]> git.sesse.net Git - ffmpeg/blob - libavcodec/snowenc.c
x86/simple_idct: use LOCAL_ALIGNED instead of DECLARE_ALIGNED
[ffmpeg] / libavcodec / snowenc.c
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "dsputil.h"
27 #include "internal.h"
28 #include "snow_dwt.h"
29 #include "snow.h"
30
31 #include "rangecoder.h"
32 #include "mathops.h"
33
34 #include "mpegvideo.h"
35 #include "h263.h"
36
37 static av_cold int encode_init(AVCodecContext *avctx)
38 {
39     SnowContext *s = avctx->priv_data;
40     int plane_index, ret;
41
42     if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){
43         av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
44                "Use vstrict=-2 / -strict -2 to use it anyway.\n");
45         return -1;
46     }
47
48     if(avctx->prediction_method == DWT_97
49        && (avctx->flags & CODEC_FLAG_QSCALE)
50        && avctx->global_quality == 0){
51         av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
52         return -1;
53     }
54
55     s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
56
57     s->mv_scale       = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
58     s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
59
60     for(plane_index=0; plane_index<3; plane_index++){
61         s->plane[plane_index].diag_mc= 1;
62         s->plane[plane_index].htaps= 6;
63         s->plane[plane_index].hcoeff[0]=  40;
64         s->plane[plane_index].hcoeff[1]= -10;
65         s->plane[plane_index].hcoeff[2]=   2;
66         s->plane[plane_index].fast_mc= 1;
67     }
68
69     if ((ret = ff_snow_common_init(avctx)) < 0) {
70         ff_snow_common_end(avctx->priv_data);
71         return ret;
72     }
73     ff_snow_alloc_blocks(s);
74
75     s->version=0;
76
77     s->m.avctx   = avctx;
78     s->m.flags   = avctx->flags;
79     s->m.bit_rate= avctx->bit_rate;
80
81     s->m.me.temp      =
82     s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
83     s->m.me.map       = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
84     s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
85     s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
86     if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.obmc_scratchpad)
87         return AVERROR(ENOMEM);
88
89     ff_h263_encode_init(&s->m); //mv_penalty
90
91     s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
92
93     if(avctx->flags&CODEC_FLAG_PASS1){
94         if(!avctx->stats_out)
95             avctx->stats_out = av_mallocz(256);
96
97         if (!avctx->stats_out)
98             return AVERROR(ENOMEM);
99     }
100     if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
101         if(ff_rate_control_init(&s->m) < 0)
102             return -1;
103     }
104     s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
105
106     switch(avctx->pix_fmt){
107     case AV_PIX_FMT_YUV444P:
108 //    case AV_PIX_FMT_YUV422P:
109     case AV_PIX_FMT_YUV420P:
110 //    case AV_PIX_FMT_YUV411P:
111     case AV_PIX_FMT_YUV410P:
112         s->nb_planes = 3;
113         s->colorspace_type= 0;
114         break;
115     case AV_PIX_FMT_GRAY8:
116         s->nb_planes = 1;
117         s->colorspace_type = 1;
118         break;
119 /*    case AV_PIX_FMT_RGB32:
120         s->colorspace= 1;
121         break;*/
122     default:
123         av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
124         return -1;
125     }
126     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
127
128     ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
129     ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
130
131     s->input_picture = av_frame_alloc();
132     if (!s->input_picture)
133         return AVERROR(ENOMEM);
134     if ((ret = ff_get_buffer(s->avctx, s->input_picture, AV_GET_BUFFER_FLAG_REF)) < 0)
135         return ret;
136
137     if(s->avctx->me_method == ME_ITER){
138         int i;
139         int size= s->b_width * s->b_height << 2*s->block_max_depth;
140         for(i=0; i<s->max_ref_frames; i++){
141             s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
142             s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
143             if (!s->ref_mvs[i] || !s->ref_scores[i])
144                 return AVERROR(ENOMEM);
145         }
146     }
147
148     return 0;
149 }
150
151 //near copy & paste from dsputil, FIXME
152 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
153 {
154     int s, i, j;
155
156     s = 0;
157     for (i = 0; i < h; i++) {
158         for (j = 0; j < w; j++) {
159             s += pix[0];
160             pix ++;
161         }
162         pix += line_size - w;
163     }
164     return s;
165 }
166
167 //near copy & paste from dsputil, FIXME
168 static int pix_norm1(uint8_t * pix, int line_size, int w)
169 {
170     int s, i, j;
171     uint32_t *sq = ff_squareTbl + 256;
172
173     s = 0;
174     for (i = 0; i < w; i++) {
175         for (j = 0; j < w; j ++) {
176             s += sq[pix[0]];
177             pix ++;
178         }
179         pix += line_size - w;
180     }
181     return s;
182 }
183
184 static inline int get_penalty_factor(int lambda, int lambda2, int type){
185     switch(type&0xFF){
186     default:
187     case FF_CMP_SAD:
188         return lambda>>FF_LAMBDA_SHIFT;
189     case FF_CMP_DCT:
190         return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
191     case FF_CMP_W53:
192         return (4*lambda)>>(FF_LAMBDA_SHIFT);
193     case FF_CMP_W97:
194         return (2*lambda)>>(FF_LAMBDA_SHIFT);
195     case FF_CMP_SATD:
196     case FF_CMP_DCT264:
197         return (2*lambda)>>FF_LAMBDA_SHIFT;
198     case FF_CMP_RD:
199     case FF_CMP_PSNR:
200     case FF_CMP_SSE:
201     case FF_CMP_NSSE:
202         return lambda2>>FF_LAMBDA_SHIFT;
203     case FF_CMP_BIT:
204         return 1;
205     }
206 }
207
208 //FIXME copy&paste
209 #define P_LEFT P[1]
210 #define P_TOP P[2]
211 #define P_TOPRIGHT P[3]
212 #define P_MEDIAN P[4]
213 #define P_MV1 P[9]
214 #define FLAG_QPEL   1 //must be 1
215
216 static int encode_q_branch(SnowContext *s, int level, int x, int y){
217     uint8_t p_buffer[1024];
218     uint8_t i_buffer[1024];
219     uint8_t p_state[sizeof(s->block_state)];
220     uint8_t i_state[sizeof(s->block_state)];
221     RangeCoder pc, ic;
222     uint8_t *pbbak= s->c.bytestream;
223     uint8_t *pbbak_start= s->c.bytestream_start;
224     int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
225     const int w= s->b_width  << s->block_max_depth;
226     const int h= s->b_height << s->block_max_depth;
227     const int rem_depth= s->block_max_depth - level;
228     const int index= (x + y*w) << rem_depth;
229     const int block_w= 1<<(LOG2_MB_SIZE - level);
230     int trx= (x+1)<<rem_depth;
231     int try= (y+1)<<rem_depth;
232     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
233     const BlockNode *top   = y ? &s->block[index-w] : &null_block;
234     const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
235     const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
236     const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
237     const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
238     int pl = left->color[0];
239     int pcb= left->color[1];
240     int pcr= left->color[2];
241     int pmx, pmy;
242     int mx=0, my=0;
243     int l,cr,cb;
244     const int stride= s->current_picture->linesize[0];
245     const int uvstride= s->current_picture->linesize[1];
246     uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y*  stride)*block_w,
247                                 s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
248                                 s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
249     int P[10][2];
250     int16_t last_mv[3][2];
251     int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
252     const int shift= 1+qpel;
253     MotionEstContext *c= &s->m.me;
254     int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
255     int mx_context= av_log2(2*FFABS(left->mx - top->mx));
256     int my_context= av_log2(2*FFABS(left->my - top->my));
257     int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
258     int ref, best_ref, ref_score, ref_mx, ref_my;
259
260     av_assert0(sizeof(s->block_state) >= 256);
261     if(s->keyframe){
262         set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
263         return 0;
264     }
265
266 //    clip predictors / edge ?
