2 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of Libav.
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
29 #include "rangecoder.h"
32 #include "mpegvideo.h"
43 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
44 SubBand *b= &p->band[level][orientation];
48 int step= 1 << (s->spatial_decomposition_count - level);
55 //FIXME bias for nonzero ?
57 memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
58 for(y=0; y<p->height; y++){
59 for(x=0; x<p->width; x++){
60 int sx= (x-xo + step/2) / step / Q2_STEP;
61 int sy= (y-yo + step/2) / step / Q2_STEP;
62 int v= r0[x + y*p->width] - r1[x + y*p->width];
63 assert(sx>=0 && sy>=0 && sx < score_stride);
65 score[sx + sy*score_stride] += v*v;
66 assert(score[sx + sy*score_stride] >= 0);
71 static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
72 int level, orientation;
74 for(level=0; level<s->spatial_decomposition_count; level++){
75 for(orientation=level ? 1 : 0; orientation<4; orientation++){
76 SubBand *b= &p->band[level][orientation];
77 IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
79 dequantize(s, b, dst, b->stride);
84 static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
85 int level, orientation, ys, xs, x, y, pass;
86 IDWTELEM best_dequant[height * stride];
87 IDWTELEM idwt2_buffer[height * stride];
88 const int score_stride= (width + 10)/Q2_STEP;
89 int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
90 int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
91 int threshold= (s->m.lambda * s->m.lambda) >> 6;
93 //FIXME pass the copy cleanly ?
95 // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM));
96 ff_spatial_dwt(buffer, width, height, stride, type, s->spatial_decomposition_count);
98 for(level=0; level<s->spatial_decomposition_count; level++){
99 for(orientation=level ? 1 : 0; orientation<4; orientation++){
100 SubBand *b= &p->band[level][orientation];
101 IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
102 DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
103 assert(src == b->buf); // code does not depend on this but it is true currently
105 quantize(s, b, dst, src, b->stride, s->qbias);
108 for(pass=0; pass<1; pass++){
109 if(s->qbias == 0) //keyframe
111 for(level=0; level<s->spatial_decomposition_count; level++){
112 for(orientation=level ? 1 : 0; orientation<4; orientation++){
113 SubBand *b= &p->band[level][orientation];
114 IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
115 IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
117 for(ys= 0; ys<Q2_STEP; ys++){
118 for(xs= 0; xs<Q2_STEP; xs++){
119 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
120 dequantize_all(s, p, idwt2_buffer, width, height);
121 ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
122 find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
123 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
124 for(y=ys; y<b->height; y+= Q2_STEP){
125 for(x=xs; x<b->width; x+= Q2_STEP){
126 if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
127 if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
128 //FIXME try more than just --
131 dequantize_all(s, p, idwt2_buffer, width, height);
132 ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
133 find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
134 for(y=ys; y<b->height; y+= Q2_STEP){
135 for(x=xs; x<b->width; x+= Q2_STEP){
136 int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
137 if(score[score_idx] <= best_score[score_idx] + threshold){
138 best_score[score_idx]= score[score_idx];
139 if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
140 if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
150 memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end
153 #endif /* QUANTIZE2==1 */
155 static av_cold int encode_init(AVCodecContext *avctx)
157 SnowContext *s = avctx->priv_data;
160 if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){
161 av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
162 "Use vstrict=-2 / -strict -2 to use it anyway.\n");
166 if(avctx->prediction_method == DWT_97
167 && (avctx->flags & CODEC_FLAG_QSCALE)
168 && avctx->global_quality == 0){
169 av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
173 s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
175 s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
176 s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
178 for(plane_index=0; plane_index<3; plane_index++){
179 s->plane[plane_index].diag_mc= 1;
180 s->plane[plane_index].htaps= 6;
181 s->plane[plane_index].hcoeff[0]= 40;
182 s->plane[plane_index].hcoeff[1]= -10;
183 s->plane[plane_index].hcoeff[2]= 2;
184 s->plane[plane_index].fast_mc= 1;
187 ff_snow_common_init(avctx);
188 ff_snow_alloc_blocks(s);
193 s->m.flags = avctx->flags;
194 s->m.bit_rate= avctx->bit_rate;
197 s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
198 s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
199 s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
200 s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
201 ff_h263_encode_init(&s->m); //mv_penalty
203 s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
205 if(avctx->flags&CODEC_FLAG_PASS1){
206 if(!avctx->stats_out)
207 avctx->stats_out = av_mallocz(256);
209 if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
210 if(ff_rate_control_init(&s->m) < 0)
213 s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
215 avctx->coded_frame= &s->current_picture;
216 switch(avctx->pix_fmt){
217 // case PIX_FMT_YUV444P:
218 // case PIX_FMT_YUV422P:
219 case PIX_FMT_YUV420P:
221 // case PIX_FMT_YUV411P:
222 // case PIX_FMT_YUV410P:
223 s->colorspace_type= 0;
225 /* case PIX_FMT_RGB32:
229 av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
232 // avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
233 s->chroma_h_shift= 1;
234 s->chroma_v_shift= 1;
236 ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
237 ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
239 s->avctx->get_buffer(s->avctx, &s->input_picture);
241 if(s->avctx->me_method == ME_ITER){
243 int size= s->b_width * s->b_height << 2*s->block_max_depth;
244 for(i=0; i<s->max_ref_frames; i++){
245 s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
246 s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
253 //near copy & paste from dsputil, FIXME
254 static int pix_sum(uint8_t * pix, int line_size, int w)
259 for (i = 0; i < w; i++) {
260 for (j = 0; j < w; j++) {
264 pix += line_size - w;
269 //near copy & paste from dsputil, FIXME
270 static int pix_norm1(uint8_t * pix, int line_size, int w)
273 uint32_t *sq = ff_squareTbl + 256;
276 for (i = 0; i < w; i++) {
277 for (j = 0; j < w; j ++) {
281 pix += line_size - w;
289 #define P_TOPRIGHT P[3]
290 #define P_MEDIAN P[4]
292 #define FLAG_QPEL 1 //must be 1
294 static int encode_q_branch(SnowContext *s, int level, int x, int y){
295 uint8_t p_buffer[1024];
296 uint8_t i_buffer[1024];
297 uint8_t p_state[sizeof(s->block_state)];
298 uint8_t i_state[sizeof(s->block_state)];
300 uint8_t *pbbak= s->c.bytestream;
