]> git.sesse.net Git - ffmpeg/blob - libavcodec/snowenc.c
Merge commit '26d9b60373bf45bc4f91ff6815f5fa36764d4d7b'
[ffmpeg] / libavcodec / snowenc.c
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/intmath.h"
22 #include "libavutil/libm.h"
23 #include "libavutil/log.h"
24 #include "libavutil/opt.h"
25 #include "avcodec.h"
26 #include "internal.h"
27 #include "snow_dwt.h"
28 #include "snow.h"
29
30 #include "rangecoder.h"
31 #include "mathops.h"
32
33 #include "mpegvideo.h"
34 #include "h263.h"
35
36 static av_cold int encode_init(AVCodecContext *avctx)
37 {
38     SnowContext *s = avctx->priv_data;
39     int plane_index, ret;
40     int i;
41
42 #if FF_API_PRIVATE_OPT
43 FF_DISABLE_DEPRECATION_WARNINGS
44     if (avctx->prediction_method)
45         s->pred = avctx->prediction_method;
46 FF_ENABLE_DEPRECATION_WARNINGS
47 #endif
48
49     if(s->pred == DWT_97
50        && (avctx->flags & AV_CODEC_FLAG_QSCALE)
51        && avctx->global_quality == 0){
52         av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
53         return AVERROR(EINVAL);
54     }
55
56     s->spatial_decomposition_type= s->pred; //FIXME add decorrelator type r transform_type
57
58     s->mv_scale       = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4;
59     s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0;
60
61     for(plane_index=0; plane_index<3; plane_index++){
62         s->plane[plane_index].diag_mc= 1;
63         s->plane[plane_index].htaps= 6;
64         s->plane[plane_index].hcoeff[0]=  40;
65         s->plane[plane_index].hcoeff[1]= -10;
66         s->plane[plane_index].hcoeff[2]=   2;
67         s->plane[plane_index].fast_mc= 1;
68     }
69
70     if ((ret = ff_snow_common_init(avctx)) < 0) {
71         return ret;
72     }
73     ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
74
75     ff_snow_alloc_blocks(s);
76
77     s->version=0;
78
79     s->m.avctx   = avctx;
80     s->m.bit_rate= avctx->bit_rate;
81     s->m.lmin    = avctx->mb_lmin;
82     s->m.lmax    = avctx->mb_lmax;
83
84     s->m.me.temp      =
85     s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
86     s->m.me.map       = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
87     s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
88     s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
89     if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad)
90         return AVERROR(ENOMEM);
91
92     ff_h263_encode_init(&s->m); //mv_penalty
93
94     s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES);
95
96     if(avctx->flags&AV_CODEC_FLAG_PASS1){
97         if(!avctx->stats_out)
98             avctx->stats_out = av_mallocz(256);
99
100         if (!avctx->stats_out)
101             return AVERROR(ENOMEM);
102     }
103     if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&AV_CODEC_FLAG_QSCALE)){
104         ret = ff_rate_control_init(&s->m);
105         if(ret < 0)
106             return ret;
107     }
108     s->pass1_rc= !(avctx->flags & (AV_CODEC_FLAG_QSCALE|AV_CODEC_FLAG_PASS2));
109
110     switch(avctx->pix_fmt){
111     case AV_PIX_FMT_YUV444P:
112 //    case AV_PIX_FMT_YUV422P:
113     case AV_PIX_FMT_YUV420P:
114 //    case AV_PIX_FMT_YUV411P:
115     case AV_PIX_FMT_YUV410P:
116         s->nb_planes = 3;
117         s->colorspace_type= 0;
118         break;
119     case AV_PIX_FMT_GRAY8:
120         s->nb_planes = 1;
121         s->colorspace_type = 1;
122         break;
123 /*    case AV_PIX_FMT_RGB32:
124         s->colorspace= 1;
125         break;*/
126     default:
127         av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
128         return AVERROR_PATCHWELCOME;
129     }
130     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
131
132     ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
133     ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp);
134
135     s->input_picture = av_frame_alloc();
136     if (!s->input_picture)
137         return AVERROR(ENOMEM);
138
139     if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
140         return ret;
141
142     if(s->motion_est == FF_ME_ITER){
143         int size= s->b_width * s->b_height << 2*s->block_max_depth;
144         for(i=0; i<s->max_ref_frames; i++){
145             s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
146             s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
147             if (!s->ref_mvs[i] || !s->ref_scores[i])
148                 return AVERROR(ENOMEM);
149         }
150     }
151
152     return 0;
153 }
154
155 //near copy & paste from dsputil, FIXME
156 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
157 {
158     int s, i, j;
159
160     s = 0;
161     for (i = 0; i < h; i++) {
162         for (j = 0; j < w; j++) {
163             s += pix[0];
164             pix ++;
165         }
166         pix += line_size - w;
167     }
168     return s;
169 }
170
171 //near copy & paste from dsputil, FIXME
172 static int pix_norm1(uint8_t * pix, int line_size, int w)
173 {
174     int s, i, j;
175     uint32_t *sq = ff_square_tab + 256;
176
177     s = 0;
178     for (i = 0; i < w; i++) {
179         for (j = 0; j < w; j ++) {
180             s += sq[pix[0]];
181             pix ++;
182         }
183         pix += line_size - w;
184     }
185     return s;
186 }
187
188 static inline int get_penalty_factor(int lambda, int lambda2, int type){
189     switch(type&0xFF){
190     default:
191     case FF_CMP_SAD:
192         return lambda>>FF_LAMBDA_SHIFT;
193     case FF_CMP_DCT:
194         return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
195     case FF_CMP_W53:
196         return (4*lambda)>>(FF_LAMBDA_SHIFT);
197     case FF_CMP_W97:
198         return (2*lambda)>>(FF_LAMBDA_SHIFT);
199     case FF_CMP_SATD:
200     case FF_CMP_DCT264:
201         return (2*lambda)>>FF_LAMBDA_SHIFT;
202     case FF_CMP_RD:
203     case FF_CMP_PSNR:
204     case FF_CMP_SSE:
205     case FF_CMP_NSSE:
206         return lambda2>>FF_LAMBDA_SHIFT;
207     case FF_CMP_BIT:
208         return 1;
209     }
210 }
211
212 //FIXME copy&paste
213 #define P_LEFT P[1]
214 #define P_TOP P[2]
215 #define P_TOPRIGHT P[3]
216 #define P_MEDIAN P[4]
217 #define P_MV1 P[9]
218 #define FLAG_QPEL   1 //must be 1
219
220 static int encode_q_branch(SnowContext *s, int level, int x, int y){
221     uint8_t p_buffer[1024];
222     uint8_t i_buffer[1024];
223     uint8_t p_state[sizeof(s->block_state)];
224     uint8_t i_state[sizeof(s->block_state)];
225     RangeCoder pc, ic;
226     uint8_t *pbbak= s->c.bytestream;
227     uint8_t *pbbak_start= s->c.bytestream_start;
228     int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
229     const int w= s->b_width  << s->block_max_depth;
230     const int h= s->b_height << s->block_max_depth;
231     const int rem_depth= s->block_max_depth - level;
232     const int index= (x + y*w) << rem_depth;
233     const int block_w= 1<<(LOG2_MB_SIZE - level);
234     int trx= (x+1)<<rem_depth;
235     int try= (y+1)<<rem_depth;
236     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
237     const BlockNode *top   = y ? &s->block[index-w] : &null_block;
238     const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
239     const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
240     const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
241     const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
242     int pl = left->color[0];
243     int pcb= left->color[1];
244     int pcr= left->color[2];
245     int pmx, pmy;
246     int mx=0, my=0;
247     int l,cr,cb;
248     const int stride= s->current_picture->linesize[0];
249     const int uvstride= s->current_picture->linesize[1];
250     uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y*  stride)*block_w,
251                                 s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
252                                 s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
253     int P[10][2];
254     int16_t last_mv[3][2];
255     int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused
256     const int shift= 1+qpel;
257     MotionEstContext *c= &s->m.me;
258     int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
259     int mx_context= av_log2(2*FFABS(left->mx - top->mx));
260     int my_context= av_log2(2*FFABS(left->my - top->my));
261     int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
262     int ref, best_ref, ref_score, ref_mx, ref_my;
263
264     av_assert0(sizeof(s->block_state) >= 256);
265     if(s->keyframe){
266         set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
267         return 0;
268     }
269
270 //    clip predictors / edge ?
