56     QCELPFrame        frame;    /**< unpacked data frame */
57
58     uint8_t  erasure_count;
59     uint8_t  octave_count;      /**< count the consecutive RATE_OCTAVE frames */
60     float    prev_lspf[10];
61     float    predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
62     float    pitch_synthesis_filter_mem[303];
63     float    pitch_pre_filter_mem[303];
64     float    rnd_fir_filter_mem[180];
65     float    formant_mem[170];
66     float    last_codebook_gain;
67     int      prev_g1[2];
68     int      prev_bitrate;
69     float    pitch_gain[4];
70     uint8_t  pitch_lag[4];
71     uint16_t first16bits;
72     uint8_t  warned_buf_mismatch_bitrate;
73
74     /* postfilter */
75     float    postfilter_synth_mem[10];
76     float    postfilter_agc_mem;
77     float    postfilter_tilt_mem;
78 } QCELPContext;
79
80 /**
81  * Initialize the speech codec according to the specification.
82  *
83  * TIA/EIA/IS-733 2.4.9
84  */
85 static av_cold int qcelp_decode_init(AVCodecContext *avctx)
86 {
87     QCELPContext *q = avctx->priv_data;
88     int i;
89
90     avctx->channels       = 1;
91     avctx->channel_layout = AV_CH_LAYOUT_MONO;
92     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
93
94     for (i = 0; i < 10; i++)
95         q->prev_lspf[i] = (i + 1) / 11.0;
96
97     return 0;
98 }
99
100 /**
101  * Decode the 10 quantized LSP frequencies from the LSPV/LSP
102  * transmission codes of any bitrate and check for badly received packets.
103  *
104  * @param q the context
105  * @param lspf line spectral pair frequencies
106  *
107  * @return 0 on success, -1 if the packet is badly received
108  *
109  * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
110  */
111 static int decode_lspf(QCELPContext *q, float *lspf)
112 {
113     int i;
114     float tmp_lspf, smooth, erasure_coeff;
115     const float *predictors;
116
117     if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
118         predictors = q->prev_bitrate != RATE_OCTAVE &&
119                      q->prev_bitrate != I_F_Q ? q->prev_lspf
120                                               : q->predictor_lspf;
121
122         if (q->bitrate == RATE_OCTAVE) {
123             q->octave_count++;
124
125             for (i = 0; i < 10; i++) {
126                 q->predictor_lspf[i] =
127                              lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
128                                                          : -QCELP_LSP_SPREAD_FACTOR) +
129                                         predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR   +
130                                         (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
131             }
132             smooth = q->octave_count < 10 ? .875 : 0.1;
133         } else {
134             erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
135
136             av_assert2(q->bitrate == I_F_Q);
137
138             if (q->erasure_count > 1)
139                 erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
140
141             for (i = 0; i < 10; i++) {
142                 q->predictor_lspf[i] =
143                              lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
144                                        erasure_coeff * predictors[i];
145             }
146             smooth = 0.125;
147         }
148
149         // Check the stability of the LSP frequencies.
150         lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
151         for (i = 1; i < 10; i++)
152             lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
153
154         lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
155         for (i = 9; i > 0; i--)
156             lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
157
158         // Low-pass filter the LSP frequencies.
159         ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
160     } else {
161         q->octave_count = 0;
162
163         tmp_lspf = 0.0;
164         for (i = 0; i < 5; i++) {
165             lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
166             lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
167         }
168
169         // Check for badly received packets.
170         if (q->bitrate == RATE_QUARTER) {
171             if (lspf[9] <= .70 || lspf[9] >= .97)
172                 return -1;
173             for (i = 3; i < 10; i++)
174                 if (fabs(lspf[i] - lspf[i - 2]) < .08)
175                     return -1;
176         } else {
177             if (lspf[9] <= .66 || lspf[9] >= .985)
178                 return -1;
179             for (i = 4; i < 10; i++)
180                 if (fabs(lspf[i] - lspf[i - 4]) < .0931)
181                     return -1;
182         }
183     }
184     return 0;
185 }
186
187 /**
188  * Convert codebook transmission codes to GAIN and INDEX.