301 uint8_t *pbbak_start= s->c.bytestream_start;
302 int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
303 const int w= s->b_width << s->block_max_depth;
304 const int h= s->b_height << s->block_max_depth;
305 const int rem_depth= s->block_max_depth - level;
306 const int index= (x + y*w) << rem_depth;
307 const int block_w= 1<<(LOG2_MB_SIZE - level);
308 int trx= (x+1)<<rem_depth;
309 int try= (y+1)<<rem_depth;
310 const BlockNode *left = x ? &s->block[index-1] : &null_block;
311 const BlockNode *top = y ? &s->block[index-w] : &null_block;
312 const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
313 const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
314 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
315 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
316 int pl = left->color[0];
317 int pcb= left->color[1];
318 int pcr= left->color[2];
322 const int stride= s->current_picture.linesize[0];
323 const int uvstride= s->current_picture.linesize[1];
324 uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
325 s->input_picture.data[1] + (x + y*uvstride)*block_w/2,
326 s->input_picture.data[2] + (x + y*uvstride)*block_w/2};
328 int16_t last_mv[3][2];
329 int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
330 const int shift= 1+qpel;
331 MotionEstContext *c= &s->m.me;
332 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
333 int mx_context= av_log2(2*FFABS(left->mx - top->mx));
334 int my_context= av_log2(2*FFABS(left->my - top->my));
335 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
336 int ref, best_ref, ref_score, ref_mx, ref_my;
338 assert(sizeof(s->block_state) >= 256);
340 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
344 // clip predictors / edge ?
350 P_TOPRIGHT[0]= tr->mx;
351 P_TOPRIGHT[1]= tr->my;
353 last_mv[0][0]= s->block[index].mx;
354 last_mv[0][1]= s->block[index].my;
355 last_mv[1][0]= right->mx;
356 last_mv[1][1]= right->my;
357 last_mv[2][0]= bottom->mx;
358 last_mv[2][1]= bottom->my;
365 assert(c-> stride == stride);
366 assert(c->uvstride == uvstride);
368 c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
369 c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
370 c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
371 c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
373 c->xmin = - x*block_w - 16+3;
374 c->ymin = - y*block_w - 16+3;
375 c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
376 c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
378 if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
379 if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
380 if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
381 if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
382 if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
383 if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
384 if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
386 P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
387 P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
390 c->pred_x= P_LEFT[0];
391 c->pred_y= P_LEFT[1];
393 c->pred_x = P_MEDIAN[0];
394 c->pred_y = P_MEDIAN[1];
399 for(ref=0; ref<s->ref_frames; ref++){
400 init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
402 ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
403 (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
405 assert(ref_mx >= c->xmin);
406 assert(ref_mx <= c->xmax);
407 assert(ref_my >= c->ymin);
408 assert(ref_my <= c->ymax);
410 ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
411 ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
412 ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
414 s->ref_mvs[ref][index][0]= ref_mx;
415 s->ref_mvs[ref][index][1]= ref_my;
416 s->ref_scores[ref][index]= ref_score;
418 if(score > ref_score){
425 //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
428 base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
431 pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
432 memcpy(p_state, s->block_state, sizeof(s->block_state));
434 if(level!=s->block_max_depth)
435 put_rac(&pc, &p_state[4 + s_context], 1);
436 put_rac(&pc, &p_state[1 + left->type + top->type], 0);
437 if(s->ref_frames > 1)
438 put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
439 pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
440 put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
441 put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
442 p_len= pc.bytestream - pc.bytestream_start;
443 score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
445 block_s= block_w*block_w;
446 sum = pix_sum(current_data[0], stride, block_w);
447 l= (sum + block_s/2)/block_s;
448 iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
450 block_s= block_w*block_w>>2;
451 sum = pix_sum(current_data[1], uvstride, block_w>>1);
452 cb= (sum + block_s/2)/block_s;
453 // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
454 sum = pix_sum(current_data[2], uvstride, block_w>>1);
455 cr= (sum + block_s/2)/block_s;
456 // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
460 ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
461 memcpy(i_state, s->block_state, sizeof(s->block_state));
462 if(level!=s->block_max_depth)
463 put_rac(&ic, &i_state[4 + s_context], 1);
464 put_rac(&ic, &i_state[1 + left->type + top->type], 1);
465 put_symbol(&ic, &i_state[32], l-pl , 1);
466 put_symbol(&ic, &i_state[64], cb-pcb, 1);
467 put_symbol(&ic, &i_state[96], cr-pcr, 1);
468 i_len= ic.bytestream - ic.bytestream_start;
469 iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
471 // assert(score==256*256*256*64-1);
472 assert(iscore < 255*255*256 + s->lambda2*10);
474 assert(l>=0 && l<=255);
475 assert(pl>=0 && pl<=255);
478 int varc= iscore >> 8;
479 int vard= score >> 8;
480 if (vard <= 64 || vard < varc)
481 c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
483 c->scene_change_score+= s->m.qscale;
486 if(level!=s->block_max_depth){
487 put_rac(&s->c, &s->block_state[4 + s_context], 0);
488 score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
489 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
490 score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
491 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
492 score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
494 if(score2 < score && score2 < iscore)
499 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
500 memcpy(pbbak, i_buffer, i_len);
502 s->c.bytestream_start= pbbak_start;
503 s->c.bytestream= pbbak + i_len;
504 set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
505 memcpy(s->block_state, i_state, sizeof(s->block_state));
508 memcpy(pbbak, p_buffer, p_len);
510 s->c.bytestream_start= pbbak_start;
511 s->c.bytestream= pbbak + p_len;
512 set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
513 memcpy(s->block_state, p_state, sizeof(s->block_state));
518 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
519 const int w= s->b_width << s->block_max_depth;
520 const int rem_depth= s->block_max_depth - level;