267
268     P_LEFT[0]= left->mx;
269     P_LEFT[1]= left->my;
270     P_TOP [0]= top->mx;
271     P_TOP [1]= top->my;
272     P_TOPRIGHT[0]= tr->mx;
273     P_TOPRIGHT[1]= tr->my;
274
275     last_mv[0][0]= s->block[index].mx;
276     last_mv[0][1]= s->block[index].my;
277     last_mv[1][0]= right->mx;
278     last_mv[1][1]= right->my;
279     last_mv[2][0]= bottom->mx;
280     last_mv[2][1]= bottom->my;
281
282     s->m.mb_stride=2;
283     s->m.mb_x=
284     s->m.mb_y= 0;
285     c->skip= 0;
286
287     av_assert1(c->  stride ==   stride);
288     av_assert1(c->uvstride == uvstride);
289
290     c->penalty_factor    = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
291     c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
292     c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
293     c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
294
295     c->xmin = - x*block_w - 16+3;
296     c->ymin = - y*block_w - 16+3;
297     c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
298     c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
299
300     if(P_LEFT[0]     > (c->xmax<<shift)) P_LEFT[0]    = (c->xmax<<shift);
301     if(P_LEFT[1]     > (c->ymax<<shift)) P_LEFT[1]    = (c->ymax<<shift);
302     if(P_TOP[0]      > (c->xmax<<shift)) P_TOP[0]     = (c->xmax<<shift);
303     if(P_TOP[1]      > (c->ymax<<shift)) P_TOP[1]     = (c->ymax<<shift);
304     if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
305     if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
306     if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
307
308     P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
309     P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
310
311     if (!y) {
312         c->pred_x= P_LEFT[0];
313         c->pred_y= P_LEFT[1];
314     } else {
315         c->pred_x = P_MEDIAN[0];
316         c->pred_y = P_MEDIAN[1];
317     }
318
319     score= INT_MAX;
320     best_ref= 0;
321     for(ref=0; ref<s->ref_frames; ref++){
322         init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
323
324         ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
325                                          (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
326
327         av_assert2(ref_mx >= c->xmin);
328         av_assert2(ref_mx <= c->xmax);
329         av_assert2(ref_my >= c->ymin);
330         av_assert2(ref_my <= c->ymax);
331
332         ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
333         ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
334         ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
335         if(s->ref_mvs[ref]){
336             s->ref_mvs[ref][index][0]= ref_mx;
337             s->ref_mvs[ref][index][1]= ref_my;
338             s->ref_scores[ref][index]= ref_score;
339         }
340         if(score > ref_score){
341             score= ref_score;
342             best_ref= ref;
343             mx= ref_mx;
344             my= ref_my;
345         }
346     }
347     //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
348
349   //  subpel search
350     base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
351     pc= s->c;
352     pc.bytestream_start=
353     pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
354     memcpy(p_state, s->block_state, sizeof(s->block_state));
355
356     if(level!=s->block_max_depth)
357         put_rac(&pc, &p_state[4 + s_context], 1);
358     put_rac(&pc, &p_state[1 + left->type + top->type], 0);
359     if(s->ref_frames > 1)
360         put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
361     pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
362     put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
363     put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
364     p_len= pc.bytestream - pc.bytestream_start;
365     score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
366
367     block_s= block_w*block_w;
368     sum = pix_sum(current_data[0], stride, block_w, block_w);
369     l= (sum + block_s/2)/block_s;
370     iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
371
372     if (s->nb_planes > 2) {
373         block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
374         sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
375         cb= (sum + block_s/2)/block_s;
376     //    iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
377         sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
378         cr= (sum + block_s/2)/block_s;
379     //    iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
380     }else
381         cb = cr = 0;
382
383     ic= s->c;
384     ic.bytestream_start=
385     ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
386     memcpy(i_state, s->block_state, sizeof(s->block_state));
387     if(level!=s->block_max_depth)
388         put_rac(&ic, &i_state[4 + s_context], 1);
389     put_rac(&ic, &i_state[1 + left->type + top->type], 1);
390     put_symbol(&ic, &i_state[32],  l-pl , 1);
391     if (s->nb_planes > 2) {
392         put_symbol(&ic, &i_state[64], cb-pcb, 1);
393         put_symbol(&ic, &i_state[96], cr-pcr, 1);
394     }
395     i_len= ic.bytestream - ic.bytestream_start;
396     iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
397
398 //    assert(score==256*256*256*64-1);
399     av_assert1(iscore < 255*255*256 + s->lambda2*10);
400     av_assert1(iscore >= 0);
401     av_assert1(l>=0 && l<=255);
402     av_assert1(pl>=0 && pl<=255);
403
404     if(level==0){
405         int varc= iscore >> 8;
406         int vard= score >> 8;
407         if (vard <= 64 || vard < varc)
408             c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
409         else
410             c->scene_change_score+= s->m.qscale;
411     }
412
413     if(level!=s->block_max_depth){
414         put_rac(&s->c, &s->block_state[4 + s_context], 0);
415         score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
416         score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
417         score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
418         score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
419         score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
420
421         if(score2 < score && score2 < iscore)
422             return score2;
423     }
424
425     if(iscore < score){
426         pred_mv(s, &pmx, &pmy, 0, left, top, tr);
427         memcpy(pbbak, i_buffer, i_len);
428         s->c= ic;
429         s->c.bytestream_start= pbbak_start;
430         s->c.bytestream= pbbak + i_len;
431         set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
432         memcpy(s->block_state, i_state, sizeof(s->block_state));
433         return iscore;
434     }else{
435         memcpy(pbbak, p_buffer, p_len);
436         s->c= pc;
437         s->c.bytestream_start= pbbak_start;
438         s->c.bytestream= pbbak + p_len;
439         set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
440         memcpy(s->block_state, p_state, sizeof(s->block_state));
441         return score;
442     }
443 }
444
445 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
446     const int w= s->b_width  << s->block_max_depth;
447     const int rem_depth= s->block_max_depth - level;
448     const int index= (x + y*w) << rem_depth;
449     int trx= (x+1)<<rem_depth;
450     BlockNode *b= &s->block[index];
451     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
452     const BlockNode *top   = y ? &s->block[index-w] : &null_block;
453     const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
454     const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
455     int pl = left->color[0];
456     int pcb= left->color[1];
457     int pcr= left->color[2];
458     int pmx, pmy;
459     int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
460     int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
461     int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
462     int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
463
464     if(s->keyframe){
465         set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
466         return;
467     }
468
469     if(level!=s->block_max_depth){
470         if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
471             put_rac(&s->c, &s->block_state[4 + s_context], 1);
472         }else{
473             put_rac(&s->c, &s->block_state[4 + s_context], 0);
474             encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
475             encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
476             encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
477             encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
478             return;
479         }
480     }
481     if(b->type & BLOCK_INTRA){
482         pred_mv(s, &pmx, &pmy, 0, left, top, tr);
483         put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
484         put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
485         if (s->nb_planes > 2) {
486             put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
487             put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
488         }
489         set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
490     }else{
491         pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
492         put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
493         if(s->ref_frames > 1)
494             put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
495         put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
496         put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
497         set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
498     }
499 }
500
501 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
502     int i, x2, y2;
503     Plane *p= &s->plane[plane_index];
504     const int block_size = MB_SIZE >> s->block_max_depth;
505     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
506     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
507     const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
508     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