189  *
190  * @param q the context
191  * @param gain array holding the decoded gain
192  *
193  * TIA/EIA/IS-733 2.4.6.2
194  */
195 static void decode_gain_and_index(QCELPContext *q, float *gain)
196 {
197     int i, subframes_count, g1[16];
198     float slope;
199
200     if (q->bitrate >= RATE_QUARTER) {
201         switch (q->bitrate) {
202         case RATE_FULL: subframes_count = 16; break;
203         case RATE_HALF: subframes_count =  4; break;
204         default:        subframes_count =  5;
205         }
206         for (i = 0; i < subframes_count; i++) {
207             g1[i] = 4 * q->frame.cbgain[i];
208             if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
209                 g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
210             }
211
212             gain[i] = qcelp_g12ga[g1[i]];
213
214             if (q->frame.cbsign[i]) {
215                 gain[i] = -gain[i];
216                 q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
217             }
218         }
219
220         q->prev_g1[0]         = g1[i - 2];
221         q->prev_g1[1]         = g1[i - 1];
222         q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
223
224         if (q->bitrate == RATE_QUARTER) {
225             // Provide smoothing of the unvoiced excitation energy.
226             gain[7] =       gain[4];
227             gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
228             gain[5] =       gain[3];
229             gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
230             gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
231             gain[2] =       gain[1];
232             gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
233         }
234     } else if (q->bitrate != SILENCE) {
235         if (q->bitrate == RATE_OCTAVE) {
236             g1[0] = 2 * q->frame.cbgain[0] +
237                     av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
238             subframes_count = 8;
239         } else {
240             av_assert2(q->bitrate == I_F_Q);
241
242             g1[0] = q->prev_g1[1];
243             switch (q->erasure_count) {
244             case 1 : break;
245             case 2 : g1[0] -= 1; break;
246             case 3 : g1[0] -= 2; break;
247             default: g1[0] -= 6;
248             }
249             if (g1[0] < 0)
250                 g1[0] = 0;
251             subframes_count = 4;
252         }
253         // This interpolation is done to produce smoother background noise.
254         slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
255         for (i = 1; i <= subframes_count; i++)
256                 gain[i - 1] = q->last_codebook_gain + slope * i;
257
258         q->last_codebook_gain = gain[i - 2];
259         q->prev_g1[0]         = q->prev_g1[1];
260         q->prev_g1[1]         = g1[0];
261     }
262 }
263
264 /**
265  * If the received packet is Rate 1/4 a further sanity check is made of the
266  * codebook gain.
267  *
268  * @param cbgain the unpacked cbgain array
269  * @return -1 if the sanity check fails, 0 otherwise
270  *
271  * TIA/EIA/IS-733 2.4.8.7.3
272  */
273 static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
274 {
275     int i, diff, prev_diff = 0;
276
277     for (i = 1; i < 5; i++) {
278         diff = cbgain[i] - cbgain[i-1];
279         if (FFABS(diff) > 10)
280             return -1;
281         else if (FFABS(diff - prev_diff) > 12)
282             return -1;
283         prev_diff = diff;
284     }
285     return 0;
286 }
287
288 /**
289  * Compute the scaled codebook vector Cdn From INDEX and GAIN
290  * for all rates.
291  *
292  * The specification lacks some information here.
293  *
294  * TIA/EIA/IS-733 has an omission on the codebook index determination
295  * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
296  * you have to subtract the decoded index parameter from the given scaled
297  * codebook vector index 'n' to get the desired circular codebook index, but
298  * it does not mention that you have to clamp 'n' to [0-9] in order to get
299  * RI-compliant results.
300  *
301  * The reason for this mistake seems to be the fact they forgot to mention you
302  * have to do these calculations per codebook subframe and adjust given
303  * equation values accordingly.
