2 * Rate control for video encoders
4 * Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include "mpegvideo.h"
26 #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
30 #define M_PI 3.14159265358979323846
34 #define M_E 2.718281828
37 static int init_pass2(MpegEncContext *s);
38 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
40 void ff_write_pass1_stats(MpegEncContext *s){
41 sprintf(s->avctx->stats_out, "in:%d out:%d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
42 s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type,
43 s->frame_qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
44 s->f_code, s->b_code, s->mc_mb_var_sum, s->mb_var_sum, s->i_count);
47 int ff_rate_control_init(MpegEncContext *s)
49 RateControlContext *rcc= &s->rc_context;
54 rcc->pred[i].coeff= 7.0;
55 rcc->pred[i].count= 1.0;
57 rcc->pred[i].decay= 0.4;
62 rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
63 rcc->last_qscale_for[i]=5;
65 rcc->buffer_index= s->avctx->rc_buffer_size/2;
67 if(s->flags&CODEC_FLAG_PASS2){
71 /* find number of pics */
72 p= s->avctx->stats_in;
77 rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
80 /* init all to skiped p frames (with b frames we might have a not encoded frame at the end FIXME) */
81 for(i=0; i<rcc->num_entries; i++){
82 RateControlEntry *rce= &rcc->entry[i];
83 rce->pict_type= rce->new_pict_type=P_TYPE;
84 rce->qscale= rce->new_qscale=2;
85 rce->misc_bits= s->mb_num + 10;
86 rce->mb_var_sum= s->mb_num*100;
90 p= s->avctx->stats_in;
91 for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
92 RateControlEntry *rce;
99 (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
102 e= sscanf(p, " in:%d ", &picture_number);
104 assert(picture_number >= 0);
105 assert(picture_number < rcc->num_entries);
106 rce= &rcc->entry[picture_number];
108 e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
109 &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
110 &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
112 fprintf(stderr, "statistics are damaged at line %d, parser out=%d\n", i, e);
118 if(init_pass2(s) < 0) return -1;
121 if(!(s->flags&CODEC_FLAG_PASS2)){
123 rcc->short_term_qsum=0.001;
124 rcc->short_term_qcount=0.001;
126 rcc->pass1_rc_eq_output_sum= 0.001;
127 rcc->pass1_wanted_bits=0.001;
129 /* init stuff with the user specified complexity */
130 if(s->avctx->rc_initial_cplx){
131 for(i=0; i<60*30; i++){
132 double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
133 RateControlEntry rce;
136 if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
137 else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
138 else rce.pict_type= P_TYPE;
140 rce.new_pict_type= rce.pict_type;
141 rce.mc_mb_var_sum= bits*s->mb_num/100000;
142 rce.mb_var_sum = s->mb_num;
148 if(s->pict_type== I_TYPE){
149 rce.i_count = s->mb_num;
150 rce.i_tex_bits= bits;
154 rce.i_count = 0; //FIXME we do know this approx
156 rce.p_tex_bits= bits*0.9;
157 rce.mv_bits= bits*0.1;
159 rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
160 rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
161 rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
162 rcc->frame_count[rce.pict_type] ++;
164 bits= rce.i_tex_bits + rce.p_tex_bits;
166 q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
167 rcc->pass1_wanted_bits+= s->bit_rate/(s->frame_rate / (double)FRAME_RATE_BASE);
176 void ff_rate_control_uninit(MpegEncContext *s)
178 RateControlContext *rcc= &s->rc_context;
181 av_freep(&rcc->entry);
184 static inline double qp2bits(RateControlEntry *rce, double qp){
186 fprintf(stderr, "qp<=0.0\n");
188 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
191 static inline double bits2qp(RateControlEntry *rce, double bits){
193 fprintf(stderr, "bits<0.9\n");
195 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
198 static void update_rc_buffer(MpegEncContext *s, int frame_size){
199 RateControlContext *rcc= &s->rc_context;
200 const double fps= (double)s->frame_rate / FRAME_RATE_BASE;
201 const double buffer_size= s->avctx->rc_buffer_size;
202 const double min_rate= s->avctx->rc_min_rate/fps;
203 const double max_rate= s->avctx->rc_max_rate/fps;
206 rcc->buffer_index-= frame_size;
207 if(rcc->buffer_index < buffer_size/2 /*FIXME /2 */ || min_rate==0){
208 rcc->buffer_index+= max_rate;
209 if(rcc->buffer_index >= buffer_size)
210 rcc->buffer_index= buffer_size-1;
212 rcc->buffer_index+= min_rate;
215 if(rcc->buffer_index < 0)
216 fprintf(stderr, "rc buffer underflow\n");
217 if(rcc->buffer_index >= s->avctx->rc_buffer_size)
218 fprintf(stderr, "rc buffer overflow\n");
223 * modifies the bitrate curve from pass1 for one frame
225 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
226 RateControlContext *rcc= &s->rc_context;
228 const int pict_type= rce->new_pict_type;