271
272     P_LEFT[0]= left->mx;
273     P_LEFT[1]= left->my;
274     P_TOP [0]= top->mx;
275     P_TOP [1]= top->my;
276     P_TOPRIGHT[0]= tr->mx;
277     P_TOPRIGHT[1]= tr->my;
278
279     last_mv[0][0]= s->block[index].mx;
280     last_mv[0][1]= s->block[index].my;
281     last_mv[1][0]= right->mx;
282     last_mv[1][1]= right->my;
283     last_mv[2][0]= bottom->mx;
284     last_mv[2][1]= bottom->my;
285
286     s->m.mb_stride=2;
287     s->m.mb_x=
288     s->m.mb_y= 0;
289     c->skip= 0;
290
291     av_assert1(c->  stride ==   stride);
292     av_assert1(c->uvstride == uvstride);
293
294     c->penalty_factor    = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
295     c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
296     c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
297     c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_DMV;
298
299     c->xmin = - x*block_w - 16+3;
300     c->ymin = - y*block_w - 16+3;
301     c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
302     c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
303
304     if(P_LEFT[0]     > (c->xmax<<shift)) P_LEFT[0]    = (c->xmax<<shift);
305     if(P_LEFT[1]     > (c->ymax<<shift)) P_LEFT[1]    = (c->ymax<<shift);
306     if(P_TOP[0]      > (c->xmax<<shift)) P_TOP[0]     = (c->xmax<<shift);
307     if(P_TOP[1]      > (c->ymax<<shift)) P_TOP[1]     = (c->ymax<<shift);
308     if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
309     if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
310     if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
311
312     P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
313     P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
314
315     if (!y) {
316         c->pred_x= P_LEFT[0];
317         c->pred_y= P_LEFT[1];
318     } else {
319         c->pred_x = P_MEDIAN[0];
320         c->pred_y = P_MEDIAN[1];
321     }
322
323     score= INT_MAX;
324     best_ref= 0;
325     for(ref=0; ref<s->ref_frames; ref++){
326         init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
327
328         ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
329                                          (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
330
331         av_assert2(ref_mx >= c->xmin);
332         av_assert2(ref_mx <= c->xmax);
333         av_assert2(ref_my >= c->ymin);
334         av_assert2(ref_my <= c->ymax);
335
336         ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
337         ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
338         ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
339         if(s->ref_mvs[ref]){
340             s->ref_mvs[ref][index][0]= ref_mx;
341             s->ref_mvs[ref][index][1]= ref_my;
342             s->ref_scores[ref][index]= ref_score;
343         }
344         if(score > ref_score){
345             score= ref_score;
346             best_ref= ref;
347             mx= ref_mx;
348             my= ref_my;
349         }
350     }
351     //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
352
353   //  subpel search
354     base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
355     pc= s->c;
356     pc.bytestream_start=
357     pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
358     memcpy(p_state, s->block_state, sizeof(s->block_state));
359
360     if(level!=s->block_max_depth)
361         put_rac(&pc, &p_state[4 + s_context], 1);
362     put_rac(&pc, &p_state[1 + left->type + top->type], 0);
363     if(s->ref_frames > 1)
364         put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
365     pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
366     put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
367     put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
368     p_len= pc.bytestream - pc.bytestream_start;
369     score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
370
371     block_s= block_w*block_w;
372     sum = pix_sum(current_data[0], stride, block_w, block_w);
373     l= (sum + block_s/2)/block_s;
374     iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
375
376     if (s->nb_planes > 2) {
377         block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
378         sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
379         cb= (sum + block_s/2)/block_s;
380     //    iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
381         sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
382         cr= (sum + block_s/2)/block_s;
383     //    iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
384     }else
385         cb = cr = 0;
386
387     ic= s->c;
388     ic.bytestream_start=
389     ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
390     memcpy(i_state, s->block_state, sizeof(s->block_state));
391     if(level!=s->block_max_depth)
392         put_rac(&ic, &i_state[4 + s_context], 1);
393     put_rac(&ic, &i_state[1 + left->type + top->type], 1);
394     put_symbol(&ic, &i_state[32],  l-pl , 1);
395     if (s->nb_planes > 2) {
396         put_symbol(&ic, &i_state[64], cb-pcb, 1);
397         put_symbol(&ic, &i_state[96], cr-pcr, 1);
398     }
399     i_len= ic.bytestream - ic.bytestream_start;
400     iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
401
402     av_assert1(iscore < 255*255*256 + s->lambda2*10);
403     av_assert1(iscore >= 0);
404     av_assert1(l>=0 && l<=255);
405     av_assert1(pl>=0 && pl<=255);
406
407     if(level==0){
408         int varc= iscore >> 8;
409         int vard= score >> 8;
410         if (vard <= 64 || vard < varc)
411             c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
412         else
413             c->scene_change_score+= s->m.qscale;
414     }
415
416     if(level!=s->block_max_depth){
417         put_rac(&s->c, &s->block_state[4 + s_context], 0);
418         score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
419         score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
420         score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
421         score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
422         score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
423
424         if(score2 < score && score2 < iscore)
425             return score2;
426     }
427
428     if(iscore < score){
429         pred_mv(s, &pmx, &pmy, 0, left, top, tr);
430         memcpy(pbbak, i_buffer, i_len);
431         s->c= ic;
432         s->c.bytestream_start= pbbak_start;
433         s->c.bytestream= pbbak + i_len;
434         set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
435         memcpy(s->block_state, i_state, sizeof(s->block_state));
436         return iscore;
437     }else{
438         memcpy(pbbak, p_buffer, p_len);
439         s->c= pc;
440         s->c.bytestream_start= pbbak_start;
441         s->c.bytestream= pbbak + p_len;
442         set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
443         memcpy(s->block_state, p_state, sizeof(s->block_state));
444         return score;
445     }
446 }
447
448 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
449     const int w= s->b_width  << s->block_max_depth;
450     const int rem_depth= s->block_max_depth - level;
451     const int index= (x + y*w) << rem_depth;
452     int trx= (x+1)<<rem_depth;
453     BlockNode *b= &s->block[index];
454     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
455     const BlockNode *top   = y ? &s->block[index-w] : &null_block;
456     const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
457     const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
458     int pl = left->color[0];
459     int pcb= left->color[1];
460     int pcr= left->color[2];
461     int pmx, pmy;
462     int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
463     int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
464     int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
465     int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
466
467     if(s->keyframe){
468         set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
469         return;
470     }
471
472     if(level!=s->block_max_depth){
473         if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
474             put_rac(&s->c, &s->block_state[4 + s_context], 1);
