]> git.sesse.net Git - ffmpeg/blob - libavcodec/snowenc.c
Merge commit '42eb9154a83e9a7aedb1168b2f1112af765cf2b5'
[ffmpeg] / libavcodec / snowenc.c
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "snow_dwt.h"
27 #include "snow.h"
28
29 #include "rangecoder.h"
30 #include "mathops.h"
31
32 #include "mpegvideo.h"
33 #include "h263.h"
34
35 static av_cold int encode_init(AVCodecContext *avctx)
36 {
37     SnowContext *s = avctx->priv_data;
38     int plane_index, ret;
39     int i;
40
41     if(avctx->prediction_method == DWT_97
42        && (avctx->flags & CODEC_FLAG_QSCALE)
43        && avctx->global_quality == 0){
44         av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
45         return -1;
46     }
47
48     s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
49
50     s->mv_scale       = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
51     s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
52
53     for(plane_index=0; plane_index<3; plane_index++){
54         s->plane[plane_index].diag_mc= 1;
55         s->plane[plane_index].htaps= 6;
56         s->plane[plane_index].hcoeff[0]=  40;
57         s->plane[plane_index].hcoeff[1]= -10;
58         s->plane[plane_index].hcoeff[2]=   2;
59         s->plane[plane_index].fast_mc= 1;
60     }
61
62     if ((ret = ff_snow_common_init(avctx)) < 0) {
63         ff_snow_common_end(avctx->priv_data);
64         return ret;
65     }
66     ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
67
68     ff_snow_alloc_blocks(s);
69
70     s->version=0;
71
72     s->m.avctx   = avctx;
73     s->m.flags   = avctx->flags;
74     s->m.bit_rate= avctx->bit_rate;
75
76     s->m.me.temp      =
77     s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
78     s->m.me.map       = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
79     s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
80     s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
81     if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.obmc_scratchpad)
82         return AVERROR(ENOMEM);
83
84     ff_h263_encode_init(&s->m); //mv_penalty
85
86     s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
87
88     if(avctx->flags&CODEC_FLAG_PASS1){
89         if(!avctx->stats_out)
90             avctx->stats_out = av_mallocz(256);
91
92         if (!avctx->stats_out)
93             return AVERROR(ENOMEM);
94     }
95     if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
96         if(ff_rate_control_init(&s->m) < 0)
97             return -1;
98     }
99     s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
100
101     switch(avctx->pix_fmt){
102     case AV_PIX_FMT_YUV444P:
103 //    case AV_PIX_FMT_YUV422P:
104     case AV_PIX_FMT_YUV420P:
105 //    case AV_PIX_FMT_YUV411P:
106     case AV_PIX_FMT_YUV410P:
107         s->nb_planes = 3;
108         s->colorspace_type= 0;
109         break;
110     case AV_PIX_FMT_GRAY8:
111         s->nb_planes = 1;
112         s->colorspace_type = 1;
113         break;
114 /*    case AV_PIX_FMT_RGB32:
115         s->colorspace= 1;
116         break;*/
117     default:
118         av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
119         return -1;
120     }
121     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
122
123     ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
124     ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp);
125
126     s->input_picture = av_frame_alloc();
127     if (!s->input_picture)
128         return AVERROR(ENOMEM);
129
130     if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
131         return ret;
132
133     if(s->avctx->me_method == ME_ITER){
134         int size= s->b_width * s->b_height << 2*s->block_max_depth;
135         for(i=0; i<s->max_ref_frames; i++){
136             s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
137             s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
138             if (!s->ref_mvs[i] || !s->ref_scores[i])
139                 return AVERROR(ENOMEM);
140         }
141     }
142
143     return 0;
144 }
145
146 //near copy & paste from dsputil, FIXME
147 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
148 {
149     int s, i, j;
150
151     s = 0;
152     for (i = 0; i < h; i++) {
153         for (j = 0; j < w; j++) {
154             s += pix[0];
155             pix ++;
156         }
157         pix += line_size - w;
158     }
159     return s;
160 }
161
162 //near copy & paste from dsputil, FIXME
163 static int pix_norm1(uint8_t * pix, int line_size, int w)
164 {
165     int s, i, j;
166     uint32_t *sq = ff_square_tab + 256;
167
168     s = 0;
169     for (i = 0; i < w; i++) {
170         for (j = 0; j < w; j ++) {
171             s += sq[pix[0]];
172             pix ++;
173         }
174         pix += line_size - w;
175     }
176     return s;
177 }
178
179 static inline int get_penalty_factor(int lambda, int lambda2, int type){
180     switch(type&0xFF){
181     default:
182     case FF_CMP_SAD:
183         return lambda>>FF_LAMBDA_SHIFT;
184     case FF_CMP_DCT:
185         return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
186     case FF_CMP_W53:
187         return (4*lambda)>>(FF_LAMBDA_SHIFT);
188     case FF_CMP_W97:
189         return (2*lambda)>>(FF_LAMBDA_SHIFT);
190     case FF_CMP_SATD:
191     case FF_CMP_DCT264:
192         return (2*lambda)>>FF_LAMBDA_SHIFT;
193     case FF_CMP_RD:
194     case FF_CMP_PSNR:
195     case FF_CMP_SSE:
196     case FF_CMP_NSSE:
197         return lambda2>>FF_LAMBDA_SHIFT;
198     case FF_CMP_BIT:
199         return 1;
200     }
201 }
202
203 //FIXME copy&paste
204 #define P_LEFT P[1]
205 #define P_TOP P[2]
206 #define P_TOPRIGHT P[3]
207 #define P_MEDIAN P[4]
208 #define P_MV1 P[9]
209 #define FLAG_QPEL   1 //must be 1
210
211 static int encode_q_branch(SnowContext *s, int level, int x, int y){
212     uint8_t p_buffer[1024];
213     uint8_t i_buffer[1024];
214     uint8_t p_state[sizeof(s->block_state)];
215     uint8_t i_state[sizeof(s->block_state)];
216     RangeCoder pc, ic;
217     uint8_t *pbbak= s->c.bytestream;
218     uint8_t *pbbak_start= s->c.bytestream_start;
219     int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
220     const int w= s->b_width  << s->block_max_depth;
221     const int h= s->b_height << s->block_max_depth;
222     const int rem_depth= s->block_max_depth - level;
223     const int index= (x + y*w) << rem_depth;
224     const int block_w= 1<<(LOG2_MB_SIZE - level);
225     int trx= (x+1)<<rem_depth;
226     int try= (y+1)<<rem_depth;
227     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
228     const BlockNode *top   = y ? &s->block[index-w] : &null_block;
229     const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
230     const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
231     const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
232     const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
233     int pl = left->color[0];
234     int pcb= left->color[1];
235     int pcr= left->color[2];
236     int pmx, pmy;
237     int mx=0, my=0;
238     int l,cr,cb;
239     const int stride= s->current_picture->linesize[0];
240     const int uvstride= s->current_picture->linesize[1];
241     uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y*  stride)*block_w,
242                                 s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
243                                 s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
244     int P[10][2];
245     int16_t last_mv[3][2];
246     int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
247     const int shift= 1+qpel;
248     MotionEstContext *c= &s->m.me;
249     int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
250     int mx_context= av_log2(2*FFABS(left->mx - top->mx));
251     int my_context= av_log2(2*FFABS(left->my - top->my));
252     int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
253     int ref, best_ref, ref_score, ref_mx, ref_my;
254
255     av_assert0(sizeof(s->block_state) >= 256);
256     if(s->keyframe){
257         set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
258         return 0;
259     }
260
261 //    clip predictors / edge ?