509     const int ref_stride= s->current_picture->linesize[plane_index];
510     uint8_t *src= s-> input_picture->data[plane_index];
511     IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
512     const int b_stride = s->b_width << s->block_max_depth;
513     const int w= p->width;
514     const int h= p->height;
515     int index= mb_x + mb_y*b_stride;
516     BlockNode *b= &s->block[index];
517     BlockNode backup= *b;
518     int ab=0;
519     int aa=0;
520
521     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
522
523     b->type|= BLOCK_INTRA;
524     b->color[plane_index]= 0;
525     memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
526
527     for(i=0; i<4; i++){
528         int mb_x2= mb_x + (i &1) - 1;
529         int mb_y2= mb_y + (i>>1) - 1;
530         int x= block_w*mb_x2 + block_w/2;
531         int y= block_h*mb_y2 + block_h/2;
532
533         add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
534                     x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
535
536         for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
537             for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
538                 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
539                 int obmc_v= obmc[index];
540                 int d;
541                 if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
542                 if(x<0) obmc_v += obmc[index + block_w];
543                 if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
544                 if(x+block_w>w) obmc_v += obmc[index - block_w];
545                 //FIXME precalculate this or simplify it somehow else
546
547                 d = -dst[index] + (1<<(FRAC_BITS-1));
548                 dst[index] = d;
549                 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
550                 aa += obmc_v * obmc_v; //FIXME precalculate this
551             }
552         }
553     }
554     *b= backup;
555
556     return av_clip( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa), 0, 255); //FIXME we should not need clipping
557 }
558
559 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
560     const int b_stride = s->b_width << s->block_max_depth;
561     const int b_height = s->b_height<< s->block_max_depth;
562     int index= x + y*b_stride;
563     const BlockNode *b     = &s->block[index];
564     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
565     const BlockNode *top   = y ? &s->block[index-b_stride] : &null_block;
566     const BlockNode *tl    = y && x ? &s->block[index-b_stride-1] : left;
567     const BlockNode *tr    = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
568     int dmx, dmy;
569 //  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
570 //  int my_context= av_log2(2*FFABS(left->my - top->my));
571
572     if(x<0 || x>=b_stride || y>=b_height)
573         return 0;
574 /*
575 1            0      0
576 01X          1-2    1
577 001XX        3-6    2-3
578 0001XXX      7-14   4-7
579 00001XXXX   15-30   8-15
580 */
581 //FIXME try accurate rate
582 //FIXME intra and inter predictors if surrounding blocks are not the same type
583     if(b->type & BLOCK_INTRA){
584         return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
585                    + av_log2(2*FFABS(left->color[1] - b->color[1]))
586                    + av_log2(2*FFABS(left->color[2] - b->color[2])));
587     }else{
588         pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
589         dmx-= b->mx;
590         dmy-= b->my;
591         return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
592                     + av_log2(2*FFABS(dmy))
593                     + av_log2(2*b->ref));
594     }
595 }
596
597 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
598     Plane *p= &s->plane[plane_index];
599     const int block_size = MB_SIZE >> s->block_max_depth;
600     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
601     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
602     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
603     const int ref_stride= s->current_picture->linesize[plane_index];
604     uint8_t *dst= s->current_picture->data[plane_index];
605     uint8_t *src= s->  input_picture->data[plane_index];
606     IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
607     uint8_t *cur = s->scratchbuf;
608     uint8_t *tmp = s->emu_edge_buffer;
609     const int b_stride = s->b_width << s->block_max_depth;
610     const int b_height = s->b_height<< s->block_max_depth;
611     const int w= p->width;
612     const int h= p->height;
613     int distortion;
614     int rate= 0;
615     const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
616     int sx= block_w*mb_x - block_w/2;
617     int sy= block_h*mb_y - block_h/2;
618     int x0= FFMAX(0,-sx);
619     int y0= FFMAX(0,-sy);
620     int x1= FFMIN(block_w*2, w-sx);
621     int y1= FFMIN(block_h*2, h-sy);
622     int i,x,y;
623
624     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
625
626     ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
627
628     for(y=y0; y<y1; y++){
629         const uint8_t *obmc1= obmc_edged[y];
630         const IDWTELEM *pred1 = pred + y*obmc_stride;
631         uint8_t *cur1 = cur + y*ref_stride;
632         uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
633         for(x=x0; x<x1; x++){
634 #if FRAC_BITS >= LOG2_OBMC_MAX
635             int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
636 #else
637             int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
638 #endif
639             v = (v + pred1[x]) >> FRAC_BITS;
640             if(v&(~255)) v= ~(v>>31);
641             dst1[x] = v;
642         }
643     }
644
645     /* copy the regions where obmc[] = (uint8_t)256 */
646     if(LOG2_OBMC_MAX == 8
647         && (mb_x == 0 || mb_x == b_stride-1)
648         && (mb_y == 0 || mb_y == b_height-1)){
649         if(mb_x == 0)
650             x1 = block_w;
651         else
652             x0 = block_w;
653         if(mb_y == 0)
654             y1 = block_h;
655         else
656             y0 = block_h;
657         for(y=y0; y<y1; y++)
658             memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
659     }
660
661     if(block_w==16){
662         /* FIXME rearrange dsputil to fit 32x32 cmp functions */
663         /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
664         /* FIXME cmps overlap but do not cover the wavelet's whole support.
665          * So improving the score of one block is not strictly guaranteed
666          * to improve the score of the whole frame, thus iterative motion
667          * estimation does not always converge. */
668         if(s->avctx->me_cmp == FF_CMP_W97)
669             distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
670         else if(s->avctx->me_cmp == FF_CMP_W53)
671             distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
672         else{
673             distortion = 0;
674             for(i=0; i<4; i++){
675                 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
676                 distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
677             }
678         }
679     }else{
680         av_assert2(block_w==8);
681         distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
682     }
683
684     if(plane_index==0){
685         for(i=0; i<4; i++){
686 /* ..RRr
687  * .RXx.
688  * rxx..
689  */
690             rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
691         }
692         if(mb_x == b_stride-2)
693             rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
694     }
695     return distortion + rate*penalty_factor;
696 }
697
698 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
699     int i, y2;
700     Plane *p= &s->plane[plane_index];
701     const int block_size = MB_SIZE >> s->block_max_depth;
702     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
703     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
704     const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
705     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
706     const int ref_stride= s->current_picture->linesize[plane_index];
707     uint8_t *dst= s->current_picture->data[plane_index];
708     uint8_t *src= s-> input_picture->data[plane_index];
709     //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
710     // const has only been removed from zero_dst to suppress a warning
711     static IDWTELEM zero_dst[4096]; //FIXME
712     const int b_stride = s->b_width << s->block_max_depth;
713     const int w= p->width;
714     const int h= p->height;
715     int distortion= 0;
716     int rate= 0;
717     const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
718
719     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
720
721     for(i=0; i<9; i++){
722         int mb_x2= mb_x + (i%3) - 1;
723         int mb_y2= mb_y + (i/3) - 1;
724         int x= block_w*mb_x2 + block_w/2;
725         int y= block_h*mb_y2 + block_h/2;
726
727         add_yblock(s, 0, NULL, zero_dst, dst, obmc,
728                    x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
729
730         //FIXME find a cleaner/simpler way to skip the outside stuff
731         for(y2= y; y2<0; y2++)
732             memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
733         for(y2= h; y2<y+block_h; y2++)
734             memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
735         if(x<0){
736             for(y2= y; y2<y+block_h; y2++)
737                 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
738         }
739         if(x+block_w > w){
740             for(y2= y; y2<y+block_h; y2++)
741                 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
742         }
743
744         av_assert1(block_w== 8 || block_w==16);
745         distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
746     }
747
748     if(plane_index==0){
749         BlockNode *b= &s->block[mb_x+mb_y*b_stride];
750         int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
751
752 /* ..RRRr
753  * .RXXx.
754  * .RXXx.
755  * rxxx.