475         }else{
476             put_rac(&s->c, &s->block_state[4 + s_context], 0);
477             encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
478             encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
479             encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
480             encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
481             return;
482         }
483     }
484     if(b->type & BLOCK_INTRA){
485         pred_mv(s, &pmx, &pmy, 0, left, top, tr);
486         put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
487         put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
488         if (s->nb_planes > 2) {
489             put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
490             put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
491         }
492         set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
493     }else{
494         pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
495         put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
496         if(s->ref_frames > 1)
497             put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
498         put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
499         put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
500         set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
501     }
502 }
503
504 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
505     int i, x2, y2;
506     Plane *p= &s->plane[plane_index];
507     const int block_size = MB_SIZE >> s->block_max_depth;
508     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
509     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
510     const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
511     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
512     const int ref_stride= s->current_picture->linesize[plane_index];
513     uint8_t *src= s-> input_picture->data[plane_index];
514     IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
515     const int b_stride = s->b_width << s->block_max_depth;
516     const int w= p->width;
517     const int h= p->height;
518     int index= mb_x + mb_y*b_stride;
519     BlockNode *b= &s->block[index];
520     BlockNode backup= *b;
521     int ab=0;
522     int aa=0;
523
524     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
525
526     b->type|= BLOCK_INTRA;
527     b->color[plane_index]= 0;
528     memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
529
530     for(i=0; i<4; i++){
531         int mb_x2= mb_x + (i &1) - 1;
532         int mb_y2= mb_y + (i>>1) - 1;
533         int x= block_w*mb_x2 + block_w/2;
534         int y= block_h*mb_y2 + block_h/2;
535
536         add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
537                     x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
538
539         for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
540             for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
541                 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
542                 int obmc_v= obmc[index];
543                 int d;
544                 if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
545                 if(x<0) obmc_v += obmc[index + block_w];
546                 if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
547                 if(x+block_w>w) obmc_v += obmc[index - block_w];
548                 //FIXME precalculate this or simplify it somehow else
549
550                 d = -dst[index] + (1<<(FRAC_BITS-1));
551                 dst[index] = d;
552                 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
553                 aa += obmc_v * obmc_v; //FIXME precalculate this
554             }
555         }
556     }
557     *b= backup;
558
559     return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping
560 }
561
562 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
563     const int b_stride = s->b_width << s->block_max_depth;
564     const int b_height = s->b_height<< s->block_max_depth;
565     int index= x + y*b_stride;
566     const BlockNode *b     = &s->block[index];
567     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
568     const BlockNode *top   = y ? &s->block[index-b_stride] : &null_block;
569     const BlockNode *tl    = y && x ? &s->block[index-b_stride-1] : left;
570     const BlockNode *tr    = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
571     int dmx, dmy;
572 //  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
573 //  int my_context= av_log2(2*FFABS(left->my - top->my));
574
575     if(x<0 || x>=b_stride || y>=b_height)
576         return 0;
577 /*
578 1            0      0
579 01X          1-2    1
580 001XX        3-6    2-3
581 0001XXX      7-14   4-7
582 00001XXXX   15-30   8-15
583 */
584 //FIXME try accurate rate
585 //FIXME intra and inter predictors if surrounding blocks are not the same type
586     if(b->type & BLOCK_INTRA){
587         return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
588                    + av_log2(2*FFABS(left->color[1] - b->color[1]))
589                    + av_log2(2*FFABS(left->color[2] - b->color[2])));
590     }else{
591         pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
592         dmx-= b->mx;
593         dmy-= b->my;
594         return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
595                     + av_log2(2*FFABS(dmy))
596                     + av_log2(2*b->ref));
597     }
598 }
599
600 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
601     Plane *p= &s->plane[plane_index];
602     const int block_size = MB_SIZE >> s->block_max_depth;
603     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
604     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
605     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
606     const int ref_stride= s->current_picture->linesize[plane_index];
607     uint8_t *dst= s->current_picture->data[plane_index];
608     uint8_t *src= s->  input_picture->data[plane_index];
609     IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4;
610     uint8_t *cur = s->scratchbuf;
611     uint8_t *tmp = s->emu_edge_buffer;
612     const int b_stride = s->b_width << s->block_max_depth;
613     const int b_height = s->b_height<< s->block_max_depth;
614     const int w= p->width;
615     const int h= p->height;
616     int distortion;
617     int rate= 0;
618     const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
619     int sx= block_w*mb_x - block_w/2;
620     int sy= block_h*mb_y - block_h/2;
621     int x0= FFMAX(0,-sx);
622     int y0= FFMAX(0,-sy);
623     int x1= FFMIN(block_w*2, w-sx);
624     int y1= FFMIN(block_h*2, h-sy);
625     int i,x,y;
626
627     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
628
629     ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
630
631     for(y=y0; y<y1; y++){
632         const uint8_t *obmc1= obmc_edged[y];
633         const IDWTELEM *pred1 = pred + y*obmc_stride;
634         uint8_t *cur1 = cur + y*ref_stride;
635         uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
636         for(x=x0; x<x1; x++){
637 #if FRAC_BITS >= LOG2_OBMC_MAX
638             int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
639 #else
640             int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
641 #endif
642             v = (v + pred1[x]) >> FRAC_BITS;
643             if(v&(~255)) v= ~(v>>31);
644             dst1[x] = v;
645         }
646     }
647
648     /* copy the regions where obmc[] = (uint8_t)256 */
649     if(LOG2_OBMC_MAX == 8
650         && (mb_x == 0 || mb_x == b_stride-1)
651         && (mb_y == 0 || mb_y == b_height-1)){
652         if(mb_x == 0)
653             x1 = block_w;
654         else
655             x0 = block_w;
656         if(mb_y == 0)
657             y1 = block_h;
658         else
659             y0 = block_h;
660         for(y=y0; y<y1; y++)
661             memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
662     }
663
664     if(block_w==16){
665         /* FIXME rearrange dsputil to fit 32x32 cmp functions */
666         /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
667         /* FIXME cmps overlap but do not cover the wavelet's whole support.