262
263     P_LEFT[0]= left->mx;
264     P_LEFT[1]= left->my;
265     P_TOP [0]= top->mx;
266     P_TOP [1]= top->my;
267     P_TOPRIGHT[0]= tr->mx;
268     P_TOPRIGHT[1]= tr->my;
269
270     last_mv[0][0]= s->block[index].mx;
271     last_mv[0][1]= s->block[index].my;
272     last_mv[1][0]= right->mx;
273     last_mv[1][1]= right->my;
274     last_mv[2][0]= bottom->mx;
275     last_mv[2][1]= bottom->my;
276
277     s->m.mb_stride=2;
278     s->m.mb_x=
279     s->m.mb_y= 0;
280     c->skip= 0;
281
282     av_assert1(c->  stride ==   stride);
283     av_assert1(c->uvstride == uvstride);
284
285     c->penalty_factor    = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
286     c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
287     c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
288     c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
289
290     c->xmin = - x*block_w - 16+3;
291     c->ymin = - y*block_w - 16+3;
292     c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
293     c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
294
295     if(P_LEFT[0]     > (c->xmax<<shift)) P_LEFT[0]    = (c->xmax<<shift);
296     if(P_LEFT[1]     > (c->ymax<<shift)) P_LEFT[1]    = (c->ymax<<shift);
297     if(P_TOP[0]      > (c->xmax<<shift)) P_TOP[0]     = (c->xmax<<shift);
298     if(P_TOP[1]      > (c->ymax<<shift)) P_TOP[1]     = (c->ymax<<shift);
299     if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
300     if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
301     if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
302
303     P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
304     P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
305
306     if (!y) {
307         c->pred_x= P_LEFT[0];
308         c->pred_y= P_LEFT[1];
309     } else {
310         c->pred_x = P_MEDIAN[0];
311         c->pred_y = P_MEDIAN[1];
312     }
313
314     score= INT_MAX;
315     best_ref= 0;
316     for(ref=0; ref<s->ref_frames; ref++){
317         init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
318
319         ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
320                                          (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
321
322         av_assert2(ref_mx >= c->xmin);
323         av_assert2(ref_mx <= c->xmax);
324         av_assert2(ref_my >= c->ymin);
325         av_assert2(ref_my <= c->ymax);
326
327         ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
328         ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
329         ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
330         if(s->ref_mvs[ref]){
331             s->ref_mvs[ref][index][0]= ref_mx;
332             s->ref_mvs[ref][index][1]= ref_my;
333             s->ref_scores[ref][index]= ref_score;
334         }
335         if(score > ref_score){
336             score= ref_score;
337             best_ref= ref;
338             mx= ref_mx;
339             my= ref_my;
340         }
341     }
342     //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
343
344   //  subpel search
345     base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
346     pc= s->c;
347     pc.bytestream_start=
348     pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
349     memcpy(p_state, s->block_state, sizeof(s->block_state));
350
351     if(level!=s->block_max_depth)
352         put_rac(&pc, &p_state[4 + s_context], 1);
353     put_rac(&pc, &p_state[1 + left->type + top->type], 0);
354     if(s->ref_frames > 1)
355         put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
356     pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
357     put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
358     put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
359     p_len= pc.bytestream - pc.bytestream_start;
360     score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
361
362     block_s= block_w*block_w;
363     sum = pix_sum(current_data[0], stride, block_w, block_w);
364     l= (sum + block_s/2)/block_s;
365     iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
366
367     if (s->nb_planes > 2) {
368         block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
369         sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
370         cb= (sum + block_s/2)/block_s;
371     //    iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
372         sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
373         cr= (sum + block_s/2)/block_s;
374     //    iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
375     }else
376         cb = cr = 0;
377
378     ic= s->c;
379     ic.bytestream_start=
380     ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
381     memcpy(i_state, s->block_state, sizeof(s->block_state));
382     if(level!=s->block_max_depth)
383         put_rac(&ic, &i_state[4 + s_context], 1);
384     put_rac(&ic, &i_state[1 + left->type + top->type], 1);
385     put_symbol(&ic, &i_state[32],  l-pl , 1);
386     if (s->nb_planes > 2) {
387         put_symbol(&ic, &i_state[64], cb-pcb, 1);
388         put_symbol(&ic, &i_state[96], cr-pcr, 1);
389     }
390     i_len= ic.bytestream - ic.bytestream_start;
391     iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
392
393 //    assert(score==256*256*256*64-1);
394     av_assert1(iscore < 255*255*256 + s->lambda2*10);
395     av_assert1(iscore >= 0);
396     av_assert1(l>=0 && l<=255);
397     av_assert1(pl>=0 && pl<=255);
398
399     if(level==0){
400         int varc= iscore >> 8;
401         int vard= score >> 8;
402         if (vard <= 64 || vard < varc)
403             c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
404         else
405             c->scene_change_score+= s->m.qscale;
406     }
407
408     if(level!=s->block_max_depth){
409         put_rac(&s->c, &s->block_state[4 + s_context], 0);
410         score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
411         score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
412         score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
413         score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
414         score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
415
416         if(score2 < score && score2 < iscore)
417             return score2;
418     }
419
420     if(iscore < score){
421         pred_mv(s, &pmx, &pmy, 0, left, top, tr);
422         memcpy(pbbak, i_buffer, i_len);
423         s->c= ic;
424         s->c.bytestream_start= pbbak_start;
425         s->c.bytestream= pbbak + i_len;
426         set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
427         memcpy(s->block_state, i_state, sizeof(s->block_state));
428         return iscore;
429     }else{
430         memcpy(pbbak, p_buffer, p_len);
431         s->c= pc;
432         s->c.bytestream_start= pbbak_start;
433         s->c.bytestream= pbbak + p_len;
434         set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
435         memcpy(s->block_state, p_state, sizeof(s->block_state));
436         return score;
437     }
438 }
439
440 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
441     const int w= s->b_width  << s->block_max_depth;
442     const int rem_depth= s->block_max_depth - level;
443     const int index= (x + y*w) << rem_depth;
444     int trx= (x+1)<<rem_depth;
445     BlockNode *b= &s->block[index];
446     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
447     const BlockNode *top   = y ? &s->block[index-w] : &null_block;
448     const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
449     const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
450     int pl = left->color[0];
451     int pcb= left->color[1];
452     int pcr= left->color[2];
453     int pmx, pmy;
454     int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
455     int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
456     int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
457     int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
458
459     if(s->keyframe){
460         set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
461         return;
462     }
463
464     if(level!=s->block_max_depth){
465         if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
466             put_rac(&s->c, &s->block_state[4 + s_context], 1);
467         }else{
468             put_rac(&s->c, &s->block_state[4 + s_context], 0);
469             encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
470             encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
471             encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
472             encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
473             return;
474         }
475     }
476     if(b->type & BLOCK_INTRA){
477         pred_mv(s, &pmx, &pmy, 0, left, top, tr);
478         put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
479         put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
480         if (s->nb_planes > 2) {
481             put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
482             put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
483         }
484         set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
485     }else{
486         pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
487         put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
488         if(s->ref_frames > 1)
489             put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
490         put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
491         put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
492         set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
493     }
494 }
495
496 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
497     int i, x2, y2;
498     Plane *p= &s->plane[plane_index];
499     const int block_size = MB_SIZE >> s->block_max_depth;
500     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
501     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
502     const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
503     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