521 const int index= (x + y*w) << rem_depth;
522 int trx= (x+1)<<rem_depth;
523 BlockNode *b= &s->block[index];
524 const BlockNode *left = x ? &s->block[index-1] : &null_block;
525 const BlockNode *top = y ? &s->block[index-w] : &null_block;
526 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
527 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
528 int pl = left->color[0];
529 int pcb= left->color[1];
530 int pcr= left->color[2];
532 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
533 int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
534 int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
535 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
538 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
542 if(level!=s->block_max_depth){
543 if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
544 put_rac(&s->c, &s->block_state[4 + s_context], 1);
546 put_rac(&s->c, &s->block_state[4 + s_context], 0);
547 encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
548 encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
549 encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
550 encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
554 if(b->type & BLOCK_INTRA){
555 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
556 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
557 put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
558 put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
559 put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
560 set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
562 pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
563 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
564 if(s->ref_frames > 1)
565 put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
566 put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
567 put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
568 set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
572 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
574 Plane *p= &s->plane[plane_index];
575 const int block_size = MB_SIZE >> s->block_max_depth;
576 const int block_w = plane_index ? block_size/2 : block_size;
577 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth];
578 const int obmc_stride= plane_index ? block_size : 2*block_size;
579 const int ref_stride= s->current_picture.linesize[plane_index];
580 uint8_t *src= s-> input_picture.data[plane_index];
581 IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
582 const int b_stride = s->b_width << s->block_max_depth;
583 const int w= p->width;
584 const int h= p->height;
585 int index= mb_x + mb_y*b_stride;
586 BlockNode *b= &s->block[index];
587 BlockNode backup= *b;
591 b->type|= BLOCK_INTRA;
592 b->color[plane_index]= 0;
593 memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
596 int mb_x2= mb_x + (i &1) - 1;
597 int mb_y2= mb_y + (i>>1) - 1;
598 int x= block_w*mb_x2 + block_w/2;
599 int y= block_w*mb_y2 + block_w/2;
601 add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc,
602 x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
604 for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){
605 for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
606 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride;
607 int obmc_v= obmc[index];
609 if(y<0) obmc_v += obmc[index + block_w*obmc_stride];
610 if(x<0) obmc_v += obmc[index + block_w];
611 if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride];
612 if(x+block_w>w) obmc_v += obmc[index - block_w];
613 //FIXME precalculate this or simplify it somehow else
615 d = -dst[index] + (1<<(FRAC_BITS-1));
617 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
618 aa += obmc_v * obmc_v; //FIXME precalculate this
624 return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping
627 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
628 const int b_stride = s->b_width << s->block_max_depth;
629 const int b_height = s->b_height<< s->block_max_depth;
630 int index= x + y*b_stride;
631 const BlockNode *b = &s->block[index];
632 const BlockNode *left = x ? &s->block[index-1] : &null_block;
633 const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
634 const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
635 const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
637 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
638 // int my_context= av_log2(2*FFABS(left->my - top->my));
640 if(x<0 || x>=b_stride || y>=b_height)
649 //FIXME try accurate rate
650 //FIXME intra and inter predictors if surrounding blocks are not the same type
651 if(b->type & BLOCK_INTRA){
652 return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
653 + av_log2(2*FFABS(left->color[1] - b->color[1]))
654 + av_log2(2*FFABS(left->color[2] - b->color[2])));
656 pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
659 return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
660 + av_log2(2*FFABS(dmy))
661 + av_log2(2*b->ref));
665 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, const uint8_t *obmc_edged){
666 Plane *p= &s->plane[plane_index];
667 const int block_size = MB_SIZE >> s->block_max_depth;
668 const int block_w = plane_index ? block_size/2 : block_size;
669 const int obmc_stride= plane_index ? block_size : 2*block_size;
670 const int ref_stride= s->current_picture.linesize[plane_index];
671 uint8_t *dst= s->current_picture.data[plane_index];
672 uint8_t *src= s-> input_picture.data[plane_index];
673 IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
674 uint8_t *cur = s->scratchbuf;
675 uint8_t tmp[ref_stride*(2*MB_SIZE+HTAPS_MAX-1)];
676 const int b_stride = s->b_width << s->block_max_depth;
677 const int b_height = s->b_height<< s->block_max_depth;
678 const int w= p->width;
679 const int h= p->height;
682 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
683 int sx= block_w*mb_x - block_w/2;
684 int sy= block_w*mb_y - block_w/2;
685 int x0= FFMAX(0,-sx);
686 int y0= FFMAX(0,-sy);
687 int x1= FFMIN(block_w*2, w-sx);
688 int y1= FFMIN(block_w*2, h-sy);
691 ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
693 for(y=y0; y<y1; y++){
694 const uint8_t *obmc1= obmc_edged + y*obmc_stride;
695 const IDWTELEM *pred1 = pred + y*obmc_stride;
696 uint8_t *cur1 = cur + y*ref_stride;
697 uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
698 for(x=x0; x<x1; x++){
699 #if FRAC_BITS >= LOG2_OBMC_MAX
700 int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
702 int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
704 v = (v + pred1[x]) >> FRAC_BITS;
705 if(v&(~255)) v= ~(v>>31);
710 /* copy the regions where obmc[] = (uint8_t)256 */
711 if(LOG2_OBMC_MAX == 8
712 && (mb_x == 0 || mb_x == b_stride-1)
713 && (mb_y == 0 || mb_y == b_height-1)){
723 memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
727 /* FIXME rearrange dsputil to fit 32x32 cmp functions */
728 /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
729 /* FIXME cmps overlap but do not cover the wavelet's whole support.
