]> git.sesse.net Git - ffmpeg/blob - libavcodec/ratecontrol.c
7c0afa0d15a34341c67ce7168116c0834c7c9599
[ffmpeg] / libavcodec / ratecontrol.c
1 /*
2  * Rate control for video encoders
3  *
4  * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 /**
24  * @file libavcodec/ratecontrol.c
25  * Rate control for video encoders.
26  */
27
28 #include "avcodec.h"
29 #include "dsputil.h"
30 #include "ratecontrol.h"
31 #include "mpegvideo.h"
32 #include "eval.h"
33
34 #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
35 #include <assert.h>
36
37 #ifndef M_E
38 #define M_E 2.718281828
39 #endif
40
41 static int init_pass2(MpegEncContext *s);
42 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
43
44 void ff_write_pass1_stats(MpegEncContext *s){
45     snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
46             s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
47             s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
48             s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
49 }
50
51 static inline double qp2bits(RateControlEntry *rce, double qp){
52     if(qp<=0.0){
53         av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
54     }
55     return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
56 }
57
58 static inline double bits2qp(RateControlEntry *rce, double bits){
59     if(bits<0.9){
60         av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
61     }
62     return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
63 }
64
65 int ff_rate_control_init(MpegEncContext *s)
66 {
67     RateControlContext *rcc= &s->rc_context;
68     int i;
69     const char *error = NULL;
70     static const char * const const_names[]={
71         "PI",
72         "E",
73         "iTex",
74         "pTex",
75         "tex",
76         "mv",
77         "fCode",
78         "iCount",
79         "mcVar",
80         "var",
81         "isI",
82         "isP",
83         "isB",
84         "avgQP",
85         "qComp",
86 /*        "lastIQP",
87         "lastPQP",
88         "lastBQP",
89         "nextNonBQP",*/
90         "avgIITex",
91         "avgPITex",
92         "avgPPTex",
93         "avgBPTex",
94         "avgTex",
95         NULL
96     };
97     static double (* const func1[])(void *, double)={
98         (void *)bits2qp,
99         (void *)qp2bits,
100         NULL
101     };
102     static const char * const func1_names[]={
103         "bits2qp",
104         "qp2bits",
105         NULL
106     };
107     emms_c();
108
109     rcc->rc_eq_eval = ff_parse(s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1, func1_names, NULL, NULL, &error);
110     if (!rcc->rc_eq_eval) {
111         av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
112         return -1;
113     }
114
115     for(i=0; i<5; i++){
116         rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
117         rcc->pred[i].count= 1.0;
118
119         rcc->pred[i].decay= 0.4;
120         rcc->i_cplx_sum [i]=
121         rcc->p_cplx_sum [i]=
122         rcc->mv_bits_sum[i]=
123         rcc->qscale_sum [i]=
124         rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
125         rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
126     }
127     rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
128
129     if(s->flags&CODEC_FLAG_PASS2){
130         int i;
131         char *p;
132
133         /* find number of pics */
134         p= s->avctx->stats_in;
135         for(i=-1; p; i++){
136             p= strchr(p+1, ';');
137         }
138         i+= s->max_b_frames;
139         if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
140             return -1;
141         rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
142         rcc->num_entries= i;
143
144         /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
145         for(i=0; i<rcc->num_entries; i++){
146             RateControlEntry *rce= &rcc->entry[i];
147             rce->pict_type= rce->new_pict_type=FF_P_TYPE;
148             rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
149             rce->misc_bits= s->mb_num + 10;
150             rce->mb_var_sum= s->mb_num*100;
151         }
152
153         /* read stats */
154         p= s->avctx->stats_in;
155         for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
156             RateControlEntry *rce;
157             int picture_number;
158             int e;
159             char *next;
160
161             next= strchr(p, ';');
162             if(next){
163                 (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
164                 next++;
165             }
166             e= sscanf(p, " in:%d ", &picture_number);
167
168             assert(picture_number >= 0);
169             assert(picture_number < rcc->num_entries);