756  */
757         if(merged)
758             rate = get_block_bits(s, mb_x, mb_y, 2);
759         for(i=merged?4:0; i<9; i++){
760             static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
761             rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
762         }
763     }
764     return distortion + rate*penalty_factor;
765 }
766
767 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
768     const int w= b->width;
769     const int h= b->height;
770     int x, y;
771
772     if(1){
773         int run=0;
774         int *runs = s->run_buffer;
775         int run_index=0;
776         int max_index;
777
778         for(y=0; y<h; y++){
779             for(x=0; x<w; x++){
780                 int v, p=0;
781                 int /*ll=0, */l=0, lt=0, t=0, rt=0;
782                 v= src[x + y*stride];
783
784                 if(y){
785                     t= src[x + (y-1)*stride];
786                     if(x){
787                         lt= src[x - 1 + (y-1)*stride];
788                     }
789                     if(x + 1 < w){
790                         rt= src[x + 1 + (y-1)*stride];
791                     }
792                 }
793                 if(x){
794                     l= src[x - 1 + y*stride];
795                     /*if(x > 1){
796                         if(orientation==1) ll= src[y + (x-2)*stride];
797                         else               ll= src[x - 2 + y*stride];
798                     }*/
799                 }
800                 if(parent){
801                     int px= x>>1;
802                     int py= y>>1;
803                     if(px<b->parent->width && py<b->parent->height)
804                         p= parent[px + py*2*stride];
805                 }
806                 if(!(/*ll|*/l|lt|t|rt|p)){
807                     if(v){
808                         runs[run_index++]= run;
809                         run=0;
810                     }else{
811                         run++;
812                     }
813                 }
814             }
815         }
816         max_index= run_index;
817         runs[run_index++]= run;
818         run_index=0;
819         run= runs[run_index++];
820
821         put_symbol2(&s->c, b->state[30], max_index, 0);
822         if(run_index <= max_index)
823             put_symbol2(&s->c, b->state[1], run, 3);
824
825         for(y=0; y<h; y++){
826             if(s->c.bytestream_end - s->c.bytestream < w*40){
827                 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
828                 return -1;
829             }
830             for(x=0; x<w; x++){
831                 int v, p=0;
832                 int /*ll=0, */l=0, lt=0, t=0, rt=0;
833                 v= src[x + y*stride];
834
835                 if(y){
836                     t= src[x + (y-1)*stride];
837                     if(x){
838                         lt= src[x - 1 + (y-1)*stride];
839                     }
840                     if(x + 1 < w){
841                         rt= src[x + 1 + (y-1)*stride];
842                     }
843                 }
844                 if(x){
845                     l= src[x - 1 + y*stride];
846                     /*if(x > 1){
847                         if(orientation==1) ll= src[y + (x-2)*stride];
848                         else               ll= src[x - 2 + y*stride];
849                     }*/
850                 }
851                 if(parent){
852                     int px= x>>1;
853                     int py= y>>1;
854                     if(px<b->parent->width && py<b->parent->height)
855                         p= parent[px + py*2*stride];
856                 }
857                 if(/*ll|*/l|lt|t|rt|p){
858                     int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
859
860                     put_rac(&s->c, &b->state[0][context], !!v);
861                 }else{
862                     if(!run){
863                         run= runs[run_index++];
864
865                         if(run_index <= max_index)
866                             put_symbol2(&s->c, b->state[1], run, 3);
867                         av_assert2(v);
868                     }else{
869                         run--;
870                         av_assert2(!v);
871                     }
872                 }
873                 if(v){
874                     int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
875                     int l2= 2*FFABS(l) + (l<0);
876                     int t2= 2*FFABS(t) + (t<0);
877
878                     put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
879                     put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
880                 }
881             }
882         }
883     }
884     return 0;
885 }
886
887 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
888 //    encode_subband_qtree(s, b, src, parent, stride, orientation);
889 //    encode_subband_z0run(s, b, src, parent, stride, orientation);
890     return encode_subband_c0run(s, b, src, parent, stride, orientation);
891 //    encode_subband_dzr(s, b, src, parent, stride, orientation);
892 }
893
894 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
895     const int b_stride= s->b_width << s->block_max_depth;
896     BlockNode *block= &s->block[mb_x + mb_y * b_stride];
897     BlockNode backup= *block;
898     unsigned value;
899     int rd, index;
900
901     av_assert2(mb_x>=0 && mb_y>=0);
902     av_assert2(mb_x<b_stride);
903
904     if(intra){
905         block->color[0] = p[0];
906         block->color[1] = p[1];
907         block->color[2] = p[2];
908         block->type |= BLOCK_INTRA;
909     }else{
910         index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
911         value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
912         if(s->me_cache[index] == value)
913             return 0;
914         s->me_cache[index]= value;
915
916         block->mx= p[0];
917         block->my= p[1];
918         block->type &= ~BLOCK_INTRA;
919     }
920
921     rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
922
923 //FIXME chroma
924     if(rd < *best_rd){
925         *best_rd= rd;
926         return 1;
927     }else{
928         *block= backup;
929         return 0;
930     }
931 }
932
933 /* special case for int[2] args we discard afterwards,
934  * fixes compilation problem with gcc 2.95 */
935 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
936     int p[2] = {p0, p1};
937     return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
938 }
939
940 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
941     const int b_stride= s->b_width << s->block_max_depth;
942     BlockNode *block= &s->block[mb_x + mb_y * b_stride];
943     BlockNode backup[4];
944     unsigned value;
945     int rd, index;
946
947     /* We don't initialize backup[] during variable declaration, because
948      * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
949      * 'int16_t'". */
950     backup[0] = block[0];
951     backup[1] = block[1];
952     backup[2] = block[b_stride];
953     backup[3] = block[b_stride + 1];
954
955     av_assert2(mb_x>=0 && mb_y>=0);
956     av_assert2(mb_x<b_stride);
957     av_assert2(((mb_x|mb_y)&1) == 0);
958
959     index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
960     value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
961     if(s->me_cache[index] == value)
962         return 0;
963     s->me_cache[index]= value;
964
965     block->mx= p0;
966     block->my= p1;
967     block->ref= ref;
968     block->type &= ~BLOCK_INTRA;
969     block[1]= block[b_stride]= block[b_stride+1]= *block;
970
971     rd= get_4block_rd(s, mb_x, mb_y, 0);
972
973 //FIXME chroma
974     if(rd < *best_rd){
975         *best_rd= rd;
976         return 1;
977     }else{
978         block[0]= backup[0];
979         block[1]= backup[1];
980         block[b_stride]= backup[2];
981         block[b_stride+1]= backup[3];
982         return 0;
983     }
984 }
985
986 static void iterative_me(SnowContext *s){
987     int pass, mb_x, mb_y;
988     const int b_width = s->b_width  << s->block_max_depth;
989     const int b_height= s->b_height << s->block_max_depth;
990     const int b_stride= b_width;
991     int color[3];
992
993     {
994         RangeCoder r = s->c;
995         uint8_t state[sizeof(s->block_state)];
996         memcpy(state, s->block_state, sizeof(s->block_state));
997         for(mb_y= 0; mb_y<s->b_height; mb_y++)
998             for(mb_x= 0; mb_x<s->b_width; mb_x++)
999                 encode_q_branch(s, 0, mb_x, mb_y);
1000         s->c = r;
1001         memcpy(s->block_state, state, sizeof(s->block_state));
1002     }
1003
1004     for(pass=0; pass<25; pass++){
1005         int change= 0;
1006
1007         for(mb_y= 0; mb_y<b_height; mb_y++){
1008             for(mb_x= 0; mb_x<b_width; mb_x++){
1009                 int dia_change, i, j, ref;
1010                 int best_rd= INT_MAX, ref_rd;
1011                 BlockNode backup, ref_b;
1012                 const int index= mb_x + mb_y * b_stride;
1013                 BlockNode *block= &s->block[index];
1014                 BlockNode *tb =                   mb_y            ? &s->block[index-b_stride  ] : NULL;
1015                 BlockNode *lb = mb_x                              ? &s->block[index         -1] : NULL;
1016                 BlockNode *rb = mb_x+1<b_width                    ? &s->block[index         +1] : NULL;
1017                 BlockNode *bb =                   mb_y+1<b_height ? &s->block[index+b_stride  ] : NULL;
1018                 BlockNode *tlb= mb_x           && mb_y            ? &s->block[index-b_stride-1] : NULL;
1019                 BlockNode *trb= mb_x+1<b_width && mb_y            ? &s->block[index-b_stride+1] : NULL;
1020                 BlockNode *blb= mb_x           && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1021                 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1022                 const int b_w= (MB_SIZE >> s->block_max_depth);
1023                 uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1024
1025                 if(pass && (block->type & BLOCK_OPT))
1026                     continue;
1027                 block->type |= BLOCK_OPT;