304  *
305  * @param q the context
306  * @param gain array holding the 4 pitch subframe gain values
307  * @param cdn_vector array for the generated scaled codebook vector
308  */
309 static void compute_svector(QCELPContext *q, const float *gain,
310                             float *cdn_vector)
311 {
312     int i, j, k;
313     uint16_t cbseed, cindex;
314     float *rnd, tmp_gain, fir_filter_value;
315
316     switch (q->bitrate) {
317     case RATE_FULL:
318         for (i = 0; i < 16; i++) {
319             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
320             cindex   = -q->frame.cindex[i];
321             for (j = 0; j < 10; j++)
322                 *cdn_vector++ = tmp_gain *
323                                 qcelp_rate_full_codebook[cindex++ & 127];
324         }
325         break;
326     case RATE_HALF:
327         for (i = 0; i < 4; i++) {
328             tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
329             cindex   = -q->frame.cindex[i];
330             for (j = 0; j < 40; j++)
331                 *cdn_vector++ = tmp_gain *
332                                 qcelp_rate_half_codebook[cindex++ & 127];
333         }
334         break;
335     case RATE_QUARTER:
336         cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
337                  (0x003F & q->frame.lspv[3]) <<  8 |
338                  (0x0060 & q->frame.lspv[2]) <<  1 |
339                  (0x0007 & q->frame.lspv[1]) <<  3 |
340                  (0x0038 & q->frame.lspv[0]) >>  3;
341         rnd    = q->rnd_fir_filter_mem + 20;
342         for (i = 0; i < 8; i++) {
343             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
344             for (k = 0; k < 20; k++) {
345                 cbseed = 521 * cbseed + 259;
346                 *rnd   = (int16_t) cbseed;
347
348                     // FIR filter
349                 fir_filter_value = 0.0;
350                 for (j = 0; j < 10; j++)
351                     fir_filter_value += qcelp_rnd_fir_coefs[j] *
352                                         (rnd[-j] + rnd[-20+j]);
353
354                 fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
355                 *cdn_vector++     = tmp_gain * fir_filter_value;
356                 rnd++;
357             }
358         }
359         memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
360                20 * sizeof(float));
361         break;
362     case RATE_OCTAVE:
363         cbseed = q->first16bits;
364         for (i = 0; i < 8; i++) {
365             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
366             for (j = 0; j < 20; j++) {
367                 cbseed        = 521 * cbseed + 259;
368                 *cdn_vector++ = tmp_gain * (int16_t) cbseed;
369             }
370         }
371         break;
372     case I_F_Q:
373         cbseed = -44; // random codebook index
374         for (i = 0; i < 4; i++) {
375             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
376             for (j = 0; j < 40; j++)
377                 *cdn_vector++ = tmp_gain *
378                                 qcelp_rate_full_codebook[cbseed++ & 127];
379         }
380         break;
381     case SILENCE:
382         memset(cdn_vector, 0, 160 * sizeof(float));
383         break;
384     }
385 }
386
387 /**
388  * Apply generic gain control.
389  *
390  * @param v_out output vector
391  * @param v_in gain-controlled vector
392  * @param v_ref vector to control gain of
393  *
394  * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
395  */
396 static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
397 {
398     int i;
399
400     for (i = 0; i < 160; i += 40) {
401         float res = avpriv_scalarproduct_float_c(v_ref + i, v_ref + i, 40);
402         ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i, res, 40);
403     }
404 }
405
406 /**
407  * Apply filter in pitch-subframe steps.
408  *
409  * @param memory buffer for the previous state of the filter
410  *        - must be able to contain 303 elements
411  *        - the 143 first elements are from the previous state
412  *        - the next 160 are for output
413  * @param v_in input filter vector
414  * @param gain per-subframe gain array, each element is between 0.0 and 2.0
415  * @param lag per-subframe lag array, each element is
416  *        - between 16 and 143 if its corresponding pfrac is 0,
417  *        - between 16 and 139 otherwise
418  * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
419  *        otherwise
420  *
421  * @return filter output vector
422  */
423 static const float *do_pitchfilter(float memory[303], const float v_in[160],
424                                    const float gain[4], const uint8_t *lag,
425                                    const uint8_t pfrac[4])
426 {
427     int i, j;
428     float *v_lag, *v_out;
429     const float *v_len;
430
431     v_out = memory + 143; // Output vector starts at memory[143].