170             rce= &rcc->entry[picture_number];
171
172             e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
173                    &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
174                    &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
175             if(e!=14){
176                 av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
177                 return -1;
178             }
179
180             p= next;
181         }
182
183         if(init_pass2(s) < 0) return -1;
184
185         //FIXME maybe move to end
186         if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
187 #if CONFIG_LIBXVID
188             return ff_xvid_rate_control_init(s);
189 #else
190             av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
191             return -1;
192 #endif
193         }
194     }
195
196     if(!(s->flags&CODEC_FLAG_PASS2)){
197
198         rcc->short_term_qsum=0.001;
199         rcc->short_term_qcount=0.001;
200
201         rcc->pass1_rc_eq_output_sum= 0.001;
202         rcc->pass1_wanted_bits=0.001;
203
204         if(s->avctx->qblur > 1.0){
205             av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
206             return -1;
207         }
208         /* init stuff with the user specified complexity */
209         if(s->avctx->rc_initial_cplx){
210             for(i=0; i<60*30; i++){
211                 double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
212                 RateControlEntry rce;
213                 double q;
214
215                 if     (i%((s->gop_size+3)/4)==0) rce.pict_type= FF_I_TYPE;
216                 else if(i%(s->max_b_frames+1))    rce.pict_type= FF_B_TYPE;
217                 else                              rce.pict_type= FF_P_TYPE;
218
219                 rce.new_pict_type= rce.pict_type;
220                 rce.mc_mb_var_sum= bits*s->mb_num/100000;
221                 rce.mb_var_sum   = s->mb_num;
222                 rce.qscale   = FF_QP2LAMBDA * 2;
223                 rce.f_code   = 2;
224                 rce.b_code   = 1;
225                 rce.misc_bits= 1;
226
227                 if(s->pict_type== FF_I_TYPE){
228                     rce.i_count   = s->mb_num;
229                     rce.i_tex_bits= bits;
230                     rce.p_tex_bits= 0;
231                     rce.mv_bits= 0;
232                 }else{
233                     rce.i_count   = 0; //FIXME we do know this approx
234                     rce.i_tex_bits= 0;
235                     rce.p_tex_bits= bits*0.9;
236                     rce.mv_bits= bits*0.1;
237                 }
238                 rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
239                 rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
240                 rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
241                 rcc->frame_count[rce.pict_type] ++;
242
243                 bits= rce.i_tex_bits + rce.p_tex_bits;
244
245                 q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
246                 rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
247             }
248         }
249
250     }
251
252     return 0;
253 }
254
255 void ff_rate_control_uninit(MpegEncContext *s)
256 {
257     RateControlContext *rcc= &s->rc_context;
258     emms_c();
259
260     ff_eval_free(rcc->rc_eq_eval);
261     av_freep(&rcc->entry);
262
263 #if CONFIG_LIBXVID
264     if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
265         ff_xvid_rate_control_uninit(s);
266 #endif
267 }
268
269 int ff_vbv_update(MpegEncContext *s, int frame_size){
270     RateControlContext *rcc= &s->rc_context;
271     const double fps= 1/av_q2d(s->avctx->time_base);
272     const int buffer_size= s->avctx->rc_buffer_size;
273     const double min_rate= s->avctx->rc_min_rate/fps;
274     const double max_rate= s->avctx->rc_max_rate/fps;
275
276 //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
277     if(buffer_size){
278         int left;
279
280         rcc->buffer_index-= frame_size;
281         if(rcc->buffer_index < 0){
282             av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
283             rcc->buffer_index= 0;
284         }
285
286         left= buffer_size - rcc->buffer_index - 1;
287         rcc->buffer_index += av_clip(left, min_rate, max_rate);
288
289         if(rcc->buffer_index > buffer_size){
290             int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
291
292             if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
293                 stuffing=4;
294             rcc->buffer_index -= 8*stuffing;
295
296             if(s->avctx->debug & FF_DEBUG_RC)
297                 av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
298