668          * So improving the score of one block is not strictly guaranteed
669          * to improve the score of the whole frame, thus iterative motion
670          * estimation does not always converge. */
671         if(s->avctx->me_cmp == FF_CMP_W97)
672             distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
673         else if(s->avctx->me_cmp == FF_CMP_W53)
674             distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
675         else{
676             distortion = 0;
677             for(i=0; i<4; i++){
678                 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
679                 distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
680             }
681         }
682     }else{
683         av_assert2(block_w==8);
684         distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
685     }
686
687     if(plane_index==0){
688         for(i=0; i<4; i++){
689 /* ..RRr
690  * .RXx.
691  * rxx..
692  */
693             rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
694         }
695         if(mb_x == b_stride-2)
696             rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
697     }
698     return distortion + rate*penalty_factor;
699 }
700
701 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
702     int i, y2;
703     Plane *p= &s->plane[plane_index];
704     const int block_size = MB_SIZE >> s->block_max_depth;
705     const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
706     const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
707     const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
708     const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
709     const int ref_stride= s->current_picture->linesize[plane_index];
710     uint8_t *dst= s->current_picture->data[plane_index];
711     uint8_t *src= s-> input_picture->data[plane_index];
712     //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
713     // const has only been removed from zero_dst to suppress a warning
714     static IDWTELEM zero_dst[4096]; //FIXME
715     const int b_stride = s->b_width << s->block_max_depth;
716     const int w= p->width;
717     const int h= p->height;
718     int distortion= 0;
719     int rate= 0;
720     const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
721
722     av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
723
724     for(i=0; i<9; i++){
725         int mb_x2= mb_x + (i%3) - 1;
726         int mb_y2= mb_y + (i/3) - 1;
727         int x= block_w*mb_x2 + block_w/2;
728         int y= block_h*mb_y2 + block_h/2;
729
730         add_yblock(s, 0, NULL, zero_dst, dst, obmc,
731                    x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
732
733         //FIXME find a cleaner/simpler way to skip the outside stuff
734         for(y2= y; y2<0; y2++)
735             memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
736         for(y2= h; y2<y+block_h; y2++)
737             memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
738         if(x<0){
739             for(y2= y; y2<y+block_h; y2++)
740                 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
741         }
742         if(x+block_w > w){
743             for(y2= y; y2<y+block_h; y2++)
744                 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
745         }
746
747         av_assert1(block_w== 8 || block_w==16);
748         distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
749     }
750
751     if(plane_index==0){
752         BlockNode *b= &s->block[mb_x+mb_y*b_stride];
753         int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
754
755 /* ..RRRr
756  * .RXXx.
757  * .RXXx.
758  * rxxx.
759  */
760         if(merged)
761             rate = get_block_bits(s, mb_x, mb_y, 2);
762         for(i=merged?4:0; i<9; i++){
763             static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
764             rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
765         }
766     }
767     return distortion + rate*penalty_factor;
768 }
769
770 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
771     const int w= b->width;
772     const int h= b->height;
773     int x, y;
774
775     if(1){
776         int run=0;
777         int *runs = s->run_buffer;
778         int run_index=0;
779         int max_index;
780
781         for(y=0; y<h; y++){
782             for(x=0; x<w; x++){
783                 int v, p=0;
784                 int /*ll=0, */l=0, lt=0, t=0, rt=0;
785                 v= src[x + y*stride];
786
787                 if(y){
788                     t= src[x + (y-1)*stride];
789                     if(x){
790                         lt= src[x - 1 + (y-1)*stride];
791                     }
792                     if(x + 1 < w){
793                         rt= src[x + 1 + (y-1)*stride];
794                     }
795                 }
796                 if(x){
797                     l= src[x - 1 + y*stride];
798                     /*if(x > 1){
799                         if(orientation==1) ll= src[y + (x-2)*stride];
800                         else               ll= src[x - 2 + y*stride];
801                     }*/
802                 }
803                 if(parent){
804                     int px= x>>1;
805                     int py= y>>1;
806                     if(px<b->parent->width && py<b->parent->height)
807                         p= parent[px + py*2*stride];
808                 }
809                 if(!(/*ll|*/l|lt|t|rt|p)){
810                     if(v){
811                         runs[run_index++]= run;
812                         run=0;
813                     }else{
814                         run++;
815                     }
816                 }
817             }
818         }
819         max_index= run_index;
820         runs[run_index++]= run;
821         run_index=0;
822         run= runs[run_index++];
823
824         put_symbol2(&s->c, b->state[30], max_index, 0);
825         if(run_index <= max_index)
826             put_symbol2(&s->c, b->state[1], run, 3);
827
828         for(y=0; y<h; y++){
829             if(s->c.bytestream_end - s->c.bytestream < w*40){
830                 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
831                 return AVERROR(ENOMEM);
832             }
833             for(x=0; x<w; x++){
834                 int v, p=0;
835                 int /*ll=0, */l=0, lt=0, t=0, rt=0;
836                 v= src[x + y*stride];
837
838                 if(y){
839                     t= src[x + (y-1)*stride];
840                     if(x){
841                         lt= src[x - 1 + (y-1)*stride];
842                     }
843                     if(x + 1 < w){
844                         rt= src[x + 1 + (y-1)*stride];
845                     }
846                 }
847                 if(x){
848                     l= src[x - 1 + y*stride];
849                     /*if(x > 1){
850                         if(orientation==1) ll= src[y + (x-2)*stride];
851                         else               ll= src[x - 2 + y*stride];
852                     }*/
853                 }
854                 if(parent){
855                     int px= x>>1;
856                     int py= y>>1;
857                     if(px<b->parent->width && py<b->parent->height)
858                         p= parent[px + py*2*stride];
859                 }
860                 if(/*ll|*/l|lt|t|rt|p){
861                     int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
862
863                     put_rac(&s->c, &b->state[0][context], !!v);
864                 }else{
865                     if(!run){
866                         run= runs[run_index++];
867
868                         if(run_index <= max_index)
869                             put_symbol2(&s->c, b->state[1], run, 3);
870                         av_assert2(v);
871                     }else{
872                         run--;
873                         av_assert2(!v);
874                     }
875                 }
876                 if(v){
877                     int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
878                     int l2= 2*FFABS(l) + (l<0);
879                     int t2= 2*FFABS(t) + (t<0);
880
881                     put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
882                     put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
883                 }
884             }
885         }
886     }
887     return 0;
888 }
889
890 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
891 //    encode_subband_qtree(s, b, src, parent, stride, orientation);
892 //    encode_subband_z0run(s, b, src, parent, stride, orientation);
893     return encode_subband_c0run(s, b, src, parent, stride, orientation);