504     const int ref_stride= s->current_picture->linesize[plane_index];
505     uint8_t *src= s-> input_picture->data[plane_index];
506     IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
507     const int b_stride = s->b_width << s->block_max_depth;
508     const int w= p->width;
509     const int h= p->height;
510     int index= mb_x + mb_y*b_stride;
511     BlockNode *b= &s->block[index];
512     BlockNode backup= *b;
513     int ab=0;
514     int aa=0;
515
516     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
517
518     b->type|= BLOCK_INTRA;
519     b->color[plane_index]= 0;
520     memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
521
522     for(i=0; i<4; i++){
523         int mb_x2= mb_x + (i &1) - 1;
524         int mb_y2= mb_y + (i>>1) - 1;
525         int x= block_w*mb_x2 + block_w/2;
526         int y= block_h*mb_y2 + block_h/2;
527
528         add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
529                     x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
530
531         for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
532             for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
533                 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
534                 int obmc_v= obmc[index];
535                 int d;
536                 if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
537                 if(x<0) obmc_v += obmc[index + block_w];
538                 if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
539                 if(x+block_w>w) obmc_v += obmc[index - block_w];
540                 //FIXME precalculate this or simplify it somehow else
541
542                 d = -dst[index] + (1<<(FRAC_BITS-1));
543                 dst[index] = d;
544                 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
545                 aa += obmc_v * obmc_v; //FIXME precalculate this
546             }
547         }
548     }
549     *b= backup;
550
551     return av_clip( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa), 0, 255); //FIXME we should not need clipping
552 }
553
554 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
555     const int b_stride = s->b_width << s->block_max_depth;
556     const int b_height = s->b_height<< s->block_max_depth;
557     int index= x + y*b_stride;
558     const BlockNode *b     = &s->block[index];
559     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
560     const BlockNode *top   = y ? &s->block[index-b_stride] : &null_block;
561     const BlockNode *tl    = y && x ? &s->block[index-b_stride-1] : left;
562     const BlockNode *tr    = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
563     int dmx, dmy;
564 //  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
565 //  int my_context= av_log2(2*FFABS(left->my - top->my));
566
567     if(x<0 || x>=b_stride || y>=b_height)
568         return 0;
569 /*
570 1            0      0
571 01X          1-2    1
572 001XX        3-6    2-3
573 0001XXX      7-14   4-7
574 00001XXXX   15-30   8-15
575 */
576 //FIXME try accurate rate
577 //FIXME intra and inter predictors if surrounding blocks are not the same type
578     if(b->type & BLOCK_INTRA){
579         return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
580                    + av_log2(2*FFABS(left->color[1] - b->color[1]))
581                    + av_log2(2*FFABS(left->color[2] - b->color[2])));
582     }else{
583         pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
584         dmx-= b->mx;
585         dmy-= b->my;
586         return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
587                     + av_log2(2*FFABS(dmy))
588                     + av_log2(2*b->ref));
589     }
590 }
591
592 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
593     Plane *p= &s->plane[plane_index];
594     const int block_size = MB_SIZE >> s->block_max_depth;
595     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
596     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
597     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
598     const int ref_stride= s->current_picture->linesize[plane_index];
599     uint8_t *dst= s->current_picture->data[plane_index];
600     uint8_t *src= s->  input_picture->data[plane_index];
601     IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
602     uint8_t *cur = s->scratchbuf;
603     uint8_t *tmp = s->emu_edge_buffer;
604     const int b_stride = s->b_width << s->block_max_depth;
605     const int b_height = s->b_height<< s->block_max_depth;
606     const int w= p->width;
607     const int h= p->height;
608     int distortion;
609     int rate= 0;
610     const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
611     int sx= block_w*mb_x - block_w/2;
612     int sy= block_h*mb_y - block_h/2;
613     int x0= FFMAX(0,-sx);
614     int y0= FFMAX(0,-sy);
615     int x1= FFMIN(block_w*2, w-sx);
616     int y1= FFMIN(block_h*2, h-sy);
617     int i,x,y;
618
619     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
620
621     ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
622
623     for(y=y0; y<y1; y++){
624         const uint8_t *obmc1= obmc_edged[y];
625         const IDWTELEM *pred1 = pred + y*obmc_stride;
626         uint8_t *cur1 = cur + y*ref_stride;
627         uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
628         for(x=x0; x<x1; x++){
629 #if FRAC_BITS >= LOG2_OBMC_MAX
630             int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
631 #else
632             int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
633 #endif
634             v = (v + pred1[x]) >> FRAC_BITS;
635             if(v&(~255)) v= ~(v>>31);
636             dst1[x] = v;
637         }
638     }
639
640     /* copy the regions where obmc[] = (uint8_t)256 */
641     if(LOG2_OBMC_MAX == 8
642         && (mb_x == 0 || mb_x == b_stride-1)
643         && (mb_y == 0 || mb_y == b_height-1)){
644         if(mb_x == 0)
645             x1 = block_w;
646         else
647             x0 = block_w;
648         if(mb_y == 0)
649             y1 = block_h;
650         else
651             y0 = block_h;
652         for(y=y0; y<y1; y++)
653             memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
654     }
655
656     if(block_w==16){
657         /* FIXME rearrange dsputil to fit 32x32 cmp functions */
658         /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
659         /* FIXME cmps overlap but do not cover the wavelet's whole support.
660          * So improving the score of one block is not strictly guaranteed
661          * to improve the score of the whole frame, thus iterative motion
662          * estimation does not always converge. */
663         if(s->avctx->me_cmp == FF_CMP_W97)
664             distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
665         else if(s->avctx->me_cmp == FF_CMP_W53)
666             distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
667         else{
668             distortion = 0;
669             for(i=0; i<4; i++){
670                 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
671                 distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
672             }
673         }
674     }else{
675         av_assert2(block_w==8);
676         distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
677     }
678
679     if(plane_index==0){
680         for(i=0; i<4; i++){
681 /* ..RRr
682  * .RXx.
683  * rxx..
684  */
685             rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
686         }
687         if(mb_x == b_stride-2)
688             rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
689     }
690     return distortion + rate*penalty_factor;
691 }
692
693 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
694     int i, y2;
695     Plane *p= &s->plane[plane_index];
696     const int block_size = MB_SIZE >> s->block_max_depth;
697     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
698     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
699     const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
700     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
701     const int ref_stride= s->current_picture->linesize[plane_index];
702     uint8_t *dst= s->current_picture->data[plane_index];
703     uint8_t *src= s-> input_picture->data[plane_index];
704     //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
705     // const has only been removed from zero_dst to suppress a warning
706     static IDWTELEM zero_dst[4096]; //FIXME
707     const int b_stride = s->b_width << s->block_max_depth;
708     const int w= p->width;
709     const int h= p->height;
710     int distortion= 0;
711     int rate= 0;
712     const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
713
714     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
715
716     for(i=0; i<9; i++){
717         int mb_x2= mb_x + (i%3) - 1;
718         int mb_y2= mb_y + (i/3) - 1;
719         int x= block_w*mb_x2 + block_w/2;
720         int y= block_h*mb_y2 + block_h/2;
721
722         add_yblock(s, 0, NULL, zero_dst, dst, obmc,
723                    x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
724
725         //FIXME find a cleaner/simpler way to skip the outside stuff
726         for(y2= y; y2<0; y2++)
727             memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
728         for(y2= h; y2<y+block_h; y2++)
729             memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
730         if(x<0){
731             for(y2= y; y2<y+block_h; y2++)
732                 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
733         }
734         if(x+block_w > w){
735             for(y2= y; y2<y+block_h; y2++)
736                 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
737         }
738
739         av_assert1(block_w== 8 || block_w==16);
740         distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
741     }
742
743     if(plane_index==0){
744         BlockNode *b= &s->block[mb_x+mb_y*b_stride];
745         int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
746
747 /* ..RRRr
748  * .RXXx.
749  * .RXXx.
750  * rxxx.
