]> git.sesse.net Git - ffmpeg/blob - libavcodec/qcelpdec.c
Add avcodec_decode_audio4().
[ffmpeg] / libavcodec / qcelpdec.c
1 /*
2  * QCELP decoder
3  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * QCELP decoder
25  * @author Reynaldo H. Verdejo Pinochet
26  * @remark Libav merging spearheaded by Kenan Gillet
27  * @remark Development mentored by Benjamin Larson
28  */
29
30 #include <stddef.h>
31
32 #include "avcodec.h"
33 #include "internal.h"
34 #include "get_bits.h"
35
36 #include "qcelpdata.h"
37
38 #include "celp_math.h"
39 #include "celp_filters.h"
40 #include "acelp_filters.h"
41 #include "acelp_vectors.h"
42 #include "lsp.h"
43
44 #undef NDEBUG
45 #include <assert.h>
46
47 typedef enum
48 {
49     I_F_Q = -1,    /**< insufficient frame quality */
50     SILENCE,
51     RATE_OCTAVE,
52     RATE_QUARTER,
53     RATE_HALF,
54     RATE_FULL
55 } qcelp_packet_rate;
56
57 typedef struct
58 {
59     AVFrame           avframe;
60     GetBitContext     gb;
61     qcelp_packet_rate bitrate;
62     QCELPFrame        frame;    /**< unpacked data frame */
63
64     uint8_t  erasure_count;
65     uint8_t  octave_count;      /**< count the consecutive RATE_OCTAVE frames */
66     float    prev_lspf[10];
67     float    predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
68     float    pitch_synthesis_filter_mem[303];
69     float    pitch_pre_filter_mem[303];
70     float    rnd_fir_filter_mem[180];
71     float    formant_mem[170];
72     float    last_codebook_gain;
73     int      prev_g1[2];
74     int      prev_bitrate;
75     float    pitch_gain[4];
76     uint8_t  pitch_lag[4];
77     uint16_t first16bits;
78     uint8_t  warned_buf_mismatch_bitrate;
79
80     /* postfilter */
81     float    postfilter_synth_mem[10];
82     float    postfilter_agc_mem;
83     float    postfilter_tilt_mem;
84 } QCELPContext;
85
86 /**
87  * Initialize the speech codec according to the specification.
88  *
89  * TIA/EIA/IS-733 2.4.9
90  */
91 static av_cold int qcelp_decode_init(AVCodecContext *avctx)
92 {
93     QCELPContext *q = avctx->priv_data;
94     int i;
95
96     avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
97
98     for(i=0; i<10; i++)
99         q->prev_lspf[i] = (i+1)/11.;
100
101     avcodec_get_frame_defaults(&q->avframe);
102     avctx->coded_frame = &q->avframe;
103
104     return 0;
105 }
106
107 /**
108  * Decode the 10 quantized LSP frequencies from the LSPV/LSP
109  * transmission codes of any bitrate and check for badly received packets.
110  *
111  * @param q the context
112  * @param lspf line spectral pair frequencies
113  *
114  * @return 0 on success, -1 if the packet is badly received
115  *
116  * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
117  */
118 static int decode_lspf(QCELPContext *q, float *lspf)
119 {
120     int i;
121     float tmp_lspf, smooth, erasure_coeff;
122     const float *predictors;
123
124     if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
125         predictors = (q->prev_bitrate != RATE_OCTAVE &&
126                        q->prev_bitrate != I_F_Q ?
127                        q->prev_lspf : q->predictor_lspf);
128
129         if (q->bitrate == RATE_OCTAVE) {
130             q->octave_count++;
131
132             for (i=0; i<10; i++) {
133                 q->predictor_lspf[i] =
134                              lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
135                                                          : -QCELP_LSP_SPREAD_FACTOR)
136                                      + predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR
137                                      + (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11);
138             }
139             smooth = (q->octave_count < 10 ? .875 : 0.1);
140         } else {
141             erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
142
143             assert(q->bitrate == I_F_Q);
144
145             if(q->erasure_count > 1)
146                 erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7);
147
148             for(i = 0; i < 10; i++) {
149                 q->predictor_lspf[i] =
150                              lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11
151                                      + erasure_coeff * predictors[i];
152             }
153             smooth = 0.125;
154         }
155
156         // Check the stability of the LSP frequencies.