229 const double mb_num= s->mb_num;
232 double const_values[]={
235 rce->i_tex_bits*rce->qscale,
236 rce->p_tex_bits*rce->qscale,
237 (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
239 rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
241 rce->mc_mb_var_sum/mb_num,
242 rce->mb_var_sum/mb_num,
243 rce->pict_type == I_TYPE,
244 rce->pict_type == P_TYPE,
245 rce->pict_type == B_TYPE,
246 rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
248 /* rcc->last_qscale_for[I_TYPE],
249 rcc->last_qscale_for[P_TYPE],
250 rcc->last_qscale_for[B_TYPE],
251 rcc->next_non_b_qscale,*/
252 rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
253 rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
254 rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
255 rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
256 (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
259 char *const_names[]={
286 static double (*func1[])(void *, double)={
291 char *func1_names[]={
297 bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
299 rcc->pass1_rc_eq_output_sum+= bits;
301 if(bits<0.0) bits=0.0;
302 bits+= 1.0; //avoid 1/0 issues
305 for(i=0; i<s->avctx->rc_override_count; i++){
306 RcOverride *rco= s->avctx->rc_override;
307 if(rco[i].start_frame > frame_num) continue;
308 if(rco[i].end_frame < frame_num) continue;
311 bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
313 bits*= rco[i].quality_factor;
316 q= bits2qp(rce, bits);
319 if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
320 q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
321 else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
322 q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
327 static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
328 RateControlContext *rcc= &s->rc_context;
329 AVCodecContext *a= s->avctx;
330 const int pict_type= rce->new_pict_type;
331 const double last_p_q = rcc->last_qscale_for[P_TYPE];
332 const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
334 if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
335 q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
336 else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
337 q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
339 /* last qscale / qdiff stuff */
340 if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
341 double last_q= rcc->last_qscale_for[pict_type];
342 if (q > last_q + a->max_qdiff) q= last_q + a->max_qdiff;
343 else if(q < last_q - a->max_qdiff) q= last_q - a->max_qdiff;
346 rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
348 if(pict_type!=B_TYPE)
349 rcc->last_non_b_pict_type= pict_type;
355 * gets the qmin & qmax for pict_type
357 static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
361 if(pict_type==B_TYPE){
362 qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
363 qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
364 }else if(pict_type==I_TYPE){
365 qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
366 qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
370 if(qmin==1 && s->qmin>1) qmin=2; //avoid qmin=1 unless the user wants qmin=1
372 if(qmin<3 && s->max_qcoeff<=128 && pict_type==I_TYPE) qmin=3; //reduce cliping problems
375 if(qmax<=qmin) qmax= qmin= (qmax+qmin+1)>>1;
381 static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
382 RateControlContext *rcc= &s->rc_context;
385 const int pict_type= rce->new_pict_type;
386 const double buffer_size= s->avctx->rc_buffer_size;
387 const double min_rate= s->avctx->rc_min_rate;
388 const double max_rate= s->avctx->rc_max_rate;
390 get_qminmax(&qmin, &qmax, s, pict_type);
393 if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
394 q*= s->avctx->rc_qmod_amp;
396 bits= qp2bits(rce, q);
397 //printf("q:%f\n", q);
398 /* buffer overflow/underflow protection */
400 double expected_size= rcc->buffer_index;
403 double d= 2*(buffer_size - expected_size)/buffer_size;
405 else if(d<0.0001) d=0.0001;
406 q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
408 q= MIN(q, bits2qp(rce, MAX((min_rate - buffer_size + rcc->buffer_index)*2, 1)));
412 double d= 2*expected_size/buffer_size;
414 else if(d<0.0001) d=0.0001;
415 q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
417 q= MAX(q, bits2qp(rce, MAX(rcc->buffer_index/2, 1)));
420 //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
421 if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
423 else if(q>qmax) q=qmax;
425 double min2= log(qmin);
426 double max2= log(qmax);
429 q= (q - min2)/(max2-min2) - 0.5;
431 q= 1.0/(1.0 + exp(q));
432 q= q*(max2-min2) + min2;
440 //----------------------------------
443 static double predict_size(Predictor *p, double q, double var)
445 return p->coeff*var / (q*p->count);
448 static double predict_qp(Predictor *p, double size, double var)