751  */
752         if(merged)
753             rate = get_block_bits(s, mb_x, mb_y, 2);
754         for(i=merged?4:0; i<9; i++){
755             static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
756             rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
757         }
758     }
759     return distortion + rate*penalty_factor;
760 }
761
762 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
763     const int w= b->width;
764     const int h= b->height;
765     int x, y;
766
767     if(1){
768         int run=0;
769         int *runs = s->run_buffer;
770         int run_index=0;
771         int max_index;
772
773         for(y=0; y<h; y++){
774             for(x=0; x<w; x++){
775                 int v, p=0;
776                 int /*ll=0, */l=0, lt=0, t=0, rt=0;
777                 v= src[x + y*stride];
778
779                 if(y){
780                     t= src[x + (y-1)*stride];
781                     if(x){
782                         lt= src[x - 1 + (y-1)*stride];
783                     }
784                     if(x + 1 < w){
785                         rt= src[x + 1 + (y-1)*stride];
786                     }
787                 }
788                 if(x){
789                     l= src[x - 1 + y*stride];
790                     /*if(x > 1){
791                         if(orientation==1) ll= src[y + (x-2)*stride];
792                         else               ll= src[x - 2 + y*stride];
793                     }*/
794                 }
795                 if(parent){
796                     int px= x>>1;
797                     int py= y>>1;
798                     if(px<b->parent->width && py<b->parent->height)
799                         p= parent[px + py*2*stride];
800                 }
801                 if(!(/*ll|*/l|lt|t|rt|p)){
802                     if(v){
803                         runs[run_index++]= run;
804                         run=0;
805                     }else{
806                         run++;
807                     }
808                 }
809             }
810         }
811         max_index= run_index;
812         runs[run_index++]= run;
813         run_index=0;
814         run= runs[run_index++];
815
816         put_symbol2(&s->c, b->state[30], max_index, 0);
817         if(run_index <= max_index)
818             put_symbol2(&s->c, b->state[1], run, 3);
819
820         for(y=0; y<h; y++){
821             if(s->c.bytestream_end - s->c.bytestream < w*40){
822                 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
823                 return -1;
824             }
825             for(x=0; x<w; x++){
826                 int v, p=0;
827                 int /*ll=0, */l=0, lt=0, t=0, rt=0;
828                 v= src[x + y*stride];
829
830                 if(y){
831                     t= src[x + (y-1)*stride];
832                     if(x){
833                         lt= src[x - 1 + (y-1)*stride];
834                     }
835                     if(x + 1 < w){
836                         rt= src[x + 1 + (y-1)*stride];
837                     }
838                 }
839                 if(x){
840                     l= src[x - 1 + y*stride];
841                     /*if(x > 1){
842                         if(orientation==1) ll= src[y + (x-2)*stride];
843                         else               ll= src[x - 2 + y*stride];
844                     }*/
845                 }
846                 if(parent){
847                     int px= x>>1;
848                     int py= y>>1;
849                     if(px<b->parent->width && py<b->parent->height)
850                         p= parent[px + py*2*stride];
851                 }
852                 if(/*ll|*/l|lt|t|rt|p){
853                     int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
854
855                     put_rac(&s->c, &b->state[0][context], !!v);
856                 }else{
857                     if(!run){
858                         run= runs[run_index++];
859
860                         if(run_index <= max_index)
861                             put_symbol2(&s->c, b->state[1], run, 3);
862                         av_assert2(v);
863                     }else{
864                         run--;
865                         av_assert2(!v);
866                     }
867                 }
868                 if(v){
869                     int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
870                     int l2= 2*FFABS(l) + (l<0);
871                     int t2= 2*FFABS(t) + (t<0);
872
873                     put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
874                     put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
875                 }
876             }
877         }
878     }
879     return 0;
880 }
881
882 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
883 //    encode_subband_qtree(s, b, src, parent, stride, orientation);
884 //    encode_subband_z0run(s, b, src, parent, stride, orientation);
885     return encode_subband_c0run(s, b, src, parent, stride, orientation);
886 //    encode_subband_dzr(s, b, src, parent, stride, orientation);
887 }
888
889 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
890     const int b_stride= s->b_width << s->block_max_depth;
891     BlockNode *block= &s->block[mb_x + mb_y * b_stride];
892     BlockNode backup= *block;
893     unsigned value;
894     int rd, index;
895
896     av_assert2(mb_x>=0 && mb_y>=0);
897     av_assert2(mb_x<b_stride);
898
899     if(intra){
900         block->color[0] = p[0];
901         block->color[1] = p[1];
902         block->color[2] = p[2];
903         block->type |= BLOCK_INTRA;
904     }else{
905         index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
906         value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
907         if(s->me_cache[index] == value)
908             return 0;
909         s->me_cache[index]= value;
910
911         block->mx= p[0];
912         block->my= p[1];
913         block->type &= ~BLOCK_INTRA;
914     }
915
916     rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
917
918 //FIXME chroma
919     if(rd < *best_rd){
920         *best_rd= rd;
921         return 1;
922     }else{
923         *block= backup;
924         return 0;
925     }
926 }
927
928 /* special case for int[2] args we discard afterwards,
929  * fixes compilation problem with gcc 2.95 */
930 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
931     int p[2] = {p0, p1};
932     return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
933 }
934
935 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
936     const int b_stride= s->b_width << s->block_max_depth;
937     BlockNode *block= &s->block[mb_x + mb_y * b_stride];
938     BlockNode backup[4];
939     unsigned value;
940     int rd, index;
941
942     /* We don't initialize backup[] during variable declaration, because
943      * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
944      * 'int16_t'". */
945     backup[0] = block[0];
946     backup[1] = block[1];
947     backup[2] = block[b_stride];
948     backup[3] = block[b_stride + 1];
949
950     av_assert2(mb_x>=0 && mb_y>=0);
951     av_assert2(mb_x<b_stride);
952     av_assert2(((mb_x|mb_y)&1) == 0);
953
954     index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
955     value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
956     if(s->me_cache[index] == value)
957         return 0;
958     s->me_cache[index]= value;
959
960     block->mx= p0;
961     block->my= p1;
962     block->ref= ref;
963     block->type &= ~BLOCK_INTRA;
964     block[1]= block[b_stride]= block[b_stride+1]= *block;
965
966     rd= get_4block_rd(s, mb_x, mb_y, 0);
967
968 //FIXME chroma
969     if(rd < *best_rd){
970         *best_rd= rd;
971         return 1;
972     }else{
973         block[0]= backup[0];
974         block[1]= backup[1];
975         block[b_stride]= backup[2];
976         block[b_stride+1]= backup[3];
977         return 0;
978     }
979 }
980
981 static void iterative_me(SnowContext *s){
982     int pass, mb_x, mb_y;
983     const int b_width = s->b_width  << s->block_max_depth;
984     const int b_height= s->b_height << s->block_max_depth;
985     const int b_stride= b_width;
986     int color[3];
987
988     {
989         RangeCoder r = s->c;
990         uint8_t state[sizeof(s->block_state)];
991         memcpy(state, s->block_state, sizeof(s->block_state));
992         for(mb_y= 0; mb_y<s->b_height; mb_y++)
993             for(mb_x= 0; mb_x<s->b_width; mb_x++)
994                 encode_q_branch(s, 0, mb_x, mb_y);
995         s->c = r;
996         memcpy(s->block_state, state, sizeof(s->block_state));
997     }
998
999     for(pass=0; pass<25; pass++){
1000         int change= 0;
1001
1002         for(mb_y= 0; mb_y<b_height; mb_y++){
1003             for(mb_x= 0; mb_x<b_width; mb_x++){
1004                 int dia_change, i, j, ref;
1005                 int best_rd= INT_MAX, ref_rd;
1006                 BlockNode backup, ref_b;
1007                 const int index= mb_x + mb_y * b_stride;
1008                 BlockNode *block= &s->block[index];
1009                 BlockNode *tb =                   mb_y            ? &s->block[index-b_stride  ] : NULL;
1010                 BlockNode *lb = mb_x                              ? &s->block[index         -1] : NULL;
1011                 BlockNode *rb = mb_x+1<b_width                    ? &s->block[index         +1] : NULL;
1012                 BlockNode *bb =                   mb_y+1<b_height ? &s->block[index+b_stride  ] : NULL;
1013                 BlockNode *tlb= mb_x           && mb_y            ? &s->block[index-b_stride-1] : NULL;
1014                 BlockNode *trb= mb_x+1<b_width && mb_y            ? &s->block[index-b_stride+1] : NULL;
1015                 BlockNode *blb= mb_x           && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1016                 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1017                 const int b_w= (MB_SIZE >> s->block_max_depth);
1018                 uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1019
1020                 if(pass && (block->type & BLOCK_OPT))
1021                     continue;
1022                 block->type |= BLOCK_OPT;
1023
1024                 backup= *block;
1025
1026                 if(!s->me_cache_generation)