730 * So improving the score of one block is not strictly guaranteed
731 * to improve the score of the whole frame, thus iterative motion
732 * estimation does not always converge. */
733 if(s->avctx->me_cmp == FF_CMP_W97)
734 distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
735 else if(s->avctx->me_cmp == FF_CMP_W53)
736 distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
740 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
741 distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
746 distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
755 rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
757 if(mb_x == b_stride-2)
758 rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
760 return distortion + rate*penalty_factor;
763 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
765 Plane *p= &s->plane[plane_index];
766 const int block_size = MB_SIZE >> s->block_max_depth;
767 const int block_w = plane_index ? block_size/2 : block_size;
768 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth];
769 const int obmc_stride= plane_index ? block_size : 2*block_size;
770 const int ref_stride= s->current_picture.linesize[plane_index];
771 uint8_t *dst= s->current_picture.data[plane_index];
772 uint8_t *src= s-> input_picture.data[plane_index];
773 //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
774 // const has only been removed from zero_dst to suppress a warning
775 static IDWTELEM zero_dst[4096]; //FIXME
776 const int b_stride = s->b_width << s->block_max_depth;
777 const int w= p->width;
778 const int h= p->height;
781 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
784 int mb_x2= mb_x + (i%3) - 1;
785 int mb_y2= mb_y + (i/3) - 1;
786 int x= block_w*mb_x2 + block_w/2;
787 int y= block_w*mb_y2 + block_w/2;
789 add_yblock(s, 0, NULL, zero_dst, dst, obmc,
790 x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
792 //FIXME find a cleaner/simpler way to skip the outside stuff
793 for(y2= y; y2<0; y2++)
794 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
795 for(y2= h; y2<y+block_w; y2++)
796 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
798 for(y2= y; y2<y+block_w; y2++)
799 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
802 for(y2= y; y2<y+block_w; y2++)
803 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
806 assert(block_w== 8 || block_w==16);
807 distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w);
811 BlockNode *b= &s->block[mb_x+mb_y*b_stride];
812 int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
820 rate = get_block_bits(s, mb_x, mb_y, 2);
821 for(i=merged?4:0; i<9; i++){
822 static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
823 rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
826 return distortion + rate*penalty_factor;
829 static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
830 const int w= b->width;
831 const int h= b->height;
843 int /*ll=0, */l=0, lt=0, t=0, rt=0;
844 v= src[x + y*stride];
847 t= src[x + (y-1)*stride];
849 lt= src[x - 1 + (y-1)*stride];
852 rt= src[x + 1 + (y-1)*stride];
856 l= src[x - 1 + y*stride];
858 if(orientation==1) ll= src[y + (x-2)*stride];
859 else ll= src[x - 2 + y*stride];
865 if(px<b->parent->width && py<b->parent->height)
866 p= parent[px + py*2*stride];
868 if(!(/*ll|*/l|lt|t|rt|p)){
870 runs[run_index++]= run;
878 max_index= run_index;
879 runs[run_index++]= run;
881 run= runs[run_index++];
883 put_symbol2(&s->c, b->state[30], max_index, 0);
884 if(run_index <= max_index)
885 put_symbol2(&s->c, b->state[1], run, 3);
888 if(s->c.bytestream_end - s->c.bytestream < w*40){
889 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
894 int /*ll=0, */l=0, lt=0, t=0, rt=0;
895 v= src[x + y*stride];
898 t= src[x + (y-1)*stride];
900 lt= src[x - 1 + (y-1)*stride];
903 rt= src[x + 1 + (y-1)*stride];
907 l= src[x - 1 + y*stride];
909 if(orientation==1) ll= src[y + (x-2)*stride];
910 else ll= src[x - 2 + y*stride];
916 if(px<b->parent->width && py<b->parent->height)
917 p= parent[px + py*2*stride];
919 if(/*ll|*/l|lt|t|rt|p){
920 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
922 put_rac(&s->c, &b->state[0][context], !!v);
925 run= runs[run_index++];
927 if(run_index <= max_index)
928 put_symbol2(&s->c, b->state[1], run, 3);
936 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
937 int l2= 2*FFABS(l) + (l<0);
938 int t2= 2*FFABS(t) + (t<0);
940 put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
941 put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
949 static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
950 // encode_subband_qtree(s, b, src, parent, stride, orientation);
951 // encode_subband_z0run(s, b, src, parent, stride, orientation);
952 return encode_subband_c0run(s, b, src, parent, stride, orientation);
953 // encode_subband_dzr(s, b, src, parent, stride, orientation);
956 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, const uint8_t *obmc_edged, int *best_rd){
957 const int b_stride= s->b_width << s->block_max_depth;
958 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
959 BlockNode backup= *block;
963 assert(mb_x>=0 && mb_y>=0);
964 assert(mb_x<b_stride);
967 block->color[0] = p[0];
968 block->color[1] = p[1];
969 block->color[2] = p[2];
970 block->type |= BLOCK_INTRA;
972 index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
973 value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
974 if(s->me_cache[index] == value)
976 s->me_cache[index]= value;
980 block->type &= ~BLOCK_INTRA;
983 rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
995 /* special case for int[2] args we discard afterwards,
996 * fixes compilation problem with gcc 2.95 */
997 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, const uint8_t *obmc_edged, int *best_rd){
999 return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
1002 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
1003 const int b_stride= s->b_width << s->block_max_depth;
1004 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
1005 BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]};
1009 assert(mb_x>=0 && mb_y>=0);
1010 assert(mb_x<b_stride);
1011 assert(((mb_x|mb_y)&1) == 0);
1013 index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
1014 value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