1028
1029                 backup= *block;
1030
1031                 if(!s->me_cache_generation)
1032                     memset(s->me_cache, 0, sizeof(s->me_cache));
1033                 s->me_cache_generation += 1<<22;
1034
1035                 //FIXME precalculate
1036                 {
1037                     int x, y;
1038                     for (y = 0; y < b_w * 2; y++)
1039                         memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1040                     if(mb_x==0)
1041                         for(y=0; y<b_w*2; y++)
1042                             memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1043                     if(mb_x==b_stride-1)
1044                         for(y=0; y<b_w*2; y++)
1045                             memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1046                     if(mb_y==0){
1047                         for(x=0; x<b_w*2; x++)
1048                             obmc_edged[0][x] += obmc_edged[b_w-1][x];
1049                         for(y=1; y<b_w; y++)
1050                             memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1051                     }
1052                     if(mb_y==b_height-1){
1053                         for(x=0; x<b_w*2; x++)
1054                             obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1055                         for(y=b_w; y<b_w*2-1; y++)
1056                             memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1057                     }
1058                 }
1059
1060                 //skip stuff outside the picture
1061                 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1062                     uint8_t *src= s->  input_picture->data[0];
1063                     uint8_t *dst= s->current_picture->data[0];
1064                     const int stride= s->current_picture->linesize[0];
1065                     const int block_w= MB_SIZE >> s->block_max_depth;
1066                     const int block_h= MB_SIZE >> s->block_max_depth;
1067                     const int sx= block_w*mb_x - block_w/2;
1068                     const int sy= block_h*mb_y - block_h/2;
1069                     const int w= s->plane[0].width;
1070                     const int h= s->plane[0].height;
1071                     int y;
1072
1073                     for(y=sy; y<0; y++)
1074                         memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1075                     for(y=h; y<sy+block_h*2; y++)
1076                         memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1077                     if(sx<0){
1078                         for(y=sy; y<sy+block_h*2; y++)
1079                             memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1080                     }
1081                     if(sx+block_w*2 > w){
1082                         for(y=sy; y<sy+block_h*2; y++)
1083                             memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1084                     }
1085                 }
1086
1087                 // intra(black) = neighbors' contribution to the current block
1088                 for(i=0; i < s->nb_planes; i++)
1089                     color[i]= get_dc(s, mb_x, mb_y, i);
1090
1091                 // get previous score (cannot be cached due to OBMC)
1092                 if(pass > 0 && (block->type&BLOCK_INTRA)){
1093                     int color0[3]= {block->color[0], block->color[1], block->color[2]};
1094                     check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1095                 }else
1096                     check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1097
1098                 ref_b= *block;
1099                 ref_rd= best_rd;
1100                 for(ref=0; ref < s->ref_frames; ref++){
1101                     int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1102                     if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1103                         continue;
1104                     block->ref= ref;
1105                     best_rd= INT_MAX;
1106
1107                     check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1108                     check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1109                     if(tb)
1110                         check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1111                     if(lb)
1112                         check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1113                     if(rb)
1114                         check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1115                     if(bb)
1116                         check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1117
1118                     /* fullpel ME */
1119                     //FIXME avoid subpel interpolation / round to nearest integer
1120                     do{
1121                         dia_change=0;
1122                         for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1123                             for(j=0; j<i; j++){
1124                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1125                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1126                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1127                                 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1128                             }
1129                         }
1130                     }while(dia_change);
1131                     /* subpel ME */
1132                     do{
1133                         static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1134                         dia_change=0;
1135                         for(i=0; i<8; i++)
1136                             dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1137                     }while(dia_change);
1138                     //FIXME or try the standard 2 pass qpel or similar
1139
1140                     mvr[0][0]= block->mx;
1141                     mvr[0][1]= block->my;
1142                     if(ref_rd > best_rd){
1143                         ref_rd= best_rd;
1144                         ref_b= *block;
1145                     }
1146                 }
1147                 best_rd= ref_rd;
1148                 *block= ref_b;
1149                 check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1150                 //FIXME RD style color selection
1151                 if(!same_block(block, &backup)){
1152                     if(tb ) tb ->type &= ~BLOCK_OPT;
1153                     if(lb ) lb ->type &= ~BLOCK_OPT;
1154                     if(rb ) rb ->type &= ~BLOCK_OPT;
1155                     if(bb ) bb ->type &= ~BLOCK_OPT;
1156                     if(tlb) tlb->type &= ~BLOCK_OPT;
1157                     if(trb) trb->type &= ~BLOCK_OPT;
1158                     if(blb) blb->type &= ~BLOCK_OPT;
1159                     if(brb) brb->type &= ~BLOCK_OPT;
1160                     change ++;
1161                 }
1162             }
1163         }
1164         av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1165         if(!change)
1166             break;
1167     }
1168
1169     if(s->block_max_depth == 1){
1170         int change= 0;
1171         for(mb_y= 0; mb_y<b_height; mb_y+=2){
1172             for(mb_x= 0; mb_x<b_width; mb_x+=2){
1173                 int i;
1174                 int best_rd, init_rd;
1175                 const int index= mb_x + mb_y * b_stride;
1176                 BlockNode *b[4];
1177
1178                 b[0]= &s->block[index];
1179                 b[1]= b[0]+1;
1180                 b[2]= b[0]+b_stride;
1181                 b[3]= b[2]+1;
1182                 if(same_block(b[0], b[1]) &&
1183                    same_block(b[0], b[2]) &&
1184                    same_block(b[0], b[3]))
1185                     continue;
1186
1187                 if(!s->me_cache_generation)
1188                     memset(s->me_cache, 0, sizeof(s->me_cache));
1189                 s->me_cache_generation += 1<<22;
1190
1191                 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1192
1193                 //FIXME more multiref search?
1194                 check_4block_inter(s, mb_x, mb_y,
1195                                    (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1196                                    (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1197
1198                 for(i=0; i<4; i++)
1199                     if(!(b[i]->type&BLOCK_INTRA))
1200                         check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1201
1202                 if(init_rd != best_rd)
1203                     change++;
1204             }
1205         }
1206         av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1207     }
1208 }
1209
1210 static void encode_blocks(SnowContext *s, int search){
1211     int x, y;
1212     int w= s->b_width;
1213     int h= s->b_height;
1214
1215     if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1216         iterative_me(s);
1217
1218     for(y=0; y<h; y++){
1219         if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1220             av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1221             return;
1222         }
1223         for(x=0; x<w; x++){
1224             if(s->avctx->me_method == ME_ITER || !search)
1225                 encode_q_branch2(s, 0, x, y);
1226             else
1227                 encode_q_branch (s, 0, x, y);
1228         }
1229     }
1230 }
1231
1232 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1233     const int w= b->width;
1234     const int h= b->height;
1235     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1236     const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1237     int x,y, thres1, thres2;
1238
1239     if(s->qlog == LOSSLESS_QLOG){
1240         for(y=0; y<h; y++)
1241             for(x=0; x<w; x++)
1242                 dst[x + y*stride]= src[x + y*stride];
1243         return;
1244     }
1245
1246     bias= bias ? 0 : (3*qmul)>>3;
1247     thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1248     thres2= 2*thres1;
1249
1250     if(!bias){