1027                     memset(s->me_cache, 0, sizeof(s->me_cache));
1028                 s->me_cache_generation += 1<<22;
1029
1030                 //FIXME precalculate
1031                 {
1032                     int x, y;
1033                     for (y = 0; y < b_w * 2; y++)
1034                         memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1035                     if(mb_x==0)
1036                         for(y=0; y<b_w*2; y++)
1037                             memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1038                     if(mb_x==b_stride-1)
1039                         for(y=0; y<b_w*2; y++)
1040                             memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1041                     if(mb_y==0){
1042                         for(x=0; x<b_w*2; x++)
1043                             obmc_edged[0][x] += obmc_edged[b_w-1][x];
1044                         for(y=1; y<b_w; y++)
1045                             memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1046                     }
1047                     if(mb_y==b_height-1){
1048                         for(x=0; x<b_w*2; x++)
1049                             obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1050                         for(y=b_w; y<b_w*2-1; y++)
1051                             memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1052                     }
1053                 }
1054
1055                 //skip stuff outside the picture
1056                 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1057                     uint8_t *src= s->  input_picture->data[0];
1058                     uint8_t *dst= s->current_picture->data[0];
1059                     const int stride= s->current_picture->linesize[0];
1060                     const int block_w= MB_SIZE >> s->block_max_depth;
1061                     const int block_h= MB_SIZE >> s->block_max_depth;
1062                     const int sx= block_w*mb_x - block_w/2;
1063                     const int sy= block_h*mb_y - block_h/2;
1064                     const int w= s->plane[0].width;
1065                     const int h= s->plane[0].height;
1066                     int y;
1067
1068                     for(y=sy; y<0; y++)
1069                         memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1070                     for(y=h; y<sy+block_h*2; y++)
1071                         memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1072                     if(sx<0){
1073                         for(y=sy; y<sy+block_h*2; y++)
1074                             memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1075                     }
1076                     if(sx+block_w*2 > w){
1077                         for(y=sy; y<sy+block_h*2; y++)
1078                             memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1079                     }
1080                 }
1081
1082                 // intra(black) = neighbors' contribution to the current block
1083                 for(i=0; i < s->nb_planes; i++)
1084                     color[i]= get_dc(s, mb_x, mb_y, i);
1085
1086                 // get previous score (cannot be cached due to OBMC)
1087                 if(pass > 0 && (block->type&BLOCK_INTRA)){
1088                     int color0[3]= {block->color[0], block->color[1], block->color[2]};
1089                     check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1090                 }else
1091                     check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1092
1093                 ref_b= *block;
1094                 ref_rd= best_rd;
1095                 for(ref=0; ref < s->ref_frames; ref++){
1096                     int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1097                     if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1098                         continue;
1099                     block->ref= ref;
1100                     best_rd= INT_MAX;
1101
1102                     check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1103                     check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1104                     if(tb)
1105                         check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1106                     if(lb)
1107                         check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1108                     if(rb)
1109                         check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1110                     if(bb)
1111                         check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1112
1113                     /* fullpel ME */
1114                     //FIXME avoid subpel interpolation / round to nearest integer
1115                     do{
1116                         dia_change=0;
1117                         for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1118                             for(j=0; j<i; j++){
1119                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1120                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1121                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1122                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1123                             }
1124                         }
1125                     }while(dia_change);
1126                     /* subpel ME */
1127                     do{
1128                         static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1129                         dia_change=0;
1130                         for(i=0; i<8; i++)
1131                             dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1132                     }while(dia_change);
1133                     //FIXME or try the standard 2 pass qpel or similar
1134
1135                     mvr[0][0]= block->mx;
1136                     mvr[0][1]= block->my;
1137                     if(ref_rd > best_rd){
1138                         ref_rd= best_rd;
1139                         ref_b= *block;
1140                     }
1141                 }
1142                 best_rd= ref_rd;
1143                 *block= ref_b;
1144                 check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1145                 //FIXME RD style color selection
1146                 if(!same_block(block, &backup)){
1147                     if(tb ) tb ->type &= ~BLOCK_OPT;
1148                     if(lb ) lb ->type &= ~BLOCK_OPT;
1149                     if(rb ) rb ->type &= ~BLOCK_OPT;
1150                     if(bb ) bb ->type &= ~BLOCK_OPT;
1151                     if(tlb) tlb->type &= ~BLOCK_OPT;
1152                     if(trb) trb->type &= ~BLOCK_OPT;
1153                     if(blb) blb->type &= ~BLOCK_OPT;
1154                     if(brb) brb->type &= ~BLOCK_OPT;
1155                     change ++;
1156                 }
1157             }
1158         }
1159         av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1160         if(!change)
1161             break;
1162     }
1163
1164     if(s->block_max_depth == 1){
1165         int change= 0;
1166         for(mb_y= 0; mb_y<b_height; mb_y+=2){
1167             for(mb_x= 0; mb_x<b_width; mb_x+=2){
1168                 int i;
1169                 int best_rd, init_rd;
1170                 const int index= mb_x + mb_y * b_stride;
1171                 BlockNode *b[4];
1172
1173                 b[0]= &s->block[index];
1174                 b[1]= b[0]+1;
1175                 b[2]= b[0]+b_stride;
1176                 b[3]= b[2]+1;
1177                 if(same_block(b[0], b[1]) &&
1178                    same_block(b[0], b[2]) &&
1179                    same_block(b[0], b[3]))
1180                     continue;
1181
1182                 if(!s->me_cache_generation)
1183                     memset(s->me_cache, 0, sizeof(s->me_cache));
1184                 s->me_cache_generation += 1<<22;
1185
1186                 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1187
1188                 //FIXME more multiref search?
1189                 check_4block_inter(s, mb_x, mb_y,
1190                                    (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1191                                    (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1192
1193                 for(i=0; i<4; i++)
1194                     if(!(b[i]->type&BLOCK_INTRA))
1195                         check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1196
1197                 if(init_rd != best_rd)
1198                     change++;
1199             }
1200         }
1201         av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1202     }
1203 }
1204
1205 static void encode_blocks(SnowContext *s, int search){
1206     int x, y;
1207     int w= s->b_width;
1208     int h= s->b_height;
1209
1210     if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1211         iterative_me(s);
1212
1213     for(y=0; y<h; y++){
1214         if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1215             av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1216             return;
1217         }
1218         for(x=0; x<w; x++){
1219             if(s->avctx->me_method == ME_ITER || !search)
1220                 encode_q_branch2(s, 0, x, y);
1221             else
1222                 encode_q_branch (s, 0, x, y);
1223         }
1224     }
1225 }
1226
1227 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1228     const int w= b->width;
1229     const int h= b->height;
1230     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1231     const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1232     int x,y, thres1, thres2;
1233
1234     if(s->qlog == LOSSLESS_QLOG){
1235         for(y=0; y<h; y++)
1236             for(x=0; x<w; x++)
1237                 dst[x + y*stride]= src[x + y*stride];
1238         return;
1239     }
1240
1241     bias= bias ? 0 : (3*qmul)>>3;
1242     thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1243     thres2= 2*thres1;
1244
1245     if(!bias){
1246         for(y=0; y<h; y++){
1247             for(x=0; x<w; x++){
1248                 int i= src[x + y*stride];
1249
1250                 if((unsigned)(i+thres1) > thres2){
1251                     if(i>=0){
1252                         i<<= QEXPSHIFT;
1253                         i/= qmul; //FIXME optimize