1015 if(s->me_cache[index] == value)
1017 s->me_cache[index]= value;
1022 block->type &= ~BLOCK_INTRA;
1023 block[1]= block[b_stride]= block[b_stride+1]= *block;
1025 rd= get_4block_rd(s, mb_x, mb_y, 0);
1032 block[0]= backup[0];
1033 block[1]= backup[1];
1034 block[b_stride]= backup[2];
1035 block[b_stride+1]= backup[3];
1040 static void iterative_me(SnowContext *s){
1041 int pass, mb_x, mb_y;
1042 const int b_width = s->b_width << s->block_max_depth;
1043 const int b_height= s->b_height << s->block_max_depth;
1044 const int b_stride= b_width;
1048 RangeCoder r = s->c;
1049 uint8_t state[sizeof(s->block_state)];
1050 memcpy(state, s->block_state, sizeof(s->block_state));
1051 for(mb_y= 0; mb_y<s->b_height; mb_y++)
1052 for(mb_x= 0; mb_x<s->b_width; mb_x++)
1053 encode_q_branch(s, 0, mb_x, mb_y);
1055 memcpy(s->block_state, state, sizeof(s->block_state));
1058 for(pass=0; pass<25; pass++){
1061 for(mb_y= 0; mb_y<b_height; mb_y++){
1062 for(mb_x= 0; mb_x<b_width; mb_x++){
1063 int dia_change, i, j, ref;
1064 int best_rd= INT_MAX, ref_rd;
1065 BlockNode backup, ref_b;
1066 const int index= mb_x + mb_y * b_stride;
1067 BlockNode *block= &s->block[index];
1068 BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1069 BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1070 BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1071 BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1072 BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1073 BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1074 BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1075 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1076 const int b_w= (MB_SIZE >> s->block_max_depth);
1077 uint8_t obmc_edged[b_w*2][b_w*2];
1079 if(pass && (block->type & BLOCK_OPT))
1081 block->type |= BLOCK_OPT;
1085 if(!s->me_cache_generation)
1086 memset(s->me_cache, 0, sizeof(s->me_cache));
1087 s->me_cache_generation += 1<<22;
1089 //FIXME precalculate
1092 memcpy(obmc_edged, ff_obmc_tab[s->block_max_depth], b_w*b_w*4);
1094 for(y=0; y<b_w*2; y++)
1095 memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1096 if(mb_x==b_stride-1)
1097 for(y=0; y<b_w*2; y++)
1098 memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1100 for(x=0; x<b_w*2; x++)
1101 obmc_edged[0][x] += obmc_edged[b_w-1][x];
1102 for(y=1; y<b_w; y++)
1103 memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1105 if(mb_y==b_height-1){
1106 for(x=0; x<b_w*2; x++)
1107 obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1108 for(y=b_w; y<b_w*2-1; y++)
1109 memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1113 //skip stuff outside the picture
1114 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1115 uint8_t *src= s-> input_picture.data[0];
1116 uint8_t *dst= s->current_picture.data[0];
1117 const int stride= s->current_picture.linesize[0];
1118 const int block_w= MB_SIZE >> s->block_max_depth;
1119 const int sx= block_w*mb_x - block_w/2;
1120 const int sy= block_w*mb_y - block_w/2;
1121 const int w= s->plane[0].width;
1122 const int h= s->plane[0].height;
1126 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1127 for(y=h; y<sy+block_w*2; y++)
1128 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1130 for(y=sy; y<sy+block_w*2; y++)
1131 memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1133 if(sx+block_w*2 > w){
1134 for(y=sy; y<sy+block_w*2; y++)
1135 memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1139 // intra(black) = neighbors' contribution to the current block
1141 color[i]= get_dc(s, mb_x, mb_y, i);
1143 // get previous score (cannot be cached due to OBMC)
1144 if(pass > 0 && (block->type&BLOCK_INTRA)){
1145 int color0[3]= {block->color[0], block->color[1], block->color[2]};
1146 check_block(s, mb_x, mb_y, color0, 1, *obmc_edged, &best_rd);
1148 check_block_inter(s, mb_x, mb_y, block->mx, block->my, *obmc_edged, &best_rd);
1152 for(ref=0; ref < s->ref_frames; ref++){
1153 int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1154 if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1159 check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], *obmc_edged, &best_rd);
1160 check_block_inter(s, mb_x, mb_y, 0, 0, *obmc_edged, &best_rd);
1162 check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], *obmc_edged, &best_rd);
1164 check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], *obmc_edged, &best_rd);
1166 check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], *obmc_edged, &best_rd);
1168 check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], *obmc_edged, &best_rd);
1171 //FIXME avoid subpel interpolation / round to nearest integer
1174 for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1176 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
1177 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
1178 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
1179 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
1185 static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1188 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], *obmc_edged, &best_rd);
1190 //FIXME or try the standard 2 pass qpel or similar
1192 mvr[0][0]= block->mx;
1193 mvr[0][1]= block->my;
1194 if(ref_rd > best_rd){
1201 check_block(s, mb_x, mb_y, color, 1, *obmc_edged, &best_rd);
1202 //FIXME RD style color selection
1203 if(!same_block(block, &backup)){
1204 if(tb ) tb ->type &= ~BLOCK_OPT;
1205 if(lb ) lb ->type &= ~BLOCK_OPT;
1206 if(rb ) rb ->type &= ~BLOCK_OPT;
1207 if(bb ) bb ->type &= ~BLOCK_OPT;
1208 if(tlb) tlb->type &= ~BLOCK_OPT;
1209 if(trb) trb->type &= ~BLOCK_OPT;
1210 if(blb) blb->type &= ~BLOCK_OPT;
1211 if(brb) brb->type &= ~BLOCK_OPT;
1216 av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1221 if(s->block_max_depth == 1){
1223 for(mb_y= 0; mb_y<b_height; mb_y+=2){
1224 for(mb_x= 0; mb_x<b_width; mb_x+=2){
1226 int best_rd, init_rd;
1227 const int index= mb_x + mb_y * b_stride;
1230 b[0]= &s->block[index];
1232 b[2]= b[0]+b_stride;
1234 if(same_block(b[0], b[1]) &&
1235 same_block(b[0], b[2]) &&
1236 same_block(b[0], b[3]))
1239 if(!s->me_cache_generation)
1240 memset(s->me_cache, 0, sizeof(s->me_cache));
1241 s->me_cache_generation += 1<<22;
1243 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1245 //FIXME more multiref search?