157         lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
158         for(i=1; i<10; i++)
159             lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR));
160
161         lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR));
162         for(i=9; i>0; i--)
163             lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR));
164
165         // Low-pass filter the LSP frequencies.
166         ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10);
167     } else {
168         q->octave_count = 0;
169
170         tmp_lspf = 0.;
171         for (i = 0; i < 5; i++) {
172             lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
173             lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
174         }
175
176         // Check for badly received packets.
177         if (q->bitrate == RATE_QUARTER) {
178             if(lspf[9] <= .70 || lspf[9] >=  .97)
179                 return -1;
180             for(i=3; i<10; i++)
181                 if(fabs(lspf[i] - lspf[i-2]) < .08)
182                     return -1;
183         } else {
184             if(lspf[9] <= .66 || lspf[9] >= .985)
185                 return -1;
186             for(i=4; i<10; i++)
187                 if (fabs(lspf[i] - lspf[i-4]) < .0931)
188                     return -1;
189         }
190     }
191     return 0;
192 }
193
194 /**
195  * Convert codebook transmission codes to GAIN and INDEX.
196  *
197  * @param q the context
198  * @param gain array holding the decoded gain
199  *
200  * TIA/EIA/IS-733 2.4.6.2
201  */
202 static void decode_gain_and_index(QCELPContext  *q,
203                                   float *gain) {
204     int   i, subframes_count, g1[16];
205     float slope;
206
207     if (q->bitrate >= RATE_QUARTER) {
208         switch (q->bitrate) {
209             case RATE_FULL: subframes_count = 16; break;
210             case RATE_HALF: subframes_count = 4;  break;
211             default:        subframes_count = 5;
212         }
213         for(i = 0; i < subframes_count; i++) {
214             g1[i] = 4 * q->frame.cbgain[i];
215             if (q->bitrate == RATE_FULL && !((i+1) & 3)) {
216                 g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32);
217             }
218
219             gain[i] = qcelp_g12ga[g1[i]];
220
221             if (q->frame.cbsign[i]) {
222                 gain[i] = -gain[i];
223                 q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127;
224             }
225         }
226
227         q->prev_g1[0] = g1[i-2];
228         q->prev_g1[1] = g1[i-1];
229         q->last_codebook_gain = qcelp_g12ga[g1[i-1]];
230
231         if (q->bitrate == RATE_QUARTER) {
232             // Provide smoothing of the unvoiced excitation energy.
233             gain[7] =     gain[4];
234             gain[6] = 0.4*gain[3] + 0.6*gain[4];
235             gain[5] =     gain[3];
236             gain[4] = 0.8*gain[2] + 0.2*gain[3];
237             gain[3] = 0.2*gain[1] + 0.8*gain[2];
238             gain[2] =     gain[1];
239             gain[1] = 0.6*gain[0] + 0.4*gain[1];
240         }
241     } else if (q->bitrate != SILENCE) {
242         if (q->bitrate == RATE_OCTAVE) {
243             g1[0] = 2 * q->frame.cbgain[0]
244                   + av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
245             subframes_count = 8;
246         } else {
247             assert(q->bitrate == I_F_Q);
248
249             g1[0] = q->prev_g1[1];
250             switch (q->erasure_count) {
251                 case 1 : break;
252                 case 2 : g1[0] -= 1; break;
253                 case 3 : g1[0] -= 2; break;
254                 default: g1[0] -= 6;
255             }
256             if(g1[0] < 0)
257                 g1[0] = 0;
258             subframes_count = 4;
259         }
260         // This interpolation is done to produce smoother background noise.
261         slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
262         for(i=1; i<=subframes_count; i++)
263             gain[i-1] = q->last_codebook_gain + slope * i;
264
265         q->last_codebook_gain = gain[i-2];
266         q->prev_g1[0] = q->prev_g1[1];
267         q->prev_g1[1] = g1[0];
268     }
269 }
270
271 /**
272  * If the received packet is Rate 1/4 a further sanity check is made of the
273  * codebook gain.