299             return stuffing;
300         }
301     }
302     return 0;
303 }
304
305 /**
306  * modifies the bitrate curve from pass1 for one frame
307  */
308 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
309     RateControlContext *rcc= &s->rc_context;
310     AVCodecContext *a= s->avctx;
311     double q, bits;
312     const int pict_type= rce->new_pict_type;
313     const double mb_num= s->mb_num;
314     int i;
315
316     double const_values[]={
317         M_PI,
318         M_E,
319         rce->i_tex_bits*rce->qscale,
320         rce->p_tex_bits*rce->qscale,
321         (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
322         rce->mv_bits/mb_num,
323         rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
324         rce->i_count/mb_num,
325         rce->mc_mb_var_sum/mb_num,
326         rce->mb_var_sum/mb_num,
327         rce->pict_type == FF_I_TYPE,
328         rce->pict_type == FF_P_TYPE,
329         rce->pict_type == FF_B_TYPE,
330         rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
331         a->qcompress,
332 /*        rcc->last_qscale_for[FF_I_TYPE],
333         rcc->last_qscale_for[FF_P_TYPE],
334         rcc->last_qscale_for[FF_B_TYPE],
335         rcc->next_non_b_qscale,*/
336         rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE],
337         rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
338         rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
339         rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE],
340         (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
341         0
342     };
343
344     bits= ff_parse_eval(rcc->rc_eq_eval, const_values, rce);
345     if (isnan(bits)) {
346         av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
347         return -1;
348     }
349
350     rcc->pass1_rc_eq_output_sum+= bits;
351     bits*=rate_factor;
352     if(bits<0.0) bits=0.0;
353     bits+= 1.0; //avoid 1/0 issues
354
355     /* user override */
356     for(i=0; i<s->avctx->rc_override_count; i++){
357         RcOverride *rco= s->avctx->rc_override;
358         if(rco[i].start_frame > frame_num) continue;
359         if(rco[i].end_frame   < frame_num) continue;
360
361         if(rco[i].qscale)
362             bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
363         else
364             bits*= rco[i].quality_factor;
365     }
366
367     q= bits2qp(rce, bits);
368
369     /* I/B difference */
370     if     (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0)
371         q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
372     else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0)
373         q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
374     if(q<1) q=1;
375
376     return q;
377 }
378
379 static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
380     RateControlContext *rcc= &s->rc_context;
381     AVCodecContext *a= s->avctx;
382     const int pict_type= rce->new_pict_type;
383     const double last_p_q    = rcc->last_qscale_for[FF_P_TYPE];
384     const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
385
386     if     (pict_type==FF_I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==FF_P_TYPE))
387         q= last_p_q    *FFABS(a->i_quant_factor) + a->i_quant_offset;
388     else if(pict_type==FF_B_TYPE && a->b_quant_factor>0.0)
389         q= last_non_b_q*    a->b_quant_factor  + a->b_quant_offset;
390     if(q<1) q=1;
391
392     /* last qscale / qdiff stuff */
393     if(rcc->last_non_b_pict_type==pict_type || pict_type!=FF_I_TYPE){
394         double last_q= rcc->last_qscale_for[pict_type];
395         const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
396
397         if     (q > last_q + maxdiff) q= last_q + maxdiff;
398         else if(q < last_q - maxdiff) q= last_q - maxdiff;
399     }
400
401     rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
402
403     if(pict_type!=FF_B_TYPE)
404         rcc->last_non_b_pict_type= pict_type;
405
406     return q;
407 }
408
409 /**
410  * gets the qmin & qmax for pict_type
411  */
412 static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
413     int qmin= s->avctx->lmin;
414     int qmax= s->avctx->lmax;
415
416     assert(qmin <= qmax);
417
418     if(pict_type==FF_B_TYPE){
419         qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
420         qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
421     }else if(pict_type==FF_I_TYPE){
422         qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
423         qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
424     }
425
426     qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
427     qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
428
429     if(qmax<qmin) qmax= qmin;