1254                         dst[x + y*stride]=  i;
1255                     }else{
1256                         i= -i;
1257                         i<<= QEXPSHIFT;
1258                         i/= qmul; //FIXME optimize
1259                         dst[x + y*stride]= -i;
1260                     }
1261                 }else
1262                     dst[x + y*stride]= 0;
1263             }
1264         }
1265     }else{
1266         for(y=0; y<h; y++){
1267             for(x=0; x<w; x++){
1268                 int i= src[x + y*stride];
1269
1270                 if((unsigned)(i+thres1) > thres2){
1271                     if(i>=0){
1272                         i<<= QEXPSHIFT;
1273                         i= (i + bias) / qmul; //FIXME optimize
1274                         dst[x + y*stride]=  i;
1275                     }else{
1276                         i= -i;
1277                         i<<= QEXPSHIFT;
1278                         i= (i + bias) / qmul; //FIXME optimize
1279                         dst[x + y*stride]= -i;
1280                     }
1281                 }else
1282                     dst[x + y*stride]= 0;
1283             }
1284         }
1285     }
1286 }
1287
1288 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1289     const int w= b->width;
1290     const int h= b->height;
1291     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1292     const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1293     const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1294     int x,y;
1295
1296     if(s->qlog == LOSSLESS_QLOG) return;
1297
1298     for(y=0; y<h; y++){
1299         for(x=0; x<w; x++){
1300             int i= src[x + y*stride];
1301             if(i<0){
1302                 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1303             }else if(i>0){
1304                 src[x + y*stride]=  (( i*qmul + qadd)>>(QEXPSHIFT));
1305             }
1306         }
1307     }
1308 }
1309
1310 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1311     const int w= b->width;
1312     const int h= b->height;
1313     int x,y;
1314
1315     for(y=h-1; y>=0; y--){
1316         for(x=w-1; x>=0; x--){
1317             int i= x + y*stride;
1318
1319             if(x){
1320                 if(use_median){
1321                     if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1322                     else  src[i] -= src[i - 1];
1323                 }else{
1324                     if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1325                     else  src[i] -= src[i - 1];
1326                 }
1327             }else{
1328                 if(y) src[i] -= src[i - stride];
1329             }
1330         }
1331     }
1332 }
1333
1334 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1335     const int w= b->width;
1336     const int h= b->height;
1337     int x,y;
1338
1339     for(y=0; y<h; y++){
1340         for(x=0; x<w; x++){
1341             int i= x + y*stride;
1342
1343             if(x){
1344                 if(use_median){
1345                     if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1346                     else  src[i] += src[i - 1];
1347                 }else{
1348                     if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1349                     else  src[i] += src[i - 1];
1350                 }
1351             }else{
1352                 if(y) src[i] += src[i - stride];
1353             }
1354         }
1355     }
1356 }
1357
1358 static void encode_qlogs(SnowContext *s){
1359     int plane_index, level, orientation;
1360
1361     for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1362         for(level=0; level<s->spatial_decomposition_count; level++){
1363             for(orientation=level ? 1:0; orientation<4; orientation++){
1364                 if(orientation==2) continue;
1365                 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1366             }
1367         }
1368     }
1369 }
1370
1371 static void encode_header(SnowContext *s){
1372     int plane_index, i;
1373     uint8_t kstate[32];
1374
1375     memset(kstate, MID_STATE, sizeof(kstate));
1376
1377     put_rac(&s->c, kstate, s->keyframe);
1378     if(s->keyframe || s->always_reset){
1379         ff_snow_reset_contexts(s);
1380         s->last_spatial_decomposition_type=
1381         s->last_qlog=
1382         s->last_qbias=
1383         s->last_mv_scale=
1384         s->last_block_max_depth= 0;
1385         for(plane_index=0; plane_index<2; plane_index++){
1386             Plane *p= &s->plane[plane_index];
1387             p->last_htaps=0;
1388             p->last_diag_mc=0;
1389             memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1390         }
1391     }
1392     if(s->keyframe){
1393         put_symbol(&s->c, s->header_state, s->version, 0);
1394         put_rac(&s->c, s->header_state, s->always_reset);
1395         put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1396         put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1397         put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1398         put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1399         if (s->nb_planes > 2) {
1400             put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1401             put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1402         }
1403         put_rac(&s->c, s->header_state, s->spatial_scalability);
1404 //        put_rac(&s->c, s->header_state, s->rate_scalability);
1405         put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1406
1407         encode_qlogs(s);
1408     }
1409
1410     if(!s->keyframe){
1411         int update_mc=0;
1412         for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1413             Plane *p= &s->plane[plane_index];
1414             update_mc |= p->last_htaps   != p->htaps;
1415             update_mc |= p->last_diag_mc != p->diag_mc;
1416             update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1417         }
1418         put_rac(&s->c, s->header_state, update_mc);
1419         if(update_mc){
1420             for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1421                 Plane *p= &s->plane[plane_index];
1422                 put_rac(&s->c, s->header_state, p->diag_mc);
1423                 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1424                 for(i= p->htaps/2; i; i--)
1425                     put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1426             }
1427         }
1428         if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1429             put_rac(&s->c, s->header_state, 1);
1430             put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1431             encode_qlogs(s);
1432         }else
1433             put_rac(&s->c, s->header_state, 0);
1434     }
1435
1436     put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1437     put_symbol(&s->c, s->header_state, s->qlog            - s->last_qlog    , 1);
1438     put_symbol(&s->c, s->header_state, s->mv_scale        - s->last_mv_scale, 1);
1439     put_symbol(&s->c, s->header_state, s->qbias           - s->last_qbias   , 1);
1440     put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1441
1442 }
1443
1444 static void update_last_header_values(SnowContext *s){
1445     int plane_index;
1446
1447     if(!s->keyframe){
1448         for(plane_index=0; plane_index<2; plane_index++){
1449             Plane *p= &s->plane[plane_index];
1450             p->last_diag_mc= p->diag_mc;
1451             p->last_htaps  = p->htaps;
1452             memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1453         }
1454     }
1455
1456     s->last_spatial_decomposition_type  = s->spatial_decomposition_type;
1457     s->last_qlog                        = s->qlog;
1458     s->last_qbias                       = s->qbias;
1459     s->last_mv_scale                    = s->mv_scale;
1460     s->last_block_max_depth             = s->block_max_depth;
1461     s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1462 }
1463
1464 static int qscale2qlog(int qscale){
1465     return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1466            + 61*QROOT/8; ///< 64 > 60
1467 }
1468
1469 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1470 {
1471     /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1472      * FIXME we know exact mv bits at this point,
1473      * but ratecontrol isn't set up to include them. */
1474     uint32_t coef_sum= 0;
1475     int level, orientation, delta_qlog;
1476
1477     for(level=0; level<s->spatial_decomposition_count; level++){
1478         for(orientation=level ? 1 : 0; orientation<4; orientation++){
1479             SubBand *b= &s->plane[0].band[level][orientation];
1480             IDWTELEM *buf= b->ibuf;
1481             const int w= b->width;
1482             const int h= b->height;
1483             const int stride= b->stride;
1484             const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1485             const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1486             const int qdiv= (1<<16)/qmul;
1487             int x, y;
1488             //FIXME this is ugly
1489             for(y=0; y<h; y++)
1490                 for(x=0; x<w; x++)
1491                     buf[x+y*stride]= b->buf[x+y*stride];
1492             if(orientation==0)
1493                 decorrelate(s, b, buf, stride, 1, 0);
1494             for(y=0; y<h; y++)
1495                 for(x=0; x<w; x++)
1496                     coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1497         }
1498     }
1499
1500     /* ugly, ratecontrol just takes a sqrt again */
1501     av_assert0(coef_sum < INT_MAX);
1502     coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1503
1504     if(pict->pict_type == AV_PICTURE_TYPE_I){
1505         s->m.current_picture.mb_var_sum= coef_sum;
1506         s->m.current_picture.mc_mb_var_sum= 0;
1507     }else{
1508         s->m.current_picture.mc_mb_var_sum= coef_sum;
1509         s->m.current_picture.mb_var_sum= 0;
1510     }
1511
1512     pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1513     if (pict->quality < 0)
1514         return INT_MIN;
1515     s->lambda= pict->quality * 3/2;
1516     delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1517     s->qlog+= delta_qlog;