894 //    encode_subband_dzr(s, b, src, parent, stride, orientation);
895 }
896
897 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
898     const int b_stride= s->b_width << s->block_max_depth;
899     BlockNode *block= &s->block[mb_x + mb_y * b_stride];
900     BlockNode backup= *block;
901     unsigned value;
902     int rd, index;
903
904     av_assert2(mb_x>=0 && mb_y>=0);
905     av_assert2(mb_x<b_stride);
906
907     if(intra){
908         block->color[0] = p[0];
909         block->color[1] = p[1];
910         block->color[2] = p[2];
911         block->type |= BLOCK_INTRA;
912     }else{
913         index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
914         value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
915         if(s->me_cache[index] == value)
916             return 0;
917         s->me_cache[index]= value;
918
919         block->mx= p[0];
920         block->my= p[1];
921         block->type &= ~BLOCK_INTRA;
922     }
923
924     rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra;
925
926 //FIXME chroma
927     if(rd < *best_rd){
928         *best_rd= rd;
929         return 1;
930     }else{
931         *block= backup;
932         return 0;
933     }
934 }
935
936 /* special case for int[2] args we discard afterwards,
937  * fixes compilation problem with gcc 2.95 */
938 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
939     int p[2] = {p0, p1};
940     return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
941 }
942
943 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
944     const int b_stride= s->b_width << s->block_max_depth;
945     BlockNode *block= &s->block[mb_x + mb_y * b_stride];
946     BlockNode backup[4];
947     unsigned value;
948     int rd, index;
949
950     /* We don't initialize backup[] during variable declaration, because
951      * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
952      * 'int16_t'". */
953     backup[0] = block[0];
954     backup[1] = block[1];
955     backup[2] = block[b_stride];
956     backup[3] = block[b_stride + 1];
957
958     av_assert2(mb_x>=0 && mb_y>=0);
959     av_assert2(mb_x<b_stride);
960     av_assert2(((mb_x|mb_y)&1) == 0);
961
962     index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
963     value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
964     if(s->me_cache[index] == value)
965         return 0;
966     s->me_cache[index]= value;
967
968     block->mx= p0;
969     block->my= p1;
970     block->ref= ref;
971     block->type &= ~BLOCK_INTRA;
972     block[1]= block[b_stride]= block[b_stride+1]= *block;
973
974     rd= get_4block_rd(s, mb_x, mb_y, 0);
975
976 //FIXME chroma
977     if(rd < *best_rd){
978         *best_rd= rd;
979         return 1;
980     }else{
981         block[0]= backup[0];
982         block[1]= backup[1];
983         block[b_stride]= backup[2];
984         block[b_stride+1]= backup[3];
985         return 0;
986     }
987 }
988
989 static void iterative_me(SnowContext *s){
990     int pass, mb_x, mb_y;
991     const int b_width = s->b_width  << s->block_max_depth;
992     const int b_height= s->b_height << s->block_max_depth;
993     const int b_stride= b_width;
994     int color[3];
995
996     {
997         RangeCoder r = s->c;
998         uint8_t state[sizeof(s->block_state)];
999         memcpy(state, s->block_state, sizeof(s->block_state));
1000         for(mb_y= 0; mb_y<s->b_height; mb_y++)
1001             for(mb_x= 0; mb_x<s->b_width; mb_x++)
1002                 encode_q_branch(s, 0, mb_x, mb_y);
1003         s->c = r;
1004         memcpy(s->block_state, state, sizeof(s->block_state));
1005     }
1006
1007     for(pass=0; pass<25; pass++){
1008         int change= 0;
1009
1010         for(mb_y= 0; mb_y<b_height; mb_y++){
1011             for(mb_x= 0; mb_x<b_width; mb_x++){
1012                 int dia_change, i, j, ref;
1013                 int best_rd= INT_MAX, ref_rd;
1014                 BlockNode backup, ref_b;
1015                 const int index= mb_x + mb_y * b_stride;
1016                 BlockNode *block= &s->block[index];
1017                 BlockNode *tb =                   mb_y            ? &s->block[index-b_stride  ] : NULL;
1018                 BlockNode *lb = mb_x                              ? &s->block[index         -1] : NULL;
1019                 BlockNode *rb = mb_x+1<b_width                    ? &s->block[index         +1] : NULL;
1020                 BlockNode *bb =                   mb_y+1<b_height ? &s->block[index+b_stride  ] : NULL;
1021                 BlockNode *tlb= mb_x           && mb_y            ? &s->block[index-b_stride-1] : NULL;
1022                 BlockNode *trb= mb_x+1<b_width && mb_y            ? &s->block[index-b_stride+1] : NULL;
1023                 BlockNode *blb= mb_x           && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1024                 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1025                 const int b_w= (MB_SIZE >> s->block_max_depth);
1026                 uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1027
1028                 if(pass && (block->type & BLOCK_OPT))
1029                     continue;
1030                 block->type |= BLOCK_OPT;
1031
1032                 backup= *block;
1033
1034                 if(!s->me_cache_generation)
1035                     memset(s->me_cache, 0, sizeof(s->me_cache));
1036                 s->me_cache_generation += 1<<22;
1037
1038                 //FIXME precalculate
1039                 {
1040                     int x, y;
1041                     for (y = 0; y < b_w * 2; y++)
1042                         memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1043                     if(mb_x==0)
1044                         for(y=0; y<b_w*2; y++)
1045                             memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1046                     if(mb_x==b_stride-1)
1047                         for(y=0; y<b_w*2; y++)
1048                             memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1049                     if(mb_y==0){
1050                         for(x=0; x<b_w*2; x++)
1051                             obmc_edged[0][x] += obmc_edged[b_w-1][x];
1052                         for(y=1; y<b_w; y++)
1053                             memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1054                     }
1055                     if(mb_y==b_height-1){
1056                         for(x=0; x<b_w*2; x++)
1057                             obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1058                         for(y=b_w; y<b_w*2-1; y++)
1059                             memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1060                     }
1061                 }
1062
1063                 //skip stuff outside the picture
1064                 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1065                     uint8_t *src= s->  input_picture->data[0];
1066                     uint8_t *dst= s->current_picture->data[0];
1067                     const int stride= s->current_picture->linesize[0];
1068                     const int block_w= MB_SIZE >> s->block_max_depth;
1069                     const int block_h= MB_SIZE >> s->block_max_depth;
1070                     const int sx= block_w*mb_x - block_w/2;
1071                     const int sy= block_h*mb_y - block_h/2;
1072                     const int w= s->plane[0].width;
1073                     const int h= s->plane[0].height;
1074                     int y;
1075
1076                     for(y=sy; y<0; y++)
1077                         memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1078                     for(y=h; y<sy+block_h*2; y++)
1079                         memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1080                     if(sx<0){
1081                         for(y=sy; y<sy+block_h*2; y++)
1082                             memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1083                     }
1084                     if(sx+block_w*2 > w){
1085                         for(y=sy; y<sy+block_h*2; y++)
1086                             memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1087                     }
1088                 }
1089
1090                 // intra(black) = neighbors' contribution to the current block
1091                 for(i=0; i < s->nb_planes; i++)
1092                     color[i]= get_dc(s, mb_x, mb_y, i);
1093
1094                 // get previous score (cannot be cached due to OBMC)
1095                 if(pass > 0 && (block->type&BLOCK_INTRA)){
1096                     int color0[3]= {block->color[0], block->color[1], block->color[2]};
1097                     check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1098                 }else