432
433     for (i = 0; i < 4; i++) {
434         if (gain[i]) {
435             v_lag = memory + 143 + 40 * i - lag[i];
436             for (v_len = v_in + 40; v_in < v_len; v_in++) {
437                 if (pfrac[i]) { // If it is a fractional lag...
438                     for (j = 0, *v_out = 0.0; j < 4; j++)
439                         *v_out += qcelp_hammsinc_table[j] *
440                                   (v_lag[j - 4] + v_lag[3 - j]);
441                 } else
442                     *v_out = *v_lag;
443
444                 *v_out = *v_in + gain[i] * *v_out;
445
446                 v_lag++;
447                 v_out++;
448             }
449         } else {
450             memcpy(v_out, v_in, 40 * sizeof(float));
451             v_in  += 40;
452             v_out += 40;
453         }
454     }
455
456     memmove(memory, memory + 160, 143 * sizeof(float));
457     return memory + 143;
458 }
459
460 /**
461  * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
462  * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
463  *
464  * @param q the context
465  * @param cdn_vector the scaled codebook vector
466  */
467 static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
468 {
469     int i;
470     const float *v_synthesis_filtered, *v_pre_filtered;
471
472     if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
473         (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
474
475         if (q->bitrate >= RATE_HALF) {
476             // Compute gain & lag for the whole frame.
477             for (i = 0; i < 4; i++) {
478                 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
479
480                 q->pitch_lag[i] = q->frame.plag[i] + 16;
481             }
482         } else {
483             float max_pitch_gain;
484
485             if (q->bitrate == I_F_Q) {
486                   if (q->erasure_count < 3)
487                       max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
488                   else
489                       max_pitch_gain = 0.0;
490             } else {
491                 av_assert2(q->bitrate == SILENCE);
492                 max_pitch_gain = 1.0;
493             }
494             for (i = 0; i < 4; i++)
495                 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
496
497             memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
498         }
499
500         // pitch synthesis filter
501         v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
502                                               cdn_vector, q->pitch_gain,
503                                               q->pitch_lag, q->frame.pfrac);
504
505         // pitch prefilter update
506         for (i = 0; i < 4; i++)
507             q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
508
509         v_pre_filtered       = do_pitchfilter(q->pitch_pre_filter_mem,
510                                               v_synthesis_filtered,
511                                               q->pitch_gain, q->pitch_lag,
512                                               q->frame.pfrac);
513
514         apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
515     } else {
516         memcpy(q->pitch_synthesis_filter_mem,
517                cdn_vector + 17, 143 * sizeof(float));
518         memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
519         memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
520         memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
521     }
522 }
523
524 /**
525  * Reconstruct LPC coefficients from the line spectral pair frequencies
526  * and perform bandwidth expansion.
527  *
528  * @param lspf line spectral pair frequencies
529  * @param lpc linear predictive coding coefficients
530  *
531  * @note: bandwidth_expansion_coeff could be precalculated into a table
532  *        but it seems to be slower on x86
533  *
534  * TIA/EIA/IS-733 2.4.3.3.5
535  */
536 static void lspf2lpc(const float *lspf, float *lpc)
537 {
538     double lsp[10];
539     double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
540     int i;
541
542     for (i = 0; i < 10; i++)
543         lsp[i] = cos(M_PI * lspf[i]);
544
545     ff_acelp_lspd2lpc(lsp, lpc, 5);
546
547     for (i = 0; i < 10; i++) {
548         lpc[i]                    *= bandwidth_expansion_coeff;
549         bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
550     }
551 }
552
553 /**
554  * Interpolate LSP frequencies and compute LPC coefficients
555  * for a given bitrate & pitch subframe.