274  *
275  * @param cbgain the unpacked cbgain array
276  * @return -1 if the sanity check fails, 0 otherwise
277  *
278  * TIA/EIA/IS-733 2.4.8.7.3
279  */
280 static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
281 {
282     int i, diff, prev_diff=0;
283
284     for(i=1; i<5; i++) {
285         diff = cbgain[i] - cbgain[i-1];
286         if(FFABS(diff) > 10)
287             return -1;
288         else if(FFABS(diff - prev_diff) > 12)
289             return -1;
290         prev_diff = diff;
291     }
292     return 0;
293 }
294
295 /**
296  * Compute the scaled codebook vector Cdn From INDEX and GAIN
297  * for all rates.
298  *
299  * The specification lacks some information here.
300  *
301  * TIA/EIA/IS-733 has an omission on the codebook index determination
302  * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
303  * you have to subtract the decoded index parameter from the given scaled
304  * codebook vector index 'n' to get the desired circular codebook index, but
305  * it does not mention that you have to clamp 'n' to [0-9] in order to get
306  * RI-compliant results.
307  *
308  * The reason for this mistake seems to be the fact they forgot to mention you
309  * have to do these calculations per codebook subframe and adjust given
310  * equation values accordingly.
311  *
312  * @param q the context
313  * @param gain array holding the 4 pitch subframe gain values
314  * @param cdn_vector array for the generated scaled codebook vector
315  */
316 static void compute_svector(QCELPContext *q, const float *gain,
317                             float *cdn_vector)
318 {
319     int      i, j, k;
320     uint16_t cbseed, cindex;
321     float    *rnd, tmp_gain, fir_filter_value;
322
323     switch (q->bitrate) {
324         case RATE_FULL:
325             for (i = 0; i < 16; i++) {
326                 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
327                 cindex = -q->frame.cindex[i];
328                 for(j=0; j<10; j++)
329                     *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
330             }
331         break;
332         case RATE_HALF:
333             for (i = 0; i < 4; i++) {
334                 tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
335                 cindex = -q->frame.cindex[i];
336                 for (j = 0; j < 40; j++)
337                 *cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
338             }
339         break;
340         case RATE_QUARTER:
341             cbseed = (0x0003 & q->frame.lspv[4])<<14 |
342                      (0x003F & q->frame.lspv[3])<< 8 |
343                      (0x0060 & q->frame.lspv[2])<< 1 |
344                      (0x0007 & q->frame.lspv[1])<< 3 |
345                      (0x0038 & q->frame.lspv[0])>> 3 ;
346             rnd = q->rnd_fir_filter_mem + 20;
347             for (i = 0; i < 8; i++) {
348                 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
349                 for (k = 0; k < 20; k++) {
350                     cbseed = 521 * cbseed + 259;
351                     *rnd = (int16_t)cbseed;
352
353                     // FIR filter
354                     fir_filter_value = 0.0;
355                     for(j=0; j<10; j++)
356                         fir_filter_value += qcelp_rnd_fir_coefs[j ]
357                                           * (rnd[-j ] + rnd[-20+j]);
358
359                     fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
360                     *cdn_vector++ = tmp_gain * fir_filter_value;
361                     rnd++;
362                 }
363             }
364             memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
365         break;
366         case RATE_OCTAVE:
367             cbseed = q->first16bits;
368             for (i = 0; i < 8; i++) {
369                 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
370                 for (j = 0; j < 20; j++) {
371                     cbseed = 521 * cbseed + 259;
372                     *cdn_vector++ = tmp_gain * (int16_t)cbseed;
373                 }
374             }
375         break;
376         case I_F_Q:
377             cbseed = -44; // random codebook index
378             for (i = 0; i < 4; i++) {
379                 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
380                 for(j=0; j<40; j++)
381                     *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
382             }
383         break;
384         case SILENCE:
385             memset(cdn_vector, 0, 160 * sizeof(float));
386         break;
387     }
388 }
389
390 /**
391  * Apply generic gain control.