430
431     *qmin_ret= qmin;
432     *qmax_ret= qmax;
433 }
434
435 static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
436     RateControlContext *rcc= &s->rc_context;
437     int qmin, qmax;
438     double bits;
439     const int pict_type= rce->new_pict_type;
440     const double buffer_size= s->avctx->rc_buffer_size;
441     const double fps= 1/av_q2d(s->avctx->time_base);
442     const double min_rate= s->avctx->rc_min_rate / fps;
443     const double max_rate= s->avctx->rc_max_rate / fps;
444
445     get_qminmax(&qmin, &qmax, s, pict_type);
446
447     /* modulation */
448     if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE)
449         q*= s->avctx->rc_qmod_amp;
450
451     bits= qp2bits(rce, q);
452 //printf("q:%f\n", q);
453     /* buffer overflow/underflow protection */
454     if(buffer_size){
455         double expected_size= rcc->buffer_index;
456         double q_limit;
457
458         if(min_rate){
459             double d= 2*(buffer_size - expected_size)/buffer_size;
460             if(d>1.0) d=1.0;
461             else if(d<0.0001) d=0.0001;
462             q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
463
464             q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
465             if(q > q_limit){
466                 if(s->avctx->debug&FF_DEBUG_RC){
467                     av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
468                 }
469                 q= q_limit;
470             }
471         }
472
473         if(max_rate){
474             double d= 2*expected_size/buffer_size;
475             if(d>1.0) d=1.0;
476             else if(d<0.0001) d=0.0001;
477             q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
478
479             q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
480             if(q < q_limit){
481                 if(s->avctx->debug&FF_DEBUG_RC){
482                     av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
483                 }
484                 q= q_limit;
485             }
486         }
487     }
488 //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
489     if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
490         if     (q<qmin) q=qmin;
491         else if(q>qmax) q=qmax;
492     }else{
493         double min2= log(qmin);
494         double max2= log(qmax);
495
496         q= log(q);
497         q= (q - min2)/(max2-min2) - 0.5;
498         q*= -4.0;
499         q= 1.0/(1.0 + exp(q));
500         q= q*(max2-min2) + min2;
501
502         q= exp(q);
503     }
504
505     return q;
506 }
507
508 //----------------------------------
509 // 1 Pass Code
510
511 static double predict_size(Predictor *p, double q, double var)
512 {
513      return p->coeff*var / (q*p->count);
514 }
515
516 /*
517 static double predict_qp(Predictor *p, double size, double var)
518 {
519 //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
520      return p->coeff*var / (size*p->count);
521 }
522 */
523
524 static void update_predictor(Predictor *p, double q, double var, double size)
525 {
526     double new_coeff= size*q / (var + 1);
527     if(var<10) return;
528
529     p->count*= p->decay;
530     p->coeff*= p->decay;
531     p->count++;
532     p->coeff+= new_coeff;
533 }
534
535 static void adaptive_quantization(MpegEncContext *s, double q){
536     int i;
537     const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
538     const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
539     const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
540     const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
541     const float p_masking = s->avctx->p_masking;
542     const float border_masking = s->avctx->border_masking;
543     float bits_sum= 0.0;
544     float cplx_sum= 0.0;
545     float cplx_tab[s->mb_num];
546     float bits_tab[s->mb_num];
547     const int qmin= s->avctx->mb_lmin;
548     const int qmax= s->avctx->mb_lmax;
549     Picture * const pic= &s->current_picture;
550     const int mb_width = s->mb_width;
551     const int mb_height = s->mb_height;
552
553     for(i=0; i<s->mb_num; i++){
554         const int mb_xy= s->mb_index2xy[i];
555         float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
556         float spat_cplx= sqrt(pic->mb_var[mb_xy]);
557         const int lumi= pic->mb_mean[mb_xy];
558         float bits, cplx, factor;
559         int mb_x = mb_xy % s->mb_stride;
560         int mb_y = mb_xy / s->mb_stride;
561         int mb_distance;
562         float mb_factor = 0.0;
563 #if 0
564         if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
565         if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
566 #endif
567         if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