556  *
557  * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
558  *
559  * @param q the context
560  * @param curr_lspf LSP frequencies vector of the current frame
561  * @param lpc float vector for the resulting LPC
562  * @param subframe_num frame number in decoded stream
563  */
564 static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
565                             float *lpc, const int subframe_num)
566 {
567     float interpolated_lspf[10];
568     float weight;
569
570     if (q->bitrate >= RATE_QUARTER)
571         weight = 0.25 * (subframe_num + 1);
572     else if (q->bitrate == RATE_OCTAVE && !subframe_num)
573         weight = 0.625;
574     else
575         weight = 1.0;
576
577     if (weight != 1.0) {
578         ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
579                                 weight, 1.0 - weight, 10);
580         lspf2lpc(interpolated_lspf, lpc);
581     } else if (q->bitrate >= RATE_QUARTER ||
582                (q->bitrate == I_F_Q && !subframe_num))
583         lspf2lpc(curr_lspf, lpc);
584     else if (q->bitrate == SILENCE && !subframe_num)
585         lspf2lpc(q->prev_lspf, lpc);
586 }
587
588 static qcelp_packet_rate buf_size2bitrate(const int buf_size)
589 {
590     switch (buf_size) {
591     case 35: return RATE_FULL;
592     case 17: return RATE_HALF;
593     case  8: return RATE_QUARTER;
594     case  4: return RATE_OCTAVE;
595     case  1: return SILENCE;
596     }
597
598     return I_F_Q;
599 }
600
601 /**
602  * Determine the bitrate from the frame size and/or the first byte of the frame.
603  *
604  * @param avctx the AV codec context
605  * @param buf_size length of the buffer
606  * @param buf the buffer
607  *
608  * @return the bitrate on success,
609  *         I_F_Q  if the bitrate cannot be satisfactorily determined
610  *
611  * TIA/EIA/IS-733 2.4.8.7.1
612  */
613 static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
614                                            const int buf_size,
615                                            const uint8_t **buf)
616 {
617     qcelp_packet_rate bitrate;
618
619     if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
620         if (bitrate > **buf) {
621             QCELPContext *q = avctx->priv_data;
622             if (!q->warned_buf_mismatch_bitrate) {
623             av_log(avctx, AV_LOG_WARNING,
624                    "Claimed bitrate and buffer size mismatch.\n");
625                 q->warned_buf_mismatch_bitrate = 1;
626             }
627             bitrate = **buf;
628         } else if (bitrate < **buf) {
629             av_log(avctx, AV_LOG_ERROR,
630                    "Buffer is too small for the claimed bitrate.\n");
631             return I_F_Q;
632         }
633         (*buf)++;
634     } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
635         av_log(avctx, AV_LOG_WARNING,
636                "Bitrate byte missing, guessing bitrate from packet size.\n");
637     } else
638         return I_F_Q;
639
640     if (bitrate == SILENCE) {
641         // FIXME: Remove this warning when tested with samples.