450 //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
451 return p->coeff*var / (size*p->count);
454 static void update_predictor(Predictor *p, double q, double var, double size)
456 double new_coeff= size*q / (var + 1);
462 p->coeff+= new_coeff;
465 static void adaptive_quantization(MpegEncContext *s, double q){
467 const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
468 const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
469 const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
470 const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
471 const float p_masking = s->avctx->p_masking;
474 float cplx_tab[s->mb_num];
475 float bits_tab[s->mb_num];
476 const int qmin= 2; //s->avctx->mb_qmin;
477 const int qmax= 31; //s->avctx->mb_qmax;
479 for(i=0; i<s->mb_num; i++){
480 float temp_cplx= sqrt(s->mc_mb_var[i]);
481 float spat_cplx= sqrt(s->mb_var[i]);
482 const int lumi= s->mb_mean[i];
483 float bits, cplx, factor;
485 if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
486 if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
488 if((s->mb_type[i]&MB_TYPE_INTRA)){//FIXME hq mode
490 factor= 1.0 + p_masking;
493 factor= pow(temp_cplx, - temp_cplx_masking);
495 factor*=pow(spat_cplx, - spatial_cplx_masking);
498 factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
500 factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
502 if(factor<0.00001) factor= 0.00001;
511 /* handle qmin/qmax cliping */
512 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
513 for(i=0; i<s->mb_num; i++){
514 float newq= q*cplx_tab[i]/bits_tab[i];
515 newq*= bits_sum/cplx_sum;
518 bits_sum -= bits_tab[i];
519 cplx_sum -= cplx_tab[i]*q/qmax;
521 else if(newq < qmin){
522 bits_sum -= bits_tab[i];
523 cplx_sum -= cplx_tab[i]*q/qmin;
528 for(i=0; i<s->mb_num; i++){
529 float newq= q*cplx_tab[i]/bits_tab[i];
532 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
533 newq*= bits_sum/cplx_sum;
536 if(i && ABS(s->qscale_table[i-1] - newq)<0.75)
537 intq= s->qscale_table[i-1];
539 intq= (int)(newq + 0.5);
541 if (intq > qmax) intq= qmax;
542 else if(intq < qmin) intq= qmin;
543 //if(i%s->mb_width==0) printf("\n");
544 //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
545 s->qscale_table[i]= intq;
549 float ff_rate_estimate_qscale(MpegEncContext *s)
553 float br_compensation;
557 int picture_number= s->picture_number;
559 RateControlContext *rcc= &s->rc_context;
560 RateControlEntry local_rce, *rce;
564 const int pict_type= s->pict_type;
567 get_qminmax(&qmin, &qmax, s, pict_type);
569 fps= (double)s->frame_rate / FRAME_RATE_BASE;
570 //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
571 /* update predictors */
572 if(picture_number>2){
573 const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
574 update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
577 if(s->flags&CODEC_FLAG_PASS2){
578 assert(picture_number>=0);
579 assert(picture_number<rcc->num_entries);
580 rce= &rcc->entry[picture_number];
581 wanted_bits= rce->expected_bits;
584 wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
587 diff= s->total_bits - wanted_bits;
588 br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
589 if(br_compensation<=0.0) br_compensation=0.001;
591 var= pict_type == I_TYPE ? s->mb_var_sum : s->mc_mb_var_sum;
593 if(s->flags&CODEC_FLAG_PASS2){
594 if(pict_type!=I_TYPE)
595 assert(pict_type == rce->new_pict_type);
597 q= rce->new_qscale / br_compensation;
598 //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
601 rce->new_pict_type= pict_type;
602 rce->mc_mb_var_sum= s->mc_mb_var_sum;
603 rce->mb_var_sum = s-> mb_var_sum;
605 rce->f_code = s->f_code;
606 rce->b_code = s->b_code;
610 update_rc_buffer(s, s->frame_bits);
612 bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
613 if(pict_type== I_TYPE){
614 rce->i_count = s->mb_num;
615 rce->i_tex_bits= bits;
619 rce->i_count = 0; //FIXME we do know this approx
621 rce->p_tex_bits= bits*0.9;
623 rce->mv_bits= bits*0.1;
625 rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
626 rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
627 rcc->mv_bits_sum[pict_type] += rce->mv_bits;
628 rcc->frame_count[pict_type] ++;
630 bits= rce->i_tex_bits + rce->p_tex_bits;
631 rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
633 q= get_qscale(s, rce, rate_factor, picture_number);
637 q= get_diff_limited_q(s, rce, q);
641 if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
642 rcc->short_term_qsum*=s->qblur;
643 rcc->short_term_qcount*=s->qblur;
645 rcc->short_term_qsum+= q;
646 rcc->short_term_qcount++;
648 q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
653 q= modify_qscale(s, rce, q, picture_number);
655 rcc->pass1_wanted_bits+= s->bit_rate/fps;
659 //printf("qmin:%d, qmax:%d, q:%f\n", qmin, qmax, q);
663 else if(q>qmax) q=qmax;