568         if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
569
570         if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
571             cplx= spat_cplx;
572             factor= 1.0 + p_masking;
573         }else{
574             cplx= temp_cplx;
575             factor= pow(temp_cplx, - temp_cplx_masking);
576         }
577         factor*=pow(spat_cplx, - spatial_cplx_masking);
578
579         if(lumi>127)
580             factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
581         else
582             factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
583
584         if(mb_x < mb_width/5){
585             mb_distance = mb_width/5 - mb_x;
586             mb_factor = (float)mb_distance / (float)(mb_width/5);
587         }else if(mb_x > 4*mb_width/5){
588             mb_distance = mb_x - 4*mb_width/5;
589             mb_factor = (float)mb_distance / (float)(mb_width/5);
590         }
591         if(mb_y < mb_height/5){
592             mb_distance = mb_height/5 - mb_y;
593             mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
594         }else if(mb_y > 4*mb_height/5){
595             mb_distance = mb_y - 4*mb_height/5;
596             mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
597         }
598
599         factor*= 1.0 - border_masking*mb_factor;
600
601         if(factor<0.00001) factor= 0.00001;
602
603         bits= cplx*factor;
604         cplx_sum+= cplx;
605         bits_sum+= bits;
606         cplx_tab[i]= cplx;
607         bits_tab[i]= bits;
608     }
609
610     /* handle qmin/qmax clipping */
611     if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
612         float factor= bits_sum/cplx_sum;
613         for(i=0; i<s->mb_num; i++){
614             float newq= q*cplx_tab[i]/bits_tab[i];
615             newq*= factor;
616
617             if     (newq > qmax){
618                 bits_sum -= bits_tab[i];
619                 cplx_sum -= cplx_tab[i]*q/qmax;
620             }
621             else if(newq < qmin){
622                 bits_sum -= bits_tab[i];
623                 cplx_sum -= cplx_tab[i]*q/qmin;
624             }
625         }
626         if(bits_sum < 0.001) bits_sum= 0.001;
627         if(cplx_sum < 0.001) cplx_sum= 0.001;
628     }
629
630     for(i=0; i<s->mb_num; i++){
631         const int mb_xy= s->mb_index2xy[i];
632         float newq= q*cplx_tab[i]/bits_tab[i];
633         int intq;
634
635         if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
636             newq*= bits_sum/cplx_sum;
637         }
638
639         intq= (int)(newq + 0.5);
640
641         if     (intq > qmax) intq= qmax;
642         else if(intq < qmin) intq= qmin;
643 //if(i%s->mb_width==0) printf("\n");
644 //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
645         s->lambda_table[mb_xy]= intq;
646     }
647 }
648
649 void ff_get_2pass_fcode(MpegEncContext *s){
650     RateControlContext *rcc= &s->rc_context;
651     int picture_number= s->picture_number;
652     RateControlEntry *rce;
653
654     rce= &rcc->entry[picture_number];
655     s->f_code= rce->f_code;
656     s->b_code= rce->b_code;
657 }
658
659 //FIXME rd or at least approx for dquant
660
661 float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
662 {
663     float q;
664     int qmin, qmax;
665     float br_compensation;
666     double diff;
667     double short_term_q;
668     double fps;
669     int picture_number= s->picture_number;
670     int64_t wanted_bits;
671     RateControlContext *rcc= &s->rc_context;
672     AVCodecContext *a= s->avctx;
673     RateControlEntry local_rce, *rce;
674     double bits;
675     double rate_factor;
676     int var;
677     const int pict_type= s->pict_type;
678     Picture * const pic= &s->current_picture;
679     emms_c();
680
681 #if CONFIG_LIBXVID
682     if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
683         return ff_xvid_rate_estimate_qscale(s, dry_run);
684 #endif
685
686     get_qminmax(&qmin, &qmax, s, pict_type);
687
688     fps= 1/av_q2d(s->avctx->time_base);
689 //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
690         /* update predictors */
691     if(picture_number>2 && !dry_run){
692         const int last_var= s->last_pict_type == FF_I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
693         update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
694     }
695
696     if(s->flags&CODEC_FLAG_PASS2){
697         assert(picture_number>=0);
698         assert(picture_number<rcc->num_entries);
699         rce= &rcc->entry[picture_number];
700         wanted_bits= rce->expected_bits;
701     }else{
702         Picture *dts_pic;
703         rce= &local_rce;
704
705         //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