1099                     check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1100
1101                 ref_b= *block;
1102                 ref_rd= best_rd;
1103                 for(ref=0; ref < s->ref_frames; ref++){
1104                     int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1105                     if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1106                         continue;
1107                     block->ref= ref;
1108                     best_rd= INT_MAX;
1109
1110                     check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1111                     check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1112                     if(tb)
1113                         check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1114                     if(lb)
1115                         check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1116                     if(rb)
1117                         check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1118                     if(bb)
1119                         check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1120
1121                     /* fullpel ME */
1122                     //FIXME avoid subpel interpolation / round to nearest integer
1123                     do{
1124                         int newx = block->mx;
1125                         int newy = block->my;
1126                         int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1);
1127                         dia_change=0;
1128                         for(i=0; i < dia_size; i++){
1129                             for(j=0; j<i; j++){
1130                                 dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd);
1131                                 dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd);
1132                                 dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd);
1133                                 dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd);
1134                             }
1135                         }
1136                     }while(dia_change);
1137                     /* subpel ME */
1138                     do{
1139                         static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1140                         dia_change=0;
1141                         for(i=0; i<8; i++)
1142                             dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1143                     }while(dia_change);
1144                     //FIXME or try the standard 2 pass qpel or similar
1145
1146                     mvr[0][0]= block->mx;
1147                     mvr[0][1]= block->my;
1148                     if(ref_rd > best_rd){
1149                         ref_rd= best_rd;
1150                         ref_b= *block;
1151                     }
1152                 }
1153                 best_rd= ref_rd;
1154                 *block= ref_b;
1155                 check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1156                 //FIXME RD style color selection
1157                 if(!same_block(block, &backup)){
1158                     if(tb ) tb ->type &= ~BLOCK_OPT;
1159                     if(lb ) lb ->type &= ~BLOCK_OPT;
1160                     if(rb ) rb ->type &= ~BLOCK_OPT;
1161                     if(bb ) bb ->type &= ~BLOCK_OPT;
1162                     if(tlb) tlb->type &= ~BLOCK_OPT;
1163                     if(trb) trb->type &= ~BLOCK_OPT;
1164                     if(blb) blb->type &= ~BLOCK_OPT;
1165                     if(brb) brb->type &= ~BLOCK_OPT;
1166                     change ++;
1167                 }
1168             }
1169         }
1170         av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change);
1171         if(!change)
1172             break;
1173     }
1174
1175     if(s->block_max_depth == 1){
1176         int change= 0;
1177         for(mb_y= 0; mb_y<b_height; mb_y+=2){
1178             for(mb_x= 0; mb_x<b_width; mb_x+=2){
1179                 int i;
1180                 int best_rd, init_rd;
1181                 const int index= mb_x + mb_y * b_stride;
1182                 BlockNode *b[4];
1183
1184                 b[0]= &s->block[index];
1185                 b[1]= b[0]+1;
1186                 b[2]= b[0]+b_stride;
1187                 b[3]= b[2]+1;
1188                 if(same_block(b[0], b[1]) &&
1189                    same_block(b[0], b[2]) &&
1190                    same_block(b[0], b[3]))
1191                     continue;
1192
1193                 if(!s->me_cache_generation)
1194                     memset(s->me_cache, 0, sizeof(s->me_cache));
1195                 s->me_cache_generation += 1<<22;
1196
1197                 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1198
1199                 //FIXME more multiref search?
1200                 check_4block_inter(s, mb_x, mb_y,
1201                                    (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1202                                    (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1203
1204                 for(i=0; i<4; i++)
1205                     if(!(b[i]->type&BLOCK_INTRA))
1206                         check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1207
1208                 if(init_rd != best_rd)
1209                     change++;
1210             }
1211         }
1212         av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1213     }
1214 }
1215
1216 static void encode_blocks(SnowContext *s, int search){
1217     int x, y;
1218     int w= s->b_width;
1219     int h= s->b_height;
1220
1221     if(s->motion_est == FF_ME_ITER && !s->keyframe && search)
1222         iterative_me(s);
1223
1224     for(y=0; y<h; y++){
1225         if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1226             av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1227             return;
1228         }
1229         for(x=0; x<w; x++){
1230             if(s->motion_est == FF_ME_ITER || !search)
1231                 encode_q_branch2(s, 0, x, y);
1232             else
1233                 encode_q_branch (s, 0, x, y);
1234         }
1235     }
1236 }
1237
1238 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1239     const int w= b->width;
1240     const int h= b->height;
1241     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1242     const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1243     int x,y, thres1, thres2;
1244
1245     if(s->qlog == LOSSLESS_QLOG){
1246         for(y=0; y<h; y++)
1247             for(x=0; x<w; x++)
1248                 dst[x + y*stride]= src[x + y*stride];
1249         return;
1250     }
1251
1252     bias= bias ? 0 : (3*qmul)>>3;
1253     thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1254     thres2= 2*thres1;
1255
1256     if(!bias){
1257         for(y=0; y<h; y++){
1258             for(x=0; x<w; x++){
1259                 int i= src[x + y*stride];
1260
1261                 if((unsigned)(i+thres1) > thres2){
1262                     if(i>=0){
1263                         i<<= QEXPSHIFT;
1264                         i/= qmul; //FIXME optimize
1265                         dst[x + y*stride]=  i;
1266                     }else{
1267                         i= -i;
1268                         i<<= QEXPSHIFT;
1269                         i/= qmul; //FIXME optimize
1270                         dst[x + y*stride]= -i;
1271                     }
1272                 }else
1273                     dst[x + y*stride]= 0;
1274             }
1275         }
1276     }else{
1277         for(y=0; y<h; y++){
1278             for(x=0; x<w; x++){
1279                 int i= src[x + y*stride];
1280
1281                 if((unsigned)(i+thres1) > thres2){
1282                     if(i>=0){
1283                         i<<= QEXPSHIFT;
1284                         i= (i + bias) / qmul; //FIXME optimize
1285                         dst[x + y*stride]=  i;
1286                     }else{
1287                         i= -i;
1288                         i<<= QEXPSHIFT;
1289                         i= (i + bias) / qmul; //FIXME optimize
1290                         dst[x + y*stride]= -i;
1291                     }
1292                 }else
1293                     dst[x + y*stride]= 0;
1294             }
1295         }
1296     }
1297 }
1298
1299 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1300     const int w= b->width;
1301     const int h= b->height;
1302     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1303     const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1304     const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1305     int x,y;
1306
1307     if(s->qlog == LOSSLESS_QLOG) return;
1308
1309     for(y=0; y<h; y++){