1518     return delta_qlog;
1519 }
1520
1521 static void calculate_visual_weight(SnowContext *s, Plane *p){
1522     int width = p->width;
1523     int height= p->height;
1524     int level, orientation, x, y;
1525
1526     for(level=0; level<s->spatial_decomposition_count; level++){
1527         for(orientation=level ? 1 : 0; orientation<4; orientation++){
1528             SubBand *b= &p->band[level][orientation];
1529             IDWTELEM *ibuf= b->ibuf;
1530             int64_t error=0;
1531
1532             memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1533             ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1534             ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1535             for(y=0; y<height; y++){
1536                 for(x=0; x<width; x++){
1537                     int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1538                     error += d*d;
1539                 }
1540             }
1541
1542             b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1543         }
1544     }
1545 }
1546
1547 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1548                         const AVFrame *pict, int *got_packet)
1549 {
1550     SnowContext *s = avctx->priv_data;
1551     RangeCoder * const c= &s->c;
1552     AVFrame *pic = pict;
1553     const int width= s->avctx->width;
1554     const int height= s->avctx->height;
1555     int level, orientation, plane_index, i, y, ret;
1556     uint8_t rc_header_bak[sizeof(s->header_state)];
1557     uint8_t rc_block_bak[sizeof(s->block_state)];
1558
1559     if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1560         return ret;
1561
1562     ff_init_range_encoder(c, pkt->data, pkt->size);
1563     ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1564
1565     for(i=0; i < s->nb_planes; i++){
1566         int hshift= i ? s->chroma_h_shift : 0;
1567         int vshift= i ? s->chroma_v_shift : 0;
1568         for(y=0; y<(height>>vshift); y++)
1569             memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1570                    &pict->data[i][y * pict->linesize[i]],
1571                    width>>hshift);
1572         s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
1573                                 width >> hshift, height >> vshift,
1574                                 EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1575                                 EDGE_TOP | EDGE_BOTTOM);
1576
1577     }
1578     emms_c();
1579     s->new_picture = pict;
1580
1581     s->m.picture_number= avctx->frame_number;
1582     if(avctx->flags&CODEC_FLAG_PASS2){
1583         s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1584         s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1585         if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1586             pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1587             if (pic->quality < 0)
1588                 return -1;
1589         }
1590     }else{
1591         s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1592         s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1593     }
1594
1595     if(s->pass1_rc && avctx->frame_number == 0)
1596         pic->quality = 2*FF_QP2LAMBDA;
1597     if (pic->quality) {
1598         s->qlog   = qscale2qlog(pic->quality);
1599         s->lambda = pic->quality * 3/2;
1600     }
1601     if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1602         s->qlog= LOSSLESS_QLOG;
1603         s->lambda = 0;
1604     }//else keep previous frame's qlog until after motion estimation
1605
1606     if (s->current_picture->data[0] && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE)) {
1607         int w = s->avctx->width;
1608         int h = s->avctx->height;
1609
1610         s->mpvencdsp.draw_edges(s->current_picture->data[0],
1611                                 s->current_picture->linesize[0], w   , h   ,
1612                                 EDGE_WIDTH  , EDGE_WIDTH  , EDGE_TOP | EDGE_BOTTOM);
1613         if (s->current_picture->data[2]) {
1614             s->mpvencdsp.draw_edges(s->current_picture->data[1],
1615                                     s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1616                                     EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1617             s->mpvencdsp.draw_edges(s->current_picture->data[2],
1618                                     s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1619                                     EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1620         }
1621     }
1622
1623     ff_snow_frame_start(s);
1624     avctx->coded_frame= s->current_picture;
1625
1626     s->m.current_picture_ptr= &s->m.current_picture;
1627     s->m.current_picture.f = s->current_picture;
1628     s->m.current_picture.f->pts = pict->pts;
1629     if(pic->pict_type == AV_PICTURE_TYPE_P){
1630         int block_width = (width +15)>>4;
1631         int block_height= (height+15)>>4;
1632         int stride= s->current_picture->linesize[0];
1633
1634         av_assert0(s->current_picture->data[0]);
1635         av_assert0(s->last_picture[0]->data[0]);
1636
1637         s->m.avctx= s->avctx;
1638         s->m.   last_picture.f = s->last_picture[0];
1639         s->m.    new_picture.f = s->input_picture;
1640         s->m.   last_picture_ptr= &s->m.   last_picture;
1641         s->m.linesize = stride;
1642         s->m.uvlinesize= s->current_picture->linesize[1];
1643         s->m.width = width;
1644         s->m.height= height;
1645         s->m.mb_width = block_width;
1646         s->m.mb_height= block_height;
1647         s->m.mb_stride=   s->m.mb_width+1;
1648         s->m.b8_stride= 2*s->m.mb_width+1;
1649         s->m.f_code=1;
1650         s->m.pict_type = pic->pict_type;
1651         s->m.me_method= s->avctx->me_method;
1652         s->m.me.scene_change_score=0;
1653         s->m.flags= s->avctx->flags;
1654         s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1655         s->m.out_format= FMT_H263;
1656         s->m.unrestricted_mv= 1;
1657
1658         s->m.lambda = s->lambda;
1659         s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1660         s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1661
1662         s->m.mecc= s->mecc; //move
1663         s->m.qdsp= s->qdsp; //move
1664         s->m.hdsp = s->hdsp;
1665         ff_init_me(&s->m);
1666         s->hdsp = s->m.hdsp;
1667         s->mecc= s->m.mecc;
1668     }
1669
1670     if(s->pass1_rc){
1671         memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1672         memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1673     }
1674
1675 redo_frame:
1676
1677     s->spatial_decomposition_count= 5;
1678
1679     while(   !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1680           || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1681         s->spatial_decomposition_count--;
1682
1683     if (s->spatial_decomposition_count <= 0) {
1684         av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1685         return AVERROR(EINVAL);
1686     }
1687
1688     s->m.pict_type = pic->pict_type;
1689     s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1690
1691     ff_snow_common_init_after_header(avctx);
1692
1693     if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1694         for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1695             calculate_visual_weight(s, &s->plane[plane_index]);
1696         }
1697     }
1698
1699     encode_header(s);
1700     s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1701     encode_blocks(s, 1);
1702     s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1703
1704     for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1705         Plane *p= &s->plane[plane_index];
1706         int w= p->width;
1707         int h= p->height;
1708         int x, y;
1709 //        int bits= put_bits_count(&s->c.pb);
1710
1711         if (!s->memc_only) {
1712             //FIXME optimize
1713             if(pict->data[plane_index]) //FIXME gray hack
1714                 for(y=0; y<h; y++){
1715                     for(x=0; x<w; x++){
1716                         s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1717                     }
1718                 }
1719             predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1720
1721             if(   plane_index==0
1722                && pic->pict_type == AV_PICTURE_TYPE_P
1723                && !(avctx->flags&CODEC_FLAG_PASS2)
1724                && s->m.me.scene_change_score > s->avctx->scenechange_threshold){
1725                 ff_init_range_encoder(c, pkt->data, pkt->size);
1726                 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1727                 pic->pict_type= AV_PICTURE_TYPE_I;
1728                 s->keyframe=1;
1729                 s->current_picture->key_frame=1;
1730                 goto redo_frame;
1731             }
1732
1733             if(s->qlog == LOSSLESS_QLOG){
1734                 for(y=0; y<h; y++){
1735                     for(x=0; x<w; x++){
1736                         s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1737                     }
1738                 }
1739             }else{
1740                 for(y=0; y<h; y++){
1741                     for(x=0; x<w; x++){
1742                         s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
1743                     }
1744                 }
1745             }
1746
1747             ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1748
1749             if(s->pass1_rc && plane_index==0){
1750                 int delta_qlog = ratecontrol_1pass(s, pic);
1751                 if (delta_qlog <= INT_MIN)
1752                     return -1;
1753                 if(delta_qlog){
1754                     //reordering qlog in the bitstream would eliminate this reset
1755                     ff_init_range_encoder(c, pkt->data, pkt->size);
1756                     memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1757                     memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1758                     encode_header(s);
1759                     encode_blocks(s, 0);
1760                 }
1761             }
1762
1763             for(level=0; level<s->spatial_decomposition_count; level++){