706         //but the reordering is simpler for now until h.264 b pyramid must be handeld
707         if(s->pict_type == FF_B_TYPE || s->low_delay)
708             dts_pic= s->current_picture_ptr;
709         else
710             dts_pic= s->last_picture_ptr;
711
712 //if(dts_pic)
713 //            av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
714
715         if(!dts_pic || dts_pic->pts == AV_NOPTS_VALUE)
716             wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
717         else
718             wanted_bits= (uint64_t)(s->bit_rate*(double)dts_pic->pts/fps);
719     }
720
721     diff= s->total_bits - wanted_bits;
722     br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
723     if(br_compensation<=0.0) br_compensation=0.001;
724
725     var= pict_type == FF_I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
726
727     short_term_q = 0; /* avoid warning */
728     if(s->flags&CODEC_FLAG_PASS2){
729         if(pict_type!=FF_I_TYPE)
730             assert(pict_type == rce->new_pict_type);
731
732         q= rce->new_qscale / br_compensation;
733 //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
734     }else{
735         rce->pict_type=
736         rce->new_pict_type= pict_type;
737         rce->mc_mb_var_sum= pic->mc_mb_var_sum;
738         rce->mb_var_sum   = pic->   mb_var_sum;
739         rce->qscale   = FF_QP2LAMBDA * 2;
740         rce->f_code   = s->f_code;
741         rce->b_code   = s->b_code;
742         rce->misc_bits= 1;
743
744         bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
745         if(pict_type== FF_I_TYPE){
746             rce->i_count   = s->mb_num;
747             rce->i_tex_bits= bits;
748             rce->p_tex_bits= 0;
749             rce->mv_bits= 0;
750         }else{
751             rce->i_count   = 0; //FIXME we do know this approx
752             rce->i_tex_bits= 0;
753             rce->p_tex_bits= bits*0.9;
754
755             rce->mv_bits= bits*0.1;
756         }
757         rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
758         rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
759         rcc->mv_bits_sum[pict_type] += rce->mv_bits;
760         rcc->frame_count[pict_type] ++;
761
762         bits= rce->i_tex_bits + rce->p_tex_bits;
763         rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
764
765         q= get_qscale(s, rce, rate_factor, picture_number);
766         if (q < 0)
767             return -1;
768
769         assert(q>0.0);
770 //printf("%f ", q);
771         q= get_diff_limited_q(s, rce, q);
772 //printf("%f ", q);
773         assert(q>0.0);
774
775         if(pict_type==FF_P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
776             rcc->short_term_qsum*=a->qblur;
777             rcc->short_term_qcount*=a->qblur;
778
779             rcc->short_term_qsum+= q;
780             rcc->short_term_qcount++;
781 //printf("%f ", q);
782             q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
783 //printf("%f ", q);
784         }
785         assert(q>0.0);
786
787         q= modify_qscale(s, rce, q, picture_number);
788
789         rcc->pass1_wanted_bits+= s->bit_rate/fps;
790
791         assert(q>0.0);
792     }
793
794     if(s->avctx->debug&FF_DEBUG_RC){
795         av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
796         av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
797         br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
798         );
799     }
800
801     if     (q<qmin) q=qmin;
802     else if(q>qmax) q=qmax;
803
804     if(s->adaptive_quant)
805         adaptive_quantization(s, q);
806     else
807         q= (int)(q + 0.5);
808
809     if(!dry_run){
810         rcc->last_qscale= q;
811         rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
812         rcc->last_mb_var_sum= pic->mb_var_sum;
813     }
814 #if 0
815 {
816     static int mvsum=0, texsum=0;
817     mvsum += s->mv_bits;
818     texsum += s->i_tex_bits + s->p_tex_bits;
819     printf("%d %d//\n\n", mvsum, texsum);
820 }
821 #endif
822     return q;
823 }
824
825 //----------------------------------------------
826 // 2-Pass code
827
828 static int init_pass2(MpegEncContext *s)
829 {
830     RateControlContext *rcc= &s->rc_context;
831     AVCodecContext *a= s->avctx;
832     int i, toobig;
833     double fps= 1/av_q2d(s->avctx->time_base);
834     double complexity[5]={0,0,0,0,0};   // aproximate bits at quant=1
835     uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
836     uint64_t all_const_bits;
837     uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
838     double rate_factor=0;
839     double step;
840     //int last_i_frame=-10000000;
841     const int filter_size= (int)(a->qblur*4) | 1;
842     double expected_bits;
843     double *qscale, *blurred_qscale, qscale_sum;