1251         for(y=0; y<h; y++){
1252             for(x=0; x<w; x++){
1253                 int i= src[x + y*stride];
1254
1255                 if((unsigned)(i+thres1) > thres2){
1256                     if(i>=0){
1257                         i<<= QEXPSHIFT;
1258                         i/= qmul; //FIXME optimize
1259                         dst[x + y*stride]=  i;
1260                     }else{
1261                         i= -i;
1262                         i<<= QEXPSHIFT;
1263                         i/= qmul; //FIXME optimize
1264                         dst[x + y*stride]= -i;
1265                     }
1266                 }else
1267                     dst[x + y*stride]= 0;
1268             }
1269         }
1270     }else{
1271         for(y=0; y<h; y++){
1272             for(x=0; x<w; x++){
1273                 int i= src[x + y*stride];
1274
1275                 if((unsigned)(i+thres1) > thres2){
1276                     if(i>=0){
1277                         i<<= QEXPSHIFT;
1278                         i= (i + bias) / qmul; //FIXME optimize
1279                         dst[x + y*stride]=  i;
1280                     }else{
1281                         i= -i;
1282                         i<<= QEXPSHIFT;
1283                         i= (i + bias) / qmul; //FIXME optimize
1284                         dst[x + y*stride]= -i;
1285                     }
1286                 }else
1287                     dst[x + y*stride]= 0;
1288             }
1289         }
1290     }
1291 }
1292
1293 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1294     const int w= b->width;
1295     const int h= b->height;
1296     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1297     const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1298     const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1299     int x,y;
1300
1301     if(s->qlog == LOSSLESS_QLOG) return;
1302
1303     for(y=0; y<h; y++){
1304         for(x=0; x<w; x++){
1305             int i= src[x + y*stride];
1306             if(i<0){
1307                 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1308             }else if(i>0){
1309                 src[x + y*stride]=  (( i*qmul + qadd)>>(QEXPSHIFT));
1310             }
1311         }
1312     }
1313 }
1314
1315 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1316     const int w= b->width;
1317     const int h= b->height;
1318     int x,y;
1319
1320     for(y=h-1; y>=0; y--){
1321         for(x=w-1; x>=0; x--){
1322             int i= x + y*stride;
1323
1324             if(x){
1325                 if(use_median){
1326                     if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1327                     else  src[i] -= src[i - 1];
1328                 }else{
1329                     if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1330                     else  src[i] -= src[i - 1];
1331                 }
1332             }else{
1333                 if(y) src[i] -= src[i - stride];
1334             }
1335         }
1336     }
1337 }
1338
1339 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1340     const int w= b->width;
1341     const int h= b->height;
1342     int x,y;
1343
1344     for(y=0; y<h; y++){
1345         for(x=0; x<w; x++){
1346             int i= x + y*stride;
1347
1348             if(x){
1349                 if(use_median){
1350                     if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1351                     else  src[i] += src[i - 1];
1352                 }else{
1353                     if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1354                     else  src[i] += src[i - 1];
1355                 }
1356             }else{
1357                 if(y) src[i] += src[i - stride];
1358             }
1359         }
1360     }
1361 }
1362
1363 static void encode_qlogs(SnowContext *s){
1364     int plane_index, level, orientation;
1365
1366     for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1367         for(level=0; level<s->spatial_decomposition_count; level++){
1368             for(orientation=level ? 1:0; orientation<4; orientation++){
1369                 if(orientation==2) continue;
1370                 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1371             }
1372         }
1373     }
1374 }
1375
1376 static void encode_header(SnowContext *s){
1377     int plane_index, i;
1378     uint8_t kstate[32];
1379
1380     memset(kstate, MID_STATE, sizeof(kstate));
1381
1382     put_rac(&s->c, kstate, s->keyframe);
1383     if(s->keyframe || s->always_reset){
1384         ff_snow_reset_contexts(s);
1385         s->last_spatial_decomposition_type=
1386         s->last_qlog=
1387         s->last_qbias=
1388         s->last_mv_scale=
1389         s->last_block_max_depth= 0;
1390         for(plane_index=0; plane_index<2; plane_index++){
1391             Plane *p= &s->plane[plane_index];
1392             p->last_htaps=0;
1393             p->last_diag_mc=0;
1394             memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1395         }
1396     }
1397     if(s->keyframe){
1398         put_symbol(&s->c, s->header_state, s->version, 0);
1399         put_rac(&s->c, s->header_state, s->always_reset);
1400         put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1401         put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1402         put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1403         put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1404         if (s->nb_planes > 2) {
1405             put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1406             put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1407         }
1408         put_rac(&s->c, s->header_state, s->spatial_scalability);
1409 //        put_rac(&s->c, s->header_state, s->rate_scalability);
1410         put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1411
1412         encode_qlogs(s);
1413     }
1414
1415     if(!s->keyframe){
1416         int update_mc=0;
1417         for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1418             Plane *p= &s->plane[plane_index];
1419             update_mc |= p->last_htaps   != p->htaps;
1420             update_mc |= p->last_diag_mc != p->diag_mc;
1421             update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1422         }
1423         put_rac(&s->c, s->header_state, update_mc);
1424         if(update_mc){
1425             for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1426                 Plane *p= &s->plane[plane_index];
1427                 put_rac(&s->c, s->header_state, p->diag_mc);
1428                 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1429                 for(i= p->htaps/2; i; i--)
1430                     put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1431             }
1432         }
1433         if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1434             put_rac(&s->c, s->header_state, 1);
1435             put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1436             encode_qlogs(s);
1437         }else
1438             put_rac(&s->c, s->header_state, 0);
1439     }
1440
1441     put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1442     put_symbol(&s->c, s->header_state, s->qlog            - s->last_qlog    , 1);
1443     put_symbol(&s->c, s->header_state, s->mv_scale        - s->last_mv_scale, 1);
1444     put_symbol(&s->c, s->header_state, s->qbias           - s->last_qbias   , 1);
1445     put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1446
1447 }
1448
1449 static void update_last_header_values(SnowContext *s){
1450     int plane_index;
1451
1452     if(!s->keyframe){
1453         for(plane_index=0; plane_index<2; plane_index++){
1454             Plane *p= &s->plane[plane_index];
1455             p->last_diag_mc= p->diag_mc;
1456             p->last_htaps  = p->htaps;
1457             memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1458         }
1459     }
1460
1461     s->last_spatial_decomposition_type  = s->spatial_decomposition_type;
1462     s->last_qlog                        = s->qlog;
1463     s->last_qbias                       = s->qbias;
1464     s->last_mv_scale                    = s->mv_scale;
1465     s->last_block_max_depth             = s->block_max_depth;
1466     s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1467 }
1468
1469 static int qscale2qlog(int qscale){
1470     return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1471            + 61*QROOT/8; ///< 64 > 60
1472 }
1473
1474 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1475 {
1476     /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1477      * FIXME we know exact mv bits at this point,
1478      * but ratecontrol isn't set up to include them. */
1479     uint32_t coef_sum= 0;
1480     int level, orientation, delta_qlog;
1481
1482     for(level=0; level<s->spatial_decomposition_count; level++){
1483         for(orientation=level ? 1 : 0; orientation<4; orientation++){
1484             SubBand *b= &s->plane[0].band[level][orientation];
1485             IDWTELEM *buf= b->ibuf;
1486             const int w= b->width;
1487             const int h= b->height;
1488             const int stride= b->stride;
1489             const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1490             const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1491             const int qdiv= (1<<16)/qmul;
1492             int x, y;
1493             //FIXME this is ugly
1494             for(y=0; y<h; y++)
1495                 for(x=0; x<w; x++)
1496                     buf[x+y*stride]= b->buf[x+y*stride];
1497             if(orientation==0)
1498                 decorrelate(s, b, buf, stride, 1, 0);
1499             for(y=0; y<h; y++)
1500                 for(x=0; x<w; x++)
1501                     coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1502         }
1503     }
1504
1505     /* ugly, ratecontrol just takes a sqrt again */
1506     coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1507     av_assert0(coef_sum < INT_MAX);
1508
1509     if(pict->pict_type == AV_PICTURE_TYPE_I){
1510         s->m.current_picture.mb_var_sum= coef_sum;