1246 check_4block_inter(s, mb_x, mb_y,
1247 (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1248 (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1251 if(!(b[i]->type&BLOCK_INTRA))
1252 check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1254 if(init_rd != best_rd)
1258 av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1262 static void encode_blocks(SnowContext *s, int search){
1267 if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1271 if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1272 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1276 if(s->avctx->me_method == ME_ITER || !search)
1277 encode_q_branch2(s, 0, x, y);
1279 encode_q_branch (s, 0, x, y);
1284 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1285 const int w= b->width;
1286 const int h= b->height;
1287 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1288 const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1289 int x,y, thres1, thres2;
1291 if(s->qlog == LOSSLESS_QLOG){
1294 dst[x + y*stride]= src[x + y*stride];
1298 bias= bias ? 0 : (3*qmul)>>3;
1299 thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1305 int i= src[x + y*stride];
1307 if((unsigned)(i+thres1) > thres2){
1310 i/= qmul; //FIXME optimize
1311 dst[x + y*stride]= i;
1315 i/= qmul; //FIXME optimize
1316 dst[x + y*stride]= -i;
1319 dst[x + y*stride]= 0;
1325 int i= src[x + y*stride];
1327 if((unsigned)(i+thres1) > thres2){
1330 i= (i + bias) / qmul; //FIXME optimize
1331 dst[x + y*stride]= i;
1335 i= (i + bias) / qmul; //FIXME optimize
1336 dst[x + y*stride]= -i;
1339 dst[x + y*stride]= 0;
1345 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1346 const int w= b->width;
1347 const int h= b->height;
1348 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1349 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1350 const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1353 if(s->qlog == LOSSLESS_QLOG) return;
1357 int i= src[x + y*stride];
1359 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1361 src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1367 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1368 const int w= b->width;
1369 const int h= b->height;
1372 for(y=h-1; y>=0; y--){
1373 for(x=w-1; x>=0; x--){
1374 int i= x + y*stride;
1378 if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1379 else src[i] -= src[i - 1];
1381 if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1382 else src[i] -= src[i - 1];
1385 if(y) src[i] -= src[i - stride];
1391 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1392 const int w= b->width;
1393 const int h= b->height;
1398 int i= x + y*stride;
1402 if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1403 else src[i] += src[i - 1];
1405 if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1406 else src[i] += src[i - 1];
1409 if(y) src[i] += src[i - stride];
1415 static void encode_qlogs(SnowContext *s){
1416 int plane_index, level, orientation;
1418 for(plane_index=0; plane_index<2; plane_index++){
1419 for(level=0; level<s->spatial_decomposition_count; level++){
1420 for(orientation=level ? 1:0; orientation<4; orientation++){
1421 if(orientation==2) continue;
1422 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1428 static void encode_header(SnowContext *s){
1432 memset(kstate, MID_STATE, sizeof(kstate));
1434 put_rac(&s->c, kstate, s->keyframe);
1435 if(s->keyframe || s->always_reset){
1436 ff_snow_reset_contexts(s);
1437 s->last_spatial_decomposition_type=
1441 s->last_block_max_depth= 0;
1442 for(plane_index=0; plane_index<2; plane_index++){
1443 Plane *p= &s->plane[plane_index];
1446 memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1450 put_symbol(&s->c, s->header_state, s->version, 0);
1451 put_rac(&s->c, s->header_state, s->always_reset);
1452 put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1453 put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1454 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1455 put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1456 put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1457 put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1458 put_rac(&s->c, s->header_state, s->spatial_scalability);
1459 // put_rac(&s->c, s->header_state, s->rate_scalability);
1460 put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1467 for(plane_index=0; plane_index<2; plane_index++){
1468 Plane *p= &s->plane[plane_index];
1469 update_mc |= p->last_htaps != p->htaps;
1470 update_mc |= p->last_diag_mc != p->diag_mc;
1471 update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1473 put_rac(&s->c, s->header_state, update_mc);
1475 for(plane_index=0; plane_index<2; plane_index++){
1476 Plane *p= &s->plane[plane_index];
1477 put_rac(&s->c, s->header_state, p->diag_mc);
1478 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1479 for(i= p->htaps/2; i; i--)
1480 put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1483 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1484 put_rac(&s->c, s->header_state, 1);
1485 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1488 put_rac(&s->c, s->header_state, 0);
1491 put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1492 put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1493 put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1494 put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1495 put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1499 static void update_last_header_values(SnowContext *s){
1503 for(plane_index=0; plane_index<2; plane_index++){
1504 Plane *p= &s->plane[plane_index];
1505 p->last_diag_mc= p->diag_mc;
1506 p->last_htaps = p->htaps;