1764                 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1765                     SubBand *b= &p->band[level][orientation];
1766
1767                     quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1768                     if(orientation==0)
1769                         decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1770                     if (!s->no_bitstream)
1771                     encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1772                     av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1773                     if(orientation==0)
1774                         correlate(s, b, b->ibuf, b->stride, 1, 0);
1775                 }
1776             }
1777
1778             for(level=0; level<s->spatial_decomposition_count; level++){
1779                 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1780                     SubBand *b= &p->band[level][orientation];
1781
1782                     dequantize(s, b, b->ibuf, b->stride);
1783                 }
1784             }
1785
1786             ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1787             if(s->qlog == LOSSLESS_QLOG){
1788                 for(y=0; y<h; y++){
1789                     for(x=0; x<w; x++){
1790                         s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1791                     }
1792                 }
1793             }
1794             predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1795         }else{
1796             //ME/MC only
1797             if(pic->pict_type == AV_PICTURE_TYPE_I){
1798                 for(y=0; y<h; y++){
1799                     for(x=0; x<w; x++){
1800                         s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1801                             pict->data[plane_index][y*pict->linesize[plane_index] + x];
1802                     }
1803                 }
1804             }else{
1805                 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1806                 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1807             }
1808         }
1809         if(s->avctx->flags&CODEC_FLAG_PSNR){
1810             int64_t error= 0;
1811
1812             if(pict->data[plane_index]) //FIXME gray hack
1813                 for(y=0; y<h; y++){
1814                     for(x=0; x<w; x++){
1815                         int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1816                         error += d*d;
1817                     }
1818                 }
1819             s->avctx->error[plane_index] += error;
1820             s->current_picture->error[plane_index] = error;
1821         }
1822
1823     }
1824
1825     update_last_header_values(s);
1826
1827     ff_snow_release_buffer(avctx);
1828
1829     s->current_picture->coded_picture_number = avctx->frame_number;
1830     s->current_picture->pict_type = pict->pict_type;
1831     s->current_picture->quality = pict->quality;
1832     s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1833     s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1834     s->m.current_picture.f->display_picture_number =
1835     s->m.current_picture.f->coded_picture_number   = avctx->frame_number;
1836     s->m.current_picture.f->quality                = pic->quality;
1837     s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1838     if(s->pass1_rc)
1839         if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1840             return -1;
1841     if(avctx->flags&CODEC_FLAG_PASS1)
1842         ff_write_pass1_stats(&s->m);
1843     s->m.last_pict_type = s->m.pict_type;
1844     avctx->frame_bits = s->m.frame_bits;
1845     avctx->mv_bits = s->m.mv_bits;
1846     avctx->misc_bits = s->m.misc_bits;
1847     avctx->p_tex_bits = s->m.p_tex_bits;
1848
1849     emms_c();
1850
1851     pkt->size = ff_rac_terminate(c);
1852     if (avctx->coded_frame->key_frame)
1853         pkt->flags |= AV_PKT_FLAG_KEY;
1854     *got_packet = 1;
1855
1856     return 0;
1857 }
1858
1859 static av_cold int encode_end(AVCodecContext *avctx)
1860 {
1861     SnowContext *s = avctx->priv_data;
1862
1863     ff_snow_common_end(s);
1864     ff_rate_control_uninit(&s->m);
1865     av_frame_free(&s->input_picture);
1866     av_free(avctx->stats_out);
1867
1868     return 0;
1869 }
1870
1871 #define OFFSET(x) offsetof(SnowContext, x)
1872 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1873 static const AVOption options[] = {
1874     { "memc_only",      "Only do ME/MC (I frames -> ref, P frame -> ME+MC).",   OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1875     { "no_bitstream",   "Skip final bitstream writeout.",                    OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1876     { NULL },
1877 };
1878
1879 static const AVClass snowenc_class = {
1880     .class_name = "snow encoder",
1881     .item_name  = av_default_item_name,
1882     .option     = options,
1883     .version    = LIBAVUTIL_VERSION_INT,
1884 };
1885
1886 AVCodec ff_snow_encoder = {
1887     .name           = "snow",
1888     .long_name      = NULL_IF_CONFIG_SMALL("Snow"),
1889     .type           = AVMEDIA_TYPE_VIDEO,
1890     .id             = AV_CODEC_ID_SNOW,
1891     .priv_data_size = sizeof(SnowContext),
1892     .init           = encode_init,
1893     .encode2        = encode_frame,
1894     .close          = encode_end,
1895     .pix_fmts       = (const enum AVPixelFormat[]){
1896         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
1897         AV_PIX_FMT_GRAY8,
1898         AV_PIX_FMT_NONE
1899     },
1900     .priv_class     = &snowenc_class,
1901 };
1902
1903
1904 #ifdef TEST
1905 #undef malloc
1906 #undef free
1907 #undef printf
1908
1909 #include "libavutil/lfg.h"
1910 #include "libavutil/mathematics.h"
1911
1912 int main(void){
1913 #define width  256
1914 #define height 256
1915     int buffer[2][width*height];
1916     SnowContext s;
1917     int i;
1918     AVLFG prng;
1919     s.spatial_decomposition_count=6;
1920     s.spatial_decomposition_type=1;
1921
1922     s.temp_dwt_buffer  = av_mallocz(width * sizeof(DWTELEM));
1923     s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
1924
1925     av_lfg_init(&prng, 1);
1926
1927     printf("testing 5/3 DWT\n");
1928     for(i=0; i<width*height; i++)
1929         buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1930
1931     ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1932     ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1933
1934     for(i=0; i<width*height; i++)
1935         if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1936
1937     printf("testing 9/7 DWT\n");
1938     s.spatial_decomposition_type=0;
1939     for(i=0; i<width*height; i++)
1940         buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1941
1942     ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1943     ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1944
1945     for(i=0; i<width*height; i++)
1946         if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1947
1948     {
1949     int level, orientation, x, y;
1950     int64_t errors[8][4];
1951     int64_t g=0;
1952
1953         memset(errors, 0, sizeof(errors));
1954         s.spatial_decomposition_count=3;
1955         s.spatial_decomposition_type=0;
1956         for(level=0; level<s.spatial_decomposition_count; level++){
1957             for(orientation=level ? 1 : 0; orientation<4; orientation++){
1958                 int w= width  >> (s.spatial_decomposition_count-level);
1959                 int h= height >> (s.spatial_decomposition_count-level);
1960                 int stride= width  << (s.spatial_decomposition_count-level);
1961                 DWTELEM *buf= buffer[0];
1962                 int64_t error=0;
1963
1964                 if(orientation&1) buf+=w;
1965                 if(orientation>1) buf+=stride>>1;
1966
1967                 memset(buffer[0], 0, sizeof(int)*width*height);
1968                 buf[w/2 + h/2*stride]= 256*256;
1969                 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1970                 for(y=0; y<height; y++){
1971                     for(x=0; x<width; x++){
1972                         int64_t d= buffer[0][x + y*width];
1973                         error += d*d;
1974                         if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
1975                     }
1976                     if(FFABS(height/2-y)<9 && level==2) printf("\n");
1977                 }
1978                 error= (int)(sqrt(error)+0.5);
1979                 errors[level][orientation]= error;
1980                 if(g) g=av_gcd(g, error);
1981                 else g= error;
1982             }
1983         }
1984         printf("static int const visual_weight[][4]={\n");
1985         for(level=0; level<s.spatial_decomposition_count; level++){
1986             printf("  {");
1987             for(orientation=0; orientation<4; orientation++){
1988                 printf("%8"PRId64",", errors[level][orientation]/g);
1989             }
1990             printf("},\n");
1991         }
1992         printf("};\n");
1993         {
1994             int level=2;
1995             int w= width  >> (s.spatial_decomposition_count-level);
1996             //int h= height >> (s.spatial_decomposition_count-level);
1997             int stride= width  << (s.spatial_decomposition_count-level);
1998             DWTELEM *buf= buffer[0];
1999             int64_t error=0;
2000
2001             buf+=w;
2002             buf+=stride>>1;
2003
2004             memset(buffer[0], 0, sizeof(int)*width*height);
2005             for(y=0; y<height; y++){
2006                 for(x=0; x<width; x++){
2007                     int tab[4]={0,2,3,1};
2008                     buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2009                 }
2010             }
2011             ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
2012             for(y=0; y<height; y++){
2013                 for(x=0; x<width; x++){
2014                     int64_t d= buffer[0][x + y*width];
2015                     error += d*d;
2016                     if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2017                 }
2018                 if(FFABS(height/2-y)<9) printf("\n");
2019             }
2020         }
2021
2022     }
2023     return 0;
2024 }
2025 #endif /* TEST */