665 // printf("%f %d %d %d\n", q, picture_number, (int)wanted_bits, (int)s->total_bits);
667 //printf("%f %f %f\n", q, br_compensation, short_term_q);
669 //printf("q:%d diff:%d comp:%f st_q:%f last_size:%d type:%d\n", qscale, (int)diff, br_compensation,
670 // short_term_q, s->frame_bits, pict_type);
671 //printf("%d %d\n", s->bit_rate, (int)fps);
673 if(s->adaptive_quant)
674 adaptive_quantization(s, q);
679 rcc->last_mc_mb_var_sum= s->mc_mb_var_sum;
680 rcc->last_mb_var_sum= s->mb_var_sum;
684 //----------------------------------------------
687 static int init_pass2(MpegEncContext *s)
689 RateControlContext *rcc= &s->rc_context;
691 double fps= (double)s->frame_rate / FRAME_RATE_BASE;
692 double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
693 double avg_quantizer[5];
694 uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
695 uint64_t available_bits[5];
696 uint64_t all_const_bits;
697 uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
698 double rate_factor=0;
700 int last_i_frame=-10000000;
701 const int filter_size= (int)(s->qblur*4) | 1;
702 double expected_bits;
703 double *qscale, *blured_qscale;
705 /* find complexity & const_bits & decide the pict_types */
706 for(i=0; i<rcc->num_entries; i++){
707 RateControlEntry *rce= &rcc->entry[i];
709 if(s->b_frame_strategy==0 || s->max_b_frames==0){
710 rce->new_pict_type= rce->pict_type;
713 int next_non_b_type=P_TYPE;
715 switch(rce->pict_type){
717 if(i-last_i_frame>s->gop_size/2){ //FIXME this is not optimal
718 rce->new_pict_type= I_TYPE;
721 rce->new_pict_type= P_TYPE; // will be caught by the scene detection anyway
725 rce->new_pict_type= P_TYPE;
728 for(j=i+1; j<i+s->max_b_frames+2 && j<rcc->num_entries; j++){
729 if(rcc->entry[j].pict_type != B_TYPE){
730 next_non_b_type= rcc->entry[j].pict_type;
734 if(next_non_b_type==I_TYPE)
735 rce->new_pict_type= P_TYPE;
737 rce->new_pict_type= B_TYPE;
741 rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
742 rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
743 rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
744 rcc->frame_count[rce->pict_type] ++;
746 complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
747 const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
749 all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
751 if(all_available_bits < all_const_bits){
752 fprintf(stderr, "requested bitrate is to low\n");
756 /* find average quantizers */
757 avg_quantizer[P_TYPE]=0;
758 for(step=256*256; step>0.0000001; step*=0.5){
759 double expected_bits=0;
760 avg_quantizer[P_TYPE]+= step;
762 avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
763 avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
767 + complexity[I_TYPE]/avg_quantizer[I_TYPE]
768 + complexity[P_TYPE]/avg_quantizer[P_TYPE]
769 + complexity[B_TYPE]/avg_quantizer[B_TYPE];
771 if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
772 //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
774 //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
777 available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
779 //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
781 qscale= malloc(sizeof(double)*rcc->num_entries);
782 blured_qscale= malloc(sizeof(double)*rcc->num_entries);
784 for(step=256*256; step>0.0000001; step*=0.5){
788 rcc->buffer_index= s->avctx->rc_buffer_size/2;
791 for(i=0; i<rcc->num_entries; i++){
792 qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
794 assert(filter_size%2==1);
796 /* fixed I/B QP relative to P mode */
797 for(i=rcc->num_entries-1; i>=0; i--){
798 RateControlEntry *rce= &rcc->entry[i];
800 qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
804 for(i=0; i<rcc->num_entries; i++){
805 RateControlEntry *rce= &rcc->entry[i];
806 const int pict_type= rce->new_pict_type;
808 double q=0.0, sum=0.0;
810 for(j=0; j<filter_size; j++){
811 int index= i+j-filter_size/2;
813 double coeff= s->qblur==0 ? 1.0 : exp(-d*d/(s->qblur * s->qblur));
815 if(index < 0 || index >= rcc->num_entries) continue;
816 if(pict_type != rcc->entry[index].new_pict_type) continue;
817 q+= qscale[index] * coeff;
820 blured_qscale[i]= q/sum;
823 /* find expected bits */
824 for(i=0; i<rcc->num_entries; i++){
825 RateControlEntry *rce= &rcc->entry[i];
827 rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
828 bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
829 //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
830 update_rc_buffer(s, bits);
832 rce->expected_bits= expected_bits;
833 expected_bits += bits;
836 // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
837 if(expected_bits > all_available_bits) rate_factor-= step;
842 if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
843 fprintf(stderr, "Error: 2pass curve failed to converge\n");