392  *
393  * @param v_out output vector
394  * @param v_in gain-controlled vector
395  * @param v_ref vector to control gain of
396  *
397  * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
398  */
399 static void apply_gain_ctrl(float *v_out, const float *v_ref,
400                             const float *v_in)
401 {
402     int i;
403
404     for (i = 0; i < 160; i += 40)
405         ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i,
406                                                 ff_dot_productf(v_ref + i,
407                                                                 v_ref + i, 40),
408                                                 40);
409 }
410
411 /**
412  * Apply filter in pitch-subframe steps.
413  *
414  * @param memory buffer for the previous state of the filter
415  *        - must be able to contain 303 elements
416  *        - the 143 first elements are from the previous state
417  *        - the next 160 are for output
418  * @param v_in input filter vector
419  * @param gain per-subframe gain array, each element is between 0.0 and 2.0
420  * @param lag per-subframe lag array, each element is
421  *        - between 16 and 143 if its corresponding pfrac is 0,
422  *        - between 16 and 139 otherwise
423  * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
424  *        otherwise
425  *
426  * @return filter output vector
427  */
428 static const float *do_pitchfilter(float memory[303], const float v_in[160],
429                                    const float gain[4], const uint8_t *lag,
430                                    const uint8_t pfrac[4])
431 {
432     int         i, j;
433     float       *v_lag, *v_out;
434     const float *v_len;
435
436     v_out = memory + 143; // Output vector starts at memory[143].
437
438     for (i = 0; i < 4; i++) {
439         if (gain[i]) {
440             v_lag = memory + 143 + 40 * i - lag[i];
441             for (v_len = v_in + 40; v_in < v_len; v_in++) {
442                 if (pfrac[i]) { // If it is a fractional lag...
443                     for(j=0, *v_out=0.; j<4; j++)
444                         *v_out += qcelp_hammsinc_table[j] * (v_lag[j-4] + v_lag[3-j]);
445                 }else
446                     *v_out = *v_lag;
447
448                 *v_out = *v_in + gain[i] * *v_out;
449
450                 v_lag++;
451                 v_out++;
452             }
453         } else {
454             memcpy(v_out, v_in, 40 * sizeof(float));
455             v_in  += 40;
456             v_out += 40;
457         }
458     }
459
460     memmove(memory, memory + 160, 143 * sizeof(float));
461     return memory + 143;
462 }
463
464 /**
465  * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
466  * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
467  *
468  * @param q the context
469  * @param cdn_vector the scaled codebook vector
470  */
471 static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
472 {
473     int         i;
474     const float *v_synthesis_filtered, *v_pre_filtered;
475
476     if(q->bitrate >= RATE_HALF ||
477        q->bitrate == SILENCE ||
478       (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
479
480         if(q->bitrate >= RATE_HALF) {
481
482             // Compute gain & lag for the whole frame.
483             for (i = 0; i < 4; i++) {
484                 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
485
486                 q->pitch_lag[i] = q->frame.plag[i] + 16;
487             }
488         } else {
489             float max_pitch_gain;
490
491             if (q->bitrate == I_F_Q) {
492                   if (q->erasure_count < 3)
493                       max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
494                   else
495                       max_pitch_gain = 0.0;
496             } else {
497                 assert(q->bitrate == SILENCE);
498                 max_pitch_gain = 1.0;
499             }
500             for(i=0; i<4; i++)
501                 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
502
503             memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
504         }
505
506         // pitch synthesis filter
507         v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
508                                               cdn_vector, q->pitch_gain,
509                                               q->pitch_lag, q->frame.pfrac);
510
511         // pitch prefilter update
512         for(i=0; i<4; i++)
513             q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
514
515         v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
516                                         v_synthesis_filtered,
517                                         q->pitch_gain, q->pitch_lag,
518                                         q->frame.pfrac);
519
520         apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
521     } else {
522         memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17,
523                143 * sizeof(float));
524         memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
525         memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
526         memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
527     }
528 }
529
530 /**
531  * Reconstruct LPC coefficients from the line spectral pair frequencies
532  * and perform bandwidth expansion.