1511         s->m.current_picture.mc_mb_var_sum= 0;
1512     }else{
1513         s->m.current_picture.mc_mb_var_sum= coef_sum;
1514         s->m.current_picture.mb_var_sum= 0;
1515     }
1516
1517     pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1518     if (pict->quality < 0)
1519         return INT_MIN;
1520     s->lambda= pict->quality * 3/2;
1521     delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1522     s->qlog+= delta_qlog;
1523     return delta_qlog;
1524 }
1525
1526 static void calculate_visual_weight(SnowContext *s, Plane *p){
1527     int width = p->width;
1528     int height= p->height;
1529     int level, orientation, x, y;
1530
1531     for(level=0; level<s->spatial_decomposition_count; level++){
1532         for(orientation=level ? 1 : 0; orientation<4; orientation++){
1533             SubBand *b= &p->band[level][orientation];
1534             IDWTELEM *ibuf= b->ibuf;
1535             int64_t error=0;
1536
1537             memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1538             ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1539             ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1540             for(y=0; y<height; y++){
1541                 for(x=0; x<width; x++){
1542                     int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1543                     error += d*d;
1544                 }
1545             }
1546
1547             b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1548         }
1549     }
1550 }
1551
1552 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1553                         const AVFrame *pict, int *got_packet)
1554 {
1555     SnowContext *s = avctx->priv_data;
1556     RangeCoder * const c= &s->c;
1557     AVFrame *pic = pict;
1558     const int width= s->avctx->width;
1559     const int height= s->avctx->height;
1560     int level, orientation, plane_index, i, y, ret;
1561     uint8_t rc_header_bak[sizeof(s->header_state)];
1562     uint8_t rc_block_bak[sizeof(s->block_state)];
1563
1564     if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1565         return ret;
1566
1567     ff_init_range_encoder(c, pkt->data, pkt->size);
1568     ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1569
1570     for(i=0; i < s->nb_planes; i++){
1571         int hshift= i ? s->chroma_h_shift : 0;
1572         int vshift= i ? s->chroma_v_shift : 0;
1573         for(y=0; y<(height>>vshift); y++)
1574             memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1575                    &pict->data[i][y * pict->linesize[i]],
1576                    width>>hshift);
1577         s->dsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
1578                             width >> hshift, height >> vshift,
1579                             EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1580                             EDGE_TOP | EDGE_BOTTOM);
1581
1582     }
1583     emms_c();
1584     s->new_picture = pict;
1585
1586     s->m.picture_number= avctx->frame_number;
1587     if(avctx->flags&CODEC_FLAG_PASS2){
1588         s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1589         s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1590         if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1591             pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1592             if (pic->quality < 0)
1593                 return -1;
1594         }
1595     }else{
1596         s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1597         s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1598     }
1599
1600     if(s->pass1_rc && avctx->frame_number == 0)
1601         pic->quality = 2*FF_QP2LAMBDA;
1602     if (pic->quality) {
1603         s->qlog   = qscale2qlog(pic->quality);
1604         s->lambda = pic->quality * 3/2;
1605     }
1606     if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1607         s->qlog= LOSSLESS_QLOG;
1608         s->lambda = 0;
1609     }//else keep previous frame's qlog until after motion estimation
1610
1611     ff_snow_frame_start(s);
1612     avctx->coded_frame= s->current_picture;
1613
1614     s->m.current_picture_ptr= &s->m.current_picture;
1615     s->m.last_picture.f.pts = s->m.current_picture.f.pts;
1616     s->m.current_picture.f.pts = pict->pts;
1617     if(pic->pict_type == AV_PICTURE_TYPE_P){
1618         int block_width = (width +15)>>4;
1619         int block_height= (height+15)>>4;
1620         int stride= s->current_picture->linesize[0];
1621
1622         av_assert0(s->current_picture->data[0]);
1623         av_assert0(s->last_picture[0]->data[0]);
1624
1625         s->m.avctx= s->avctx;
1626         s->m.current_picture.f.data[0] = s->current_picture->data[0];
1627         s->m.   last_picture.f.data[0] = s->last_picture[0]->data[0];
1628         s->m.    new_picture.f.data[0] = s->  input_picture->data[0];
1629         s->m.   last_picture_ptr= &s->m.   last_picture;
1630         s->m.linesize=
1631         s->m.   last_picture.f.linesize[0] =
1632         s->m.    new_picture.f.linesize[0] =
1633         s->m.current_picture.f.linesize[0] = stride;
1634         s->m.uvlinesize= s->current_picture->linesize[1];
1635         s->m.width = width;
1636         s->m.height= height;
1637         s->m.mb_width = block_width;
1638         s->m.mb_height= block_height;
1639         s->m.mb_stride=   s->m.mb_width+1;
1640         s->m.b8_stride= 2*s->m.mb_width+1;
1641         s->m.f_code=1;
1642         s->m.pict_type = pic->pict_type;
1643         s->m.me_method= s->avctx->me_method;
1644         s->m.me.scene_change_score=0;
1645         s->m.flags= s->avctx->flags;
1646         s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1647         s->m.out_format= FMT_H263;
1648         s->m.unrestricted_mv= 1;
1649
1650         s->m.lambda = s->lambda;
1651         s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1652         s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1653
1654         s->m.dsp= s->dsp; //move
1655         s->m.hdsp = s->hdsp;
1656         ff_init_me(&s->m);
1657         s->hdsp = s->m.hdsp;
1658         s->dsp= s->m.dsp;
1659     }
1660
1661     if(s->pass1_rc){
1662         memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1663         memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1664     }
1665
1666 redo_frame:
1667
1668     if (pic->pict_type == AV_PICTURE_TYPE_I)
1669         s->spatial_decomposition_count= 5;
1670     else
1671         s->spatial_decomposition_count= 5;
1672
1673     while(   !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1674           || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1675         s->spatial_decomposition_count--;
1676
1677     if (s->spatial_decomposition_count <= 0) {
1678         av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1679         return AVERROR(EINVAL);
1680     }
1681
1682     s->m.pict_type = pic->pict_type;
1683     s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1684
1685     ff_snow_common_init_after_header(avctx);
1686
1687     if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1688         for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1689             calculate_visual_weight(s, &s->plane[plane_index]);
1690         }
1691     }
1692
1693     encode_header(s);
1694     s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1695     encode_blocks(s, 1);
1696     s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1697
1698     for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1699         Plane *p= &s->plane[plane_index];
1700         int w= p->width;
1701         int h= p->height;
1702         int x, y;
1703 //        int bits= put_bits_count(&s->c.pb);
1704
1705         if (!s->memc_only) {
1706             //FIXME optimize
1707             if(pict->data[plane_index]) //FIXME gray hack
1708                 for(y=0; y<h; y++){
1709                     for(x=0; x<w; x++){
1710                         s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1711                     }
1712                 }
1713             predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1714
1715             if(   plane_index==0
1716                && pic->pict_type == AV_PICTURE_TYPE_P
1717                && !(avctx->flags&CODEC_FLAG_PASS2)
1718                && s->m.me.scene_change_score > s->avctx->scenechange_threshold){
1719                 ff_init_range_encoder(c, pkt->data, pkt->size);
1720                 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1721                 pic->pict_type= AV_PICTURE_TYPE_I;
1722                 s->keyframe=1;
1723                 s->current_picture->key_frame=1;
1724                 goto redo_frame;
1725             }
1726
1727             if(s->qlog == LOSSLESS_QLOG){
1728                 for(y=0; y<h; y++){
1729                     for(x=0; x<w; x++){
1730                         s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1731                     }
1732                 }
1733             }else{
1734                 for(y=0; y<h; y++){
1735                     for(x=0; x<w; x++){
1736                         s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
1737                     }
1738                 }
1739             }
1740
1741             ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1742
1743             if(s->pass1_rc && plane_index==0){
1744                 int delta_qlog = ratecontrol_1pass(s, pic);
1745                 if (delta_qlog <= INT_MIN)
1746                     return -1;
1747                 if(delta_qlog){
1748                     //reordering qlog in the bitstream would eliminate this reset
1749                     ff_init_range_encoder(c, pkt->data, pkt->size);
1750                     memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1751                     memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1752                     encode_header(s);
1753                     encode_blocks(s, 0);
1754                 }
1755             }
1756
1757             for(level=0; level<s->spatial_decomposition_count; level++){
1758                 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1759                     SubBand *b= &p->band[level][orientation];