1507 memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1511 s->last_spatial_decomposition_type = s->spatial_decomposition_type;
1512 s->last_qlog = s->qlog;
1513 s->last_qbias = s->qbias;
1514 s->last_mv_scale = s->mv_scale;
1515 s->last_block_max_depth = s->block_max_depth;
1516 s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1519 static int qscale2qlog(int qscale){
1520 return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2))
1521 + 61*QROOT/8; ///< 64 > 60
1524 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1526 /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1527 * FIXME we know exact mv bits at this point,
1528 * but ratecontrol isn't set up to include them. */
1529 uint32_t coef_sum= 0;
1530 int level, orientation, delta_qlog;
1532 for(level=0; level<s->spatial_decomposition_count; level++){
1533 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1534 SubBand *b= &s->plane[0].band[level][orientation];
1535 IDWTELEM *buf= b->ibuf;
1536 const int w= b->width;
1537 const int h= b->height;
1538 const int stride= b->stride;
1539 const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1540 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1541 const int qdiv= (1<<16)/qmul;
1543 //FIXME this is ugly
1546 buf[x+y*stride]= b->buf[x+y*stride];
1548 decorrelate(s, b, buf, stride, 1, 0);
1551 coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1555 /* ugly, ratecontrol just takes a sqrt again */
1556 coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1557 assert(coef_sum < INT_MAX);
1559 if(pict->pict_type == AV_PICTURE_TYPE_I){
1560 s->m.current_picture.mb_var_sum= coef_sum;
1561 s->m.current_picture.mc_mb_var_sum= 0;
1563 s->m.current_picture.mc_mb_var_sum= coef_sum;
1564 s->m.current_picture.mb_var_sum= 0;
1567 pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1568 if (pict->quality < 0)
1570 s->lambda= pict->quality * 3/2;
1571 delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1572 s->qlog+= delta_qlog;
1576 static void calculate_visual_weight(SnowContext *s, Plane *p){
1577 int width = p->width;
1578 int height= p->height;
1579 int level, orientation, x, y;
1581 for(level=0; level<s->spatial_decomposition_count; level++){
1582 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1583 SubBand *b= &p->band[level][orientation];
1584 IDWTELEM *ibuf= b->ibuf;
1587 memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1588 ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1589 ff_spatial_idwt(s->spatial_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1590 for(y=0; y<height; y++){
1591 for(x=0; x<width; x++){
1592 int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1597 b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1602 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1603 const AVFrame *pict, int *got_packet)
1605 SnowContext *s = avctx->priv_data;
1606 RangeCoder * const c= &s->c;
1607 AVFrame *pic = &s->new_picture;
1608 const int width= s->avctx->width;
1609 const int height= s->avctx->height;
1610 int level, orientation, plane_index, i, y, ret;
1611 uint8_t rc_header_bak[sizeof(s->header_state)];
1612 uint8_t rc_block_bak[sizeof(s->block_state)];
1615 (ret = av_new_packet(pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0) {
1616 av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
1620 ff_init_range_encoder(c, pkt->data, pkt->size);
1621 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1625 for(y=0; y<(height>>shift); y++)
1626 memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
1627 &pict->data[i][y * pict->linesize[i]],
1630 s->new_picture = *pict;
1632 s->m.picture_number= avctx->frame_number;
1633 if(avctx->flags&CODEC_FLAG_PASS2){
1634 s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1635 s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1636 if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1637 pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1638 if (pic->quality < 0)
1642 s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1643 s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1646 if(s->pass1_rc && avctx->frame_number == 0)
1647 pic->quality = 2*FF_QP2LAMBDA;
1649 s->qlog = qscale2qlog(pic->quality);
1650 s->lambda = pic->quality * 3/2;
1652 if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1653 s->qlog= LOSSLESS_QLOG;
1655 }//else keep previous frame's qlog until after motion estimation
1657 ff_snow_frame_start(s);
1659 s->m.current_picture_ptr= &s->m.current_picture;
1660 s->m.last_picture.f.pts = s->m.current_picture.f.pts;
1661 s->m.current_picture.f.pts = pict->pts;
1662 if(pic->pict_type == AV_PICTURE_TYPE_P){
1663 int block_width = (width +15)>>4;
1664 int block_height= (height+15)>>4;
1665 int stride= s->current_picture.linesize[0];
1667 assert(s->current_picture.data[0]);
1668 assert(s->last_picture[0].data[0]);
1670 s->m.avctx= s->avctx;
1671 s->m.current_picture.f.data[0] = s->current_picture.data[0];
1672 s->m. last_picture.f.data[0] = s->last_picture[0].data[0];
1673 s->m. new_picture.f.data[0] = s-> input_picture.data[0];
1674 s->m. last_picture_ptr= &s->m. last_picture;
1676 s->m. last_picture.f.linesize[0] =
1677 s->m. new_picture.f.linesize[0] =
1678 s->m.current_picture.f.linesize[0] = stride;
1679 s->m.uvlinesize= s->current_picture.linesize[1];
1681 s->m.height= height;
1682 s->m.mb_width = block_width;
1683 s->m.mb_height= block_height;
1684 s->m.mb_stride= s->m.mb_width+1;
1685 s->m.b8_stride= 2*s->m.mb_width+1;
1687 s->m.pict_type = pic->pict_type;
1688 s->m.me_method= s->avctx->me_method;
1689 s->m.me.scene_change_score=0;
1690 s->m.flags= s->avctx->flags;
1691 s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1692 s->m.out_format= FMT_H263;