1310         for(x=0; x<w; x++){
1311             int i= src[x + y*stride];
1312             if(i<0){
1313                 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1314             }else if(i>0){
1315                 src[x + y*stride]=  (( i*qmul + qadd)>>(QEXPSHIFT));
1316             }
1317         }
1318     }
1319 }
1320
1321 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1322     const int w= b->width;
1323     const int h= b->height;
1324     int x,y;
1325
1326     for(y=h-1; y>=0; y--){
1327         for(x=w-1; x>=0; x--){
1328             int i= x + y*stride;
1329
1330             if(x){
1331                 if(use_median){
1332                     if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1333                     else  src[i] -= src[i - 1];
1334                 }else{
1335                     if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1336                     else  src[i] -= src[i - 1];
1337                 }
1338             }else{
1339                 if(y) src[i] -= src[i - stride];
1340             }
1341         }
1342     }
1343 }
1344
1345 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1346     const int w= b->width;
1347     const int h= b->height;
1348     int x,y;
1349
1350     for(y=0; y<h; y++){
1351         for(x=0; x<w; x++){
1352             int i= x + y*stride;
1353
1354             if(x){
1355                 if(use_median){
1356                     if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1357                     else  src[i] += src[i - 1];
1358                 }else{
1359                     if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1360                     else  src[i] += src[i - 1];
1361                 }
1362             }else{
1363                 if(y) src[i] += src[i - stride];
1364             }
1365         }
1366     }
1367 }
1368
1369 static void encode_qlogs(SnowContext *s){
1370     int plane_index, level, orientation;
1371
1372     for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1373         for(level=0; level<s->spatial_decomposition_count; level++){
1374             for(orientation=level ? 1:0; orientation<4; orientation++){
1375                 if(orientation==2) continue;
1376                 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1377             }
1378         }
1379     }
1380 }
1381
1382 static void encode_header(SnowContext *s){
1383     int plane_index, i;
1384     uint8_t kstate[32];
1385
1386     memset(kstate, MID_STATE, sizeof(kstate));
1387
1388     put_rac(&s->c, kstate, s->keyframe);
1389     if(s->keyframe || s->always_reset){
1390         ff_snow_reset_contexts(s);
1391         s->last_spatial_decomposition_type=
1392         s->last_qlog=
1393         s->last_qbias=
1394         s->last_mv_scale=
1395         s->last_block_max_depth= 0;
1396         for(plane_index=0; plane_index<2; plane_index++){
1397             Plane *p= &s->plane[plane_index];
1398             p->last_htaps=0;
1399             p->last_diag_mc=0;
1400             memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1401         }
1402     }
1403     if(s->keyframe){
1404         put_symbol(&s->c, s->header_state, s->version, 0);
1405         put_rac(&s->c, s->header_state, s->always_reset);
1406         put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1407         put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1408         put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1409         put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1410         if (s->nb_planes > 2) {
1411             put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1412             put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1413         }
1414         put_rac(&s->c, s->header_state, s->spatial_scalability);
1415 //        put_rac(&s->c, s->header_state, s->rate_scalability);
1416         put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1417
1418         encode_qlogs(s);
1419     }
1420
1421     if(!s->keyframe){
1422         int update_mc=0;
1423         for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1424             Plane *p= &s->plane[plane_index];
1425             update_mc |= p->last_htaps   != p->htaps;
1426             update_mc |= p->last_diag_mc != p->diag_mc;
1427             update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1428         }
1429         put_rac(&s->c, s->header_state, update_mc);
1430         if(update_mc){
1431             for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1432                 Plane *p= &s->plane[plane_index];
1433                 put_rac(&s->c, s->header_state, p->diag_mc);
1434                 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1435                 for(i= p->htaps/2; i; i--)
1436                     put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1437             }
1438         }
1439         if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1440             put_rac(&s->c, s->header_state, 1);
1441             put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1442             encode_qlogs(s);
1443         }else
1444             put_rac(&s->c, s->header_state, 0);
1445     }
1446
1447     put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1448     put_symbol(&s->c, s->header_state, s->qlog            - s->last_qlog    , 1);
1449     put_symbol(&s->c, s->header_state, s->mv_scale        - s->last_mv_scale, 1);
1450     put_symbol(&s->c, s->header_state, s->qbias           - s->last_qbias   , 1);
1451     put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1452
1453 }
1454
1455 static void update_last_header_values(SnowContext *s){
1456     int plane_index;
1457
1458     if(!s->keyframe){
1459         for(plane_index=0; plane_index<2; plane_index++){
1460             Plane *p= &s->plane[plane_index];
1461             p->last_diag_mc= p->diag_mc;
1462             p->last_htaps  = p->htaps;
1463             memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1464         }
1465     }
1466
1467     s->last_spatial_decomposition_type  = s->spatial_decomposition_type;
1468     s->last_qlog                        = s->qlog;
1469     s->last_qbias                       = s->qbias;
1470     s->last_mv_scale                    = s->mv_scale;
1471     s->last_block_max_depth             = s->block_max_depth;
1472     s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1473 }
1474
1475 static int qscale2qlog(int qscale){
1476     return lrint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1477            + 61*QROOT/8; ///< 64 > 60
1478 }
1479
1480 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1481 {
1482     /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1483      * FIXME we know exact mv bits at this point,
1484      * but ratecontrol isn't set up to include them. */
1485     uint32_t coef_sum= 0;
1486     int level, orientation, delta_qlog;
1487
1488     for(level=0; level<s->spatial_decomposition_count; level++){
1489         for(orientation=level ? 1 : 0; orientation<4; orientation++){
1490             SubBand *b= &s->plane[0].band[level][orientation];
1491             IDWTELEM *buf= b->ibuf;
1492             const int w= b->width;
1493             const int h= b->height;
1494             const int stride= b->stride;
1495             const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1496             const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1497             const int qdiv= (1<<16)/qmul;
1498             int x, y;
1499             //FIXME this is ugly
1500             for(y=0; y<h; y++)
1501                 for(x=0; x<w; x++)
1502                     buf[x+y*stride]= b->buf[x+y*stride];
1503             if(orientation==0)
1504                 decorrelate(s, b, buf, stride, 1, 0);
1505             for(y=0; y<h; y++)
1506                 for(x=0; x<w; x++)
1507                     coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1508         }
1509     }
1510
1511     /* ugly, ratecontrol just takes a sqrt again */
1512     av_assert0(coef_sum < INT_MAX);
1513     coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1514
1515     if(pict->pict_type == AV_PICTURE_TYPE_I){
1516         s->m.current_picture.mb_var_sum= coef_sum;
1517         s->m.current_picture.mc_mb_var_sum= 0;
1518     }else{
1519         s->m.current_picture.mc_mb_var_sum= coef_sum;
1520         s->m.current_picture.mb_var_sum= 0;
1521     }
1522
1523     pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1524     if (pict->quality < 0)
1525         return INT_MIN;
1526     s->lambda= pict->quality * 3/2;
1527     delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1528     s->qlog+= delta_qlog;
1529     return delta_qlog;