1760
1761                     quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1762                     if(orientation==0)
1763                         decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1764                     if (!s->no_bitstream)
1765                     encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1766                     av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1767                     if(orientation==0)
1768                         correlate(s, b, b->ibuf, b->stride, 1, 0);
1769                 }
1770             }
1771
1772             for(level=0; level<s->spatial_decomposition_count; level++){
1773                 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1774                     SubBand *b= &p->band[level][orientation];
1775
1776                     dequantize(s, b, b->ibuf, b->stride);
1777                 }
1778             }
1779
1780             ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1781             if(s->qlog == LOSSLESS_QLOG){
1782                 for(y=0; y<h; y++){
1783                     for(x=0; x<w; x++){
1784                         s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1785                     }
1786                 }
1787             }
1788             predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1789         }else{
1790             //ME/MC only
1791             if(pic->pict_type == AV_PICTURE_TYPE_I){
1792                 for(y=0; y<h; y++){
1793                     for(x=0; x<w; x++){
1794                         s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1795                             pict->data[plane_index][y*pict->linesize[plane_index] + x];
1796                     }
1797                 }
1798             }else{
1799                 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1800                 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1801             }
1802         }
1803         if(s->avctx->flags&CODEC_FLAG_PSNR){
1804             int64_t error= 0;
1805
1806             if(pict->data[plane_index]) //FIXME gray hack
1807                 for(y=0; y<h; y++){
1808                     for(x=0; x<w; x++){
1809                         int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1810                         error += d*d;
1811                     }
1812                 }
1813             s->avctx->error[plane_index] += error;
1814             s->current_picture->error[plane_index] = error;
1815         }
1816
1817     }
1818
1819     update_last_header_values(s);
1820
1821     ff_snow_release_buffer(avctx);
1822
1823     s->current_picture->coded_picture_number = avctx->frame_number;
1824     s->current_picture->pict_type = pict->pict_type;
1825     s->current_picture->quality = pict->quality;
1826     s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1827     s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1828     s->m.current_picture.f.display_picture_number =
1829     s->m.current_picture.f.coded_picture_number   = avctx->frame_number;
1830     s->m.current_picture.f.quality                = pic->quality;
1831     s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1832     if(s->pass1_rc)
1833         if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1834             return -1;
1835     if(avctx->flags&CODEC_FLAG_PASS1)
1836         ff_write_pass1_stats(&s->m);
1837     s->m.last_pict_type = s->m.pict_type;
1838     avctx->frame_bits = s->m.frame_bits;
1839     avctx->mv_bits = s->m.mv_bits;
1840     avctx->misc_bits = s->m.misc_bits;
1841     avctx->p_tex_bits = s->m.p_tex_bits;
1842
1843     emms_c();
1844
1845     pkt->size = ff_rac_terminate(c);
1846     if (avctx->coded_frame->key_frame)
1847         pkt->flags |= AV_PKT_FLAG_KEY;
1848     *got_packet = 1;
1849
1850     return 0;
1851 }
1852
1853 static av_cold int encode_end(AVCodecContext *avctx)
1854 {
1855     SnowContext *s = avctx->priv_data;
1856
1857     ff_snow_common_end(s);
1858     ff_rate_control_uninit(&s->m);
1859     av_frame_free(&s->input_picture);
1860     av_free(avctx->stats_out);
1861
1862     return 0;
1863 }
1864
1865 #define OFFSET(x) offsetof(SnowContext, x)
1866 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1867 static const AVOption options[] = {
1868     { "memc_only",      "Only do ME/MC (I frames -> ref, P frame -> ME+MC).",   OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1869     { "no_bitstream",   "Skip final bitstream writeout.",                    OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1870     { NULL },
1871 };
1872
1873 static const AVClass snowenc_class = {
1874     .class_name = "snow encoder",
1875     .item_name  = av_default_item_name,
1876     .option     = options,
1877     .version    = LIBAVUTIL_VERSION_INT,
1878 };
1879
1880 AVCodec ff_snow_encoder = {
1881     .name           = "snow",
1882     .type           = AVMEDIA_TYPE_VIDEO,
1883     .id             = AV_CODEC_ID_SNOW,
1884     .priv_data_size = sizeof(SnowContext),
1885     .init           = encode_init,
1886     .encode2        = encode_frame,
1887     .close          = encode_end,
1888     .pix_fmts       = (const enum AVPixelFormat[]){
1889         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
1890         AV_PIX_FMT_GRAY8,
1891         AV_PIX_FMT_NONE
1892     },
1893     .long_name      = NULL_IF_CONFIG_SMALL("Snow"),
1894     .priv_class     = &snowenc_class,
1895 };
1896
1897
1898 #ifdef TEST
1899 #undef malloc
1900 #undef free
1901 #undef printf
1902
1903 #include "libavutil/lfg.h"
1904 #include "libavutil/mathematics.h"
1905
1906 int main(void){
1907 #define width  256
1908 #define height 256
1909     int buffer[2][width*height];
1910     SnowContext s;
1911     int i;
1912     AVLFG prng;
1913     s.spatial_decomposition_count=6;
1914     s.spatial_decomposition_type=1;
1915
1916     s.temp_dwt_buffer  = av_mallocz(width * sizeof(DWTELEM));
1917     s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
1918
1919     av_lfg_init(&prng, 1);
1920
1921     printf("testing 5/3 DWT\n");
1922     for(i=0; i<width*height; i++)
1923         buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1924
1925     ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1926     ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1927
1928     for(i=0; i<width*height; i++)
1929         if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1930
1931     printf("testing 9/7 DWT\n");
1932     s.spatial_decomposition_type=0;
1933     for(i=0; i<width*height; i++)
1934         buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1935
1936     ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1937     ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1938
1939     for(i=0; i<width*height; i++)
1940         if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1941
1942     {
1943     int level, orientation, x, y;
1944     int64_t errors[8][4];
1945     int64_t g=0;
1946
1947         memset(errors, 0, sizeof(errors));
1948         s.spatial_decomposition_count=3;
1949         s.spatial_decomposition_type=0;
1950         for(level=0; level<s.spatial_decomposition_count; level++){
1951             for(orientation=level ? 1 : 0; orientation<4; orientation++){
1952                 int w= width  >> (s.spatial_decomposition_count-level);
1953                 int h= height >> (s.spatial_decomposition_count-level);
1954                 int stride= width  << (s.spatial_decomposition_count-level);
1955                 DWTELEM *buf= buffer[0];
1956                 int64_t error=0;
1957
1958                 if(orientation&1) buf+=w;
1959                 if(orientation>1) buf+=stride>>1;
1960
1961                 memset(buffer[0], 0, sizeof(int)*width*height);
1962                 buf[w/2 + h/2*stride]= 256*256;
1963                 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1964                 for(y=0; y<height; y++){
1965                     for(x=0; x<width; x++){
1966                         int64_t d= buffer[0][x + y*width];
1967                         error += d*d;
1968                         if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
1969                     }
1970                     if(FFABS(height/2-y)<9 && level==2) printf("\n");
1971                 }
1972                 error= (int)(sqrt(error)+0.5);
1973                 errors[level][orientation]= error;
1974                 if(g) g=av_gcd(g, error);
1975                 else g= error;
1976             }
1977         }
1978         printf("static int const visual_weight[][4]={\n");
1979         for(level=0; level<s.spatial_decomposition_count; level++){
1980             printf("  {");
1981             for(orientation=0; orientation<4; orientation++){
1982                 printf("%8"PRId64",", errors[level][orientation]/g);
1983             }
1984             printf("},\n");
1985         }
1986         printf("};\n");
1987         {
1988             int level=2;
1989             int w= width  >> (s.spatial_decomposition_count-level);
1990             //int h= height >> (s.spatial_decomposition_count-level);
1991             int stride= width  << (s.spatial_decomposition_count-level);
1992             DWTELEM *buf= buffer[0];
1993             int64_t error=0;
1994
1995             buf+=w;
1996             buf+=stride>>1;
1997
1998             memset(buffer[0], 0, sizeof(int)*width*height);
1999             for(y=0; y<height; y++){
2000                 for(x=0; x<width; x++){
2001                     int tab[4]={0,2,3,1};
2002                     buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2003                 }
2004             }
2005             ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
2006             for(y=0; y<height; y++){
2007                 for(x=0; x<width; x++){
2008                     int64_t d= buffer[0][x + y*width];
2009                     error += d*d;
2010                     if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2011                 }
2012                 if(FFABS(height/2-y)<9) printf("\n");
2013             }
2014         }
2015
2016     }
2017     return 0;
2018 }
2019 #endif /* TEST */