1693 s->m.unrestricted_mv= 1;
1695 s->m.lambda = s->lambda;
1696 s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1697 s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1699 s->m.dsp= s->dsp; //move
1705 memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1706 memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1711 if (pic->pict_type == AV_PICTURE_TYPE_I)
1712 s->spatial_decomposition_count= 5;
1714 s->spatial_decomposition_count= 5;
1716 s->m.pict_type = pic->pict_type;
1717 s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1719 ff_snow_common_init_after_header(avctx);
1721 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1722 for(plane_index=0; plane_index<3; plane_index++){
1723 calculate_visual_weight(s, &s->plane[plane_index]);
1728 s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1729 encode_blocks(s, 1);
1730 s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1732 for(plane_index=0; plane_index<3; plane_index++){
1733 Plane *p= &s->plane[plane_index];
1737 // int bits= put_bits_count(&s->c.pb);
1739 if (!s->memc_only) {
1741 if(pict->data[plane_index]) //FIXME gray hack
1744 s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1747 predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1750 && pic->pict_type == AV_PICTURE_TYPE_P
1751 && !(avctx->flags&CODEC_FLAG_PASS2)
1752 && s->m.me.scene_change_score > s->avctx->scenechange_threshold){
1753 ff_init_range_encoder(c, pkt->data, pkt->size);
1754 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1755 pic->pict_type= AV_PICTURE_TYPE_I;
1757 s->current_picture.key_frame=1;
1761 if(s->qlog == LOSSLESS_QLOG){
1764 s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1770 s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
1776 dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type);
1778 ff_spatial_dwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1780 if(s->pass1_rc && plane_index==0){
1781 int delta_qlog = ratecontrol_1pass(s, pic);
1782 if (delta_qlog <= INT_MIN)
1785 //reordering qlog in the bitstream would eliminate this reset
1786 ff_init_range_encoder(c, pkt->data, pkt->size);
1787 memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1788 memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1790 encode_blocks(s, 0);
1794 for(level=0; level<s->spatial_decomposition_count; level++){
1795 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1796 SubBand *b= &p->band[level][orientation];
1799 quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1801 decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1802 encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1803 assert(b->parent==NULL || b->parent->stride == b->stride*2);
1805 correlate(s, b, b->ibuf, b->stride, 1, 0);
1809 for(level=0; level<s->spatial_decomposition_count; level++){
1810 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1811 SubBand *b= &p->band[level][orientation];
1813 dequantize(s, b, b->ibuf, b->stride);
1817 ff_spatial_idwt(s->spatial_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1818 if(s->qlog == LOSSLESS_QLOG){
1821 s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1825 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1828 if(pic->pict_type == AV_PICTURE_TYPE_I){
1831 s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
1832 pict->data[plane_index][y*pict->linesize[plane_index] + x];
1836 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1837 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1840 if(s->avctx->flags&CODEC_FLAG_PSNR){
1843 if(pict->data[plane_index]) //FIXME gray hack
1846 int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1850 s->avctx->error[plane_index] += error;
1851 s->current_picture.error[plane_index] = error;
1856 update_last_header_values(s);
1858 ff_snow_release_buffer(avctx);
1860 s->current_picture.coded_picture_number = avctx->frame_number;
1861 s->current_picture.pict_type = pict->pict_type;
1862 s->current_picture.quality = pict->quality;
1863 s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1864 s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1865 s->m.current_picture.f.display_picture_number =
1866 s->m.current_picture.f.coded_picture_number = avctx->frame_number;
1867 s->m.current_picture.f.quality = pic->quality;
1868 s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1870 if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1872 if(avctx->flags&CODEC_FLAG_PASS1)
1873 ff_write_pass1_stats(&s->m);
1874 s->m.last_pict_type = s->m.pict_type;
1875 avctx->frame_bits = s->m.frame_bits;
1876 avctx->mv_bits = s->m.mv_bits;
1877 avctx->misc_bits = s->m.misc_bits;
1878 avctx->p_tex_bits = s->m.p_tex_bits;
1882 pkt->size = ff_rac_terminate(c);
1883 if (avctx->coded_frame->key_frame)
1884 pkt->flags |= AV_PKT_FLAG_KEY;
1890 static av_cold int encode_end(AVCodecContext *avctx)
1892 SnowContext *s = avctx->priv_data;
1894 ff_snow_common_end(s);
1895 if (s->input_picture.data[0])
1896 avctx->release_buffer(avctx, &s->input_picture);
1897 av_free(avctx->stats_out);
1902 #define OFFSET(x) offsetof(SnowContext, x)
1903 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1904 static const AVOption options[] = {
1905 { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE },
1909 static const AVClass snowenc_class = {
1910 .class_name = "snow encoder",
1911 .item_name = av_default_item_name,
1913 .version = LIBAVUTIL_VERSION_INT,
1916 AVCodec ff_snow_encoder = {
1918 .type = AVMEDIA_TYPE_VIDEO,
1919 .id = CODEC_ID_SNOW,
1920 .priv_data_size = sizeof(SnowContext),
1921 .init = encode_init,
1922 .encode2 = encode_frame,
1923 .close = encode_end,
1924 .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1925 .priv_class = &snowenc_class,