844
845     /* find complexity & const_bits & decide the pict_types */
846     for(i=0; i<rcc->num_entries; i++){
847         RateControlEntry *rce= &rcc->entry[i];
848
849         rce->new_pict_type= rce->pict_type;
850         rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
851         rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
852         rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
853         rcc->frame_count[rce->pict_type] ++;
854
855         complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
856         const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
857     }
858     all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE];
859
860     if(all_available_bits < all_const_bits){
861         av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
862         return -1;
863     }
864
865     qscale= av_malloc(sizeof(double)*rcc->num_entries);
866     blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
867     toobig = 0;
868
869     for(step=256*256; step>0.0000001; step*=0.5){
870         expected_bits=0;
871         rate_factor+= step;
872
873         rcc->buffer_index= s->avctx->rc_buffer_size/2;
874
875         /* find qscale */
876         for(i=0; i<rcc->num_entries; i++){
877             qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
878         }
879         assert(filter_size%2==1);
880
881         /* fixed I/B QP relative to P mode */
882         for(i=rcc->num_entries-1; i>=0; i--){
883             RateControlEntry *rce= &rcc->entry[i];
884
885             qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
886         }
887
888         /* smooth curve */
889         for(i=0; i<rcc->num_entries; i++){
890             RateControlEntry *rce= &rcc->entry[i];
891             const int pict_type= rce->new_pict_type;
892             int j;
893             double q=0.0, sum=0.0;
894
895             for(j=0; j<filter_size; j++){
896                 int index= i+j-filter_size/2;
897                 double d= index-i;
898                 double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
899
900                 if(index < 0 || index >= rcc->num_entries) continue;
901                 if(pict_type != rcc->entry[index].new_pict_type) continue;
902                 q+= qscale[index] * coeff;
903                 sum+= coeff;
904             }
905             blurred_qscale[i]= q/sum;
906         }
907
908         /* find expected bits */
909         for(i=0; i<rcc->num_entries; i++){
910             RateControlEntry *rce= &rcc->entry[i];
911             double bits;
912             rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
913             bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
914 //printf("%d %f\n", rce->new_bits, blurred_qscale[i]);
915             bits += 8*ff_vbv_update(s, bits);
916
917             rce->expected_bits= expected_bits;
918             expected_bits += bits;
919         }
920
921         /*
922         av_log(s->avctx, AV_LOG_INFO,
923             "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
924             expected_bits, (int)all_available_bits, rate_factor);
925         */
926         if(expected_bits > all_available_bits) {
927             rate_factor-= step;
928             ++toobig;
929         }
930     }
931     av_free(qscale);
932     av_free(blurred_qscale);
933
934     /* check bitrate calculations and print info */
935     qscale_sum = 0.0;
936     for(i=0; i<rcc->num_entries; i++){
937         /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f  qp = %.3f\n",
938             i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
939         qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
940     }
941     assert(toobig <= 40);
942     av_log(s->avctx, AV_LOG_DEBUG,
943         "[lavc rc] requested bitrate: %d bps  expected bitrate: %d bps\n",
944         s->bit_rate,
945         (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
946     av_log(s->avctx, AV_LOG_DEBUG,
947         "[lavc rc] estimated target average qp: %.3f\n",
948         (float)qscale_sum / rcc->num_entries);
949     if (toobig == 0) {
950         av_log(s->avctx, AV_LOG_INFO,
951             "[lavc rc] Using all of requested bitrate is not "
952             "necessary for this video with these parameters.\n");
953     } else if (toobig == 40) {
954         av_log(s->avctx, AV_LOG_ERROR,
955             "[lavc rc] Error: bitrate too low for this video "
956             "with these parameters.\n");
957         return -1;
958     } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
959         av_log(s->avctx, AV_LOG_ERROR,
960             "[lavc rc] Error: 2pass curve failed to converge\n");
961         return -1;
962     }
963
964     return 0;
965 }