533  *
534  * @param lspf line spectral pair frequencies
535  * @param lpc linear predictive coding coefficients
536  *
537  * @note: bandwidth_expansion_coeff could be precalculated into a table
538  *        but it seems to be slower on x86
539  *
540  * TIA/EIA/IS-733 2.4.3.3.5
541  */
542 static void lspf2lpc(const float *lspf, float *lpc)
543 {
544     double lsp[10];
545     double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
546     int   i;
547
548     for (i=0; i<10; i++)
549         lsp[i] = cos(M_PI * lspf[i]);
550
551     ff_acelp_lspd2lpc(lsp, lpc, 5);
552
553     for (i = 0; i < 10; i++) {
554         lpc[i] *= bandwidth_expansion_coeff;
555         bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
556     }
557 }
558
559 /**
560  * Interpolate LSP frequencies and compute LPC coefficients
561  * for a given bitrate & pitch subframe.
562  *
563  * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
564  *
565  * @param q the context
566  * @param curr_lspf LSP frequencies vector of the current frame
567  * @param lpc float vector for the resulting LPC
568  * @param subframe_num frame number in decoded stream
569  */
570 static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
571                             float *lpc, const int subframe_num)
572 {
573     float interpolated_lspf[10];
574     float weight;
575
576     if(q->bitrate >= RATE_QUARTER)
577         weight = 0.25 * (subframe_num + 1);
578     else if(q->bitrate == RATE_OCTAVE && !subframe_num)
579         weight = 0.625;
580     else
581         weight = 1.0;
582
583     if (weight != 1.0) {
584         ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
585                                 weight, 1.0 - weight, 10);
586         lspf2lpc(interpolated_lspf, lpc);
587     }else if(q->bitrate >= RATE_QUARTER ||
588              (q->bitrate == I_F_Q && !subframe_num))
589         lspf2lpc(curr_lspf, lpc);
590     else if(q->bitrate == SILENCE && !subframe_num)
591         lspf2lpc(q->prev_lspf, lpc);
592 }
593
594 static qcelp_packet_rate buf_size2bitrate(const int buf_size)
595 {
596     switch (buf_size) {
597         case 35: return RATE_FULL;
598         case 17: return RATE_HALF;
599         case  8: return RATE_QUARTER;
600         case  4: return RATE_OCTAVE;
601         case  1: return SILENCE;
602     }
603
604     return I_F_Q;
605 }
606
607 /**
608  * Determine the bitrate from the frame size and/or the first byte of the frame.
609  *
610  * @param avctx the AV codec context
611  * @param buf_size length of the buffer
612  * @param buf the bufffer
613  *
614  * @return the bitrate on success,
615  *         I_F_Q  if the bitrate cannot be satisfactorily determined
616  *
617  * TIA/EIA/IS-733 2.4.8.7.1
618  */
619 static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx, const int buf_size,
620                              const uint8_t **buf)
621 {
622     qcelp_packet_rate bitrate;
623
624     if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
625         if (bitrate > **buf) {
626             QCELPContext *q = avctx->priv_data;
627             if (!q->warned_buf_mismatch_bitrate) {
628             av_log(avctx, AV_LOG_WARNING,
629                    "Claimed bitrate and buffer size mismatch.\n");
630                 q->warned_buf_mismatch_bitrate = 1;
631             }
632             bitrate = **buf;
633         } else if (bitrate < **buf) {
634             av_log(avctx, AV_LOG_ERROR,
635                    "Buffer is too small for the claimed bitrate.\n");
636             return I_F_Q;
637         }
638         (*buf)++;
639     } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
640         av_log(avctx, AV_LOG_WARNING,
641                "Bitrate byte is missing, guessing the bitrate from packet size.\n");
642     }else
643         return I_F_Q;
644
645     if (bitrate == SILENCE) {
646         //FIXME: Remove experimental warning when tested with samples.