642         avpriv_request_sample(avctx, "Blank frame handling");
643     }
644     return bitrate;
645 }
646
647 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
648                                             const char *message)
649 {
650     av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n",
651            avctx->frame_number, message);
652 }
653
654 static void postfilter(QCELPContext *q, float *samples, float *lpc)
655 {
656     static const float pow_0_775[10] = {
657         0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
658         0.216676, 0.167924, 0.130141, 0.100859, 0.078166
659     }, pow_0_625[10] = {
660         0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
661         0.059605, 0.037253, 0.023283, 0.014552, 0.009095
662     };
663     float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
664     int n;
665
666     for (n = 0; n < 10; n++) {
667         lpc_s[n] = lpc[n] * pow_0_625[n];
668         lpc_p[n] = lpc[n] * pow_0_775[n];
669     }
670
671     ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
672                                       q->formant_mem + 10, 160, 10);
673     memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
674     ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
675     memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
676
677     ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
678
679     ff_adaptive_gain_control(samples, pole_out + 10,
680                              avpriv_scalarproduct_float_c(q->formant_mem + 10,
681                                                           q->formant_mem + 10,
682                                                           160),
683                              160, 0.9375, &q->postfilter_agc_mem);
684 }
685
686 static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
687                               int *got_frame_ptr, AVPacket *avpkt)
688 {
689     const uint8_t *buf = avpkt->data;
690     int buf_size       = avpkt->size;
691     QCELPContext *q    = avctx->priv_data;
692     AVFrame *frame     = data;
693     float *outbuffer;
694     int   i, ret;
695     float quantized_lspf[10], lpc[10];
696     float gain[16];
697     float *formant_mem;
698
699     /* get output buffer */
700     frame->nb_samples = 160;
701     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
702         return ret;
703     outbuffer = (float *)frame->data[0];
704
705     if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
706         warn_insufficient_frame_quality(avctx, "Bitrate cannot be determined.");
707         goto erasure;
708     }
709
710     if (q->bitrate == RATE_OCTAVE &&
711         (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
712         warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
713         goto erasure;
714     }
715
716     if (q->bitrate > SILENCE) {
717         const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
718         const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
719                                          qcelp_unpacking_bitmaps_lengths[q->bitrate];
720         uint8_t *unpacked_data         = (uint8_t *)&q->frame;
721
722         if ((ret = init_get_bits8(&q->gb, buf, buf_size)) < 0)
723             return ret;
724
725         memset(&q->frame, 0, sizeof(QCELPFrame));
726
727         for (; bitmaps < bitmaps_end; bitmaps++)
728             unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
729
730         // Check for erasures/blanks on rates 1, 1/4 and 1/8.
731         if (q->frame.reserved) {
732             warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
733             goto erasure;
734         }
735         if (q->bitrate == RATE_QUARTER &&
736             codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
737             warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
738             goto erasure;
739         }
740
741         if (q->bitrate >= RATE_HALF) {
742             for (i = 0; i < 4; i++) {
743                 if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
744                     warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
745                     goto erasure;
746                 }
747             }
748         }
749     }
750
751     decode_gain_and_index(q, gain);
752     compute_svector(q, gain, outbuffer);
753
754     if (decode_lspf(q, quantized_lspf) < 0) {
755         warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
756         goto erasure;
757     }
758
759     apply_pitch_filters(q, outbuffer);
760
761     if (q->bitrate == I_F_Q) {
762 erasure:
763         q->bitrate = I_F_Q;
764         q->erasure_count++;
765         decode_gain_and_index(q, gain);
766         compute_svector(q, gain, outbuffer);
767         decode_lspf(q, quantized_lspf);
768         apply_pitch_filters(q, outbuffer);
769     } else
770         q->erasure_count = 0;
771
772     formant_mem = q->formant_mem + 10;
773     for (i = 0; i < 4; i++) {
774         interpolate_lpc(q, quantized_lspf, lpc, i);
775         ff_celp_lp_synthesis_filterf(formant_mem, lpc,
776                                      outbuffer + i * 40, 40, 10);
777         formant_mem += 40;
778     }
779
780     // postfilter, as per TIA/EIA/IS-733 2.4.8.6
781     postfilter(q, outbuffer, lpc);
782
783     memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
784
785     memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
786     q->prev_bitrate  = q->bitrate;
787
788     *got_frame_ptr = 1;
789
790     return buf_size;
791 }
792
793 const AVCodec ff_qcelp_decoder = {
794     .name           = "qcelp",
795     .long_name      = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
796     .type           = AVMEDIA_TYPE_AUDIO,
797     .id             = AV_CODEC_ID_QCELP,
798     .init           = qcelp_decode_init,
799     .decode         = qcelp_decode_frame,
800     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
801     .priv_data_size = sizeof(QCELPContext),
802 };