647         av_log_ask_for_sample(avctx, "'Blank frame handling is experimental.");
648     }
649     return bitrate;
650 }
651
652 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
653                                             const char *message)
654 {
655     av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n", avctx->frame_number,
656            message);
657 }
658
659 static void postfilter(QCELPContext *q, float *samples, float *lpc)
660 {
661     static const float pow_0_775[10] = {
662         0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
663         0.216676, 0.167924, 0.130141, 0.100859, 0.078166
664     }, pow_0_625[10] = {
665         0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
666         0.059605, 0.037253, 0.023283, 0.014552, 0.009095
667     };
668     float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
669     int n;
670
671     for (n = 0; n < 10; n++) {
672         lpc_s[n] = lpc[n] * pow_0_625[n];
673         lpc_p[n] = lpc[n] * pow_0_775[n];
674     }
675
676     ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
677                                       q->formant_mem + 10, 160, 10);
678     memcpy(pole_out, q->postfilter_synth_mem,       sizeof(float) * 10);
679     ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
680     memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
681
682     ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
683
684     ff_adaptive_gain_control(samples, pole_out + 10,
685         ff_dot_productf(q->formant_mem + 10, q->formant_mem + 10, 160),
686         160, 0.9375, &q->postfilter_agc_mem);
687 }
688
689 static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
690                               int *got_frame_ptr, AVPacket *avpkt)
691 {
692     const uint8_t *buf = avpkt->data;
693     int buf_size = avpkt->size;
694     QCELPContext *q = avctx->priv_data;
695     float *outbuffer;
696     int   i, ret;
697     float quantized_lspf[10], lpc[10];
698     float gain[16];
699     float *formant_mem;
700
701     /* get output buffer */
702     q->avframe.nb_samples = 160;
703     if ((ret = avctx->get_buffer(avctx, &q->avframe)) < 0) {
704         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
705         return ret;
706     }
707     outbuffer = (float *)q->avframe.data[0];
708
709     if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
710         warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
711         goto erasure;
712     }
713
714     if(q->bitrate == RATE_OCTAVE &&
715        (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
716         warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
717         goto erasure;
718     }
719
720     if (q->bitrate > SILENCE) {
721         const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
722         const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate]
723                                        + qcelp_unpacking_bitmaps_lengths[q->bitrate];
724         uint8_t           *unpacked_data = (uint8_t *)&q->frame;
725
726         init_get_bits(&q->gb, buf, 8*buf_size);
727
728         memset(&q->frame, 0, sizeof(QCELPFrame));
729
730         for(; bitmaps < bitmaps_end; bitmaps++)
731             unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
732
733         // Check for erasures/blanks on rates 1, 1/4 and 1/8.
734         if (q->frame.reserved) {
735             warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
736             goto erasure;
737         }
738         if(q->bitrate == RATE_QUARTER &&
739            codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
740             warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
741             goto erasure;
742         }
743
744         if (q->bitrate >= RATE_HALF) {
745             for (i = 0; i < 4; i++) {
746                 if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
747                     warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
748                     goto erasure;
749                 }
750             }
751         }
752     }
753
754     decode_gain_and_index(q, gain);
755     compute_svector(q, gain, outbuffer);
756
757     if (decode_lspf(q, quantized_lspf) < 0) {
758         warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
759         goto erasure;
760     }
761
762
763     apply_pitch_filters(q, outbuffer);
764
765     if (q->bitrate == I_F_Q) {
766 erasure:
767         q->bitrate = I_F_Q;
768         q->erasure_count++;
769         decode_gain_and_index(q, gain);
770         compute_svector(q, gain, outbuffer);
771         decode_lspf(q, quantized_lspf);
772         apply_pitch_filters(q, outbuffer);
773     }else
774         q->erasure_count = 0;
775
776     formant_mem = q->formant_mem + 10;
777     for (i = 0; i < 4; i++) {
778         interpolate_lpc(q, quantized_lspf, lpc, i);
779         ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40,
780                                      10);
781         formant_mem += 40;
782     }
783
784     // postfilter, as per TIA/EIA/IS-733 2.4.8.6
785     postfilter(q, outbuffer, lpc);
786
787     memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
788
789     memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
790     q->prev_bitrate = q->bitrate;
791
792     *got_frame_ptr   = 1;
793     *(AVFrame *)data = q->avframe;
794
795     return buf_size;
796 }
797
798 AVCodec ff_qcelp_decoder =
799 {
800     .name   = "qcelp",
801     .type   = AVMEDIA_TYPE_AUDIO,
802     .id     = CODEC_ID_QCELP,
803     .init   = qcelp_decode_init,
804     .decode = qcelp_decode_frame,
805     .capabilities = CODEC_CAP_DR1,
806     .priv_data_size = sizeof(QCELPContext),
807     .long_name = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
808 };