1530 }
1531
1532 static void calculate_visual_weight(SnowContext *s, Plane *p){
1533     int width = p->width;
1534     int height= p->height;
1535     int level, orientation, x, y;
1536
1537     for(level=0; level<s->spatial_decomposition_count; level++){
1538         for(orientation=level ? 1 : 0; orientation<4; orientation++){
1539             SubBand *b= &p->band[level][orientation];
1540             IDWTELEM *ibuf= b->ibuf;
1541             int64_t error=0;
1542
1543             memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1544             ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1545             ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1546             for(y=0; y<height; y++){
1547                 for(x=0; x<width; x++){
1548                     int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1549                     error += d*d;
1550                 }
1551             }
1552
1553             b->qlog= (int)(QROOT * log2(352256.0/sqrt(error)) + 0.5);
1554         }
1555     }
1556 }
1557
1558 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1559                         const AVFrame *pict, int *got_packet)
1560 {
1561     SnowContext *s = avctx->priv_data;
1562     RangeCoder * const c= &s->c;
1563     AVFrame *pic;
1564     const int width= s->avctx->width;
1565     const int height= s->avctx->height;
1566     int level, orientation, plane_index, i, y, ret;
1567     uint8_t rc_header_bak[sizeof(s->header_state)];
1568     uint8_t rc_block_bak[sizeof(s->block_state)];
1569
1570     if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
1571         return ret;
1572
1573     ff_init_range_encoder(c, pkt->data, pkt->size);
1574     ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1575
1576     for(i=0; i < s->nb_planes; i++){
1577         int hshift= i ? s->chroma_h_shift : 0;
1578         int vshift= i ? s->chroma_v_shift : 0;
1579         for(y=0; y<AV_CEIL_RSHIFT(height, vshift); y++)
1580             memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1581                    &pict->data[i][y * pict->linesize[i]],
1582                    AV_CEIL_RSHIFT(width, hshift));
1583         s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
1584                                 AV_CEIL_RSHIFT(width, hshift), AV_CEIL_RSHIFT(height, vshift),
1585                                 EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1586                                 EDGE_TOP | EDGE_BOTTOM);
1587
1588     }
1589     emms_c();
1590     pic = s->input_picture;
1591     pic->pict_type = pict->pict_type;
1592     pic->quality = pict->quality;
1593
1594     s->m.picture_number= avctx->frame_number;
1595     if(avctx->flags&AV_CODEC_FLAG_PASS2){
1596         s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1597         s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1598         if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) {
1599             pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1600             if (pic->quality < 0)
1601                 return -1;
1602         }
1603     }else{
1604         s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1605         s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1606     }
1607
1608     if(s->pass1_rc && avctx->frame_number == 0)
1609         pic->quality = 2*FF_QP2LAMBDA;
1610     if (pic->quality) {
1611         s->qlog   = qscale2qlog(pic->quality);
1612         s->lambda = pic->quality * 3/2;
1613     }
1614     if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) {
1615         s->qlog= LOSSLESS_QLOG;
1616         s->lambda = 0;
1617     }//else keep previous frame's qlog until after motion estimation
1618
1619     if (s->current_picture->data[0]) {
1620         int w = s->avctx->width;
1621         int h = s->avctx->height;
1622
1623         s->mpvencdsp.draw_edges(s->current_picture->data[0],
1624                                 s->current_picture->linesize[0], w   , h   ,
1625                                 EDGE_WIDTH  , EDGE_WIDTH  , EDGE_TOP | EDGE_BOTTOM);
1626         if (s->current_picture->data[2]) {
1627             s->mpvencdsp.draw_edges(s->current_picture->data[1],
1628                                     s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1629                                     EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1630             s->mpvencdsp.draw_edges(s->current_picture->data[2],
1631                                     s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1632                                     EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1633         }
1634         emms_c();
1635     }
1636
1637     ff_snow_frame_start(s);
1638 #if FF_API_CODED_FRAME
1639 FF_DISABLE_DEPRECATION_WARNINGS
1640     av_frame_unref(avctx->coded_frame);
1641     ret = av_frame_ref(avctx->coded_frame, s->current_picture);
1642 FF_ENABLE_DEPRECATION_WARNINGS
1643 #endif
1644     if (ret < 0)
1645         return ret;
1646
1647     s->m.current_picture_ptr= &s->m.current_picture;
1648     s->m.current_picture.f = s->current_picture;
1649     s->m.current_picture.f->pts = pict->pts;
1650     if(pic->pict_type == AV_PICTURE_TYPE_P){
1651         int block_width = (width +15)>>4;
1652         int block_height= (height+15)>>4;
1653         int stride= s->current_picture->linesize[0];
1654
1655         av_assert0(s->current_picture->data[0]);
1656         av_assert0(s->last_picture[0]->data[0]);
1657
1658         s->m.avctx= s->avctx;
1659         s->m.   last_picture.f = s->last_picture[0];
1660         s->m.    new_picture.f = s->input_picture;
1661         s->m.   last_picture_ptr= &s->m.   last_picture;
1662         s->m.linesize = stride;
1663         s->m.uvlinesize= s->current_picture->linesize[1];
1664         s->m.width = width;
1665         s->m.height= height;
1666         s->m.mb_width = block_width;
1667         s->m.mb_height= block_height;
1668         s->m.mb_stride=   s->m.mb_width+1;
1669         s->m.b8_stride= 2*s->m.mb_width+1;
1670         s->m.f_code=1;
1671         s->m.pict_type = pic->pict_type;
1672         s->m.motion_est= s->motion_est;
1673         s->m.me.scene_change_score=0;
1674         s->m.me.dia_size = avctx->dia_size;
1675         s->m.quarter_sample= (s->avctx->flags & AV_CODEC_FLAG_QPEL)!=0;
1676         s->m.out_format= FMT_H263;
1677         s->m.unrestricted_mv= 1;
1678
1679         s->m.lambda = s->lambda;
1680         s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1681         s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1682
1683         s->m.mecc= s->mecc; //move
1684         s->m.qdsp= s->qdsp; //move
1685         s->m.hdsp = s->hdsp;
1686         ff_init_me(&s->m);
1687         s->hdsp = s->m.hdsp;
1688         s->mecc= s->m.mecc;
1689     }
1690
1691     if(s->pass1_rc){
1692         memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1693         memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1694     }
1695
1696 redo_frame:
1697
1698     s->spatial_decomposition_count= 5;
1699
1700     while(   !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1701           || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1702         s->spatial_decomposition_count--;
1703
1704     if (s->spatial_decomposition_count <= 0) {
1705         av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1706         return AVERROR(EINVAL);
1707     }
1708
1709     s->m.pict_type = pic->pict_type;
1710     s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1711
1712     ff_snow_common_init_after_header(avctx);
1713
1714     if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1715         for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1716             calculate_visual_weight(s, &s->plane[plane_index]);
1717         }
1718     }
1719
1720     encode_header(s);
1721     s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1722     encode_blocks(s, 1);
1723     s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1724
1725     for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1726         Plane *p= &s->plane[plane_index];
1727         int w= p->width;
1728         int h= p->height;
1729         int x, y;
1730 //        int bits= put_bits_count(&s->c.pb);
1731
1732         if (!s->memc_only) {
1733             //FIXME optimize
1734             if(pict->data[plane_index]) //FIXME gray hack
1735                 for(y=0; y<h; y++){
1736                     for(x=0; x<w; x++){
1737                         s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1738                     }
1739                 }
1740             predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1741
1742 #if FF_API_PRIVATE_OPT
1743 FF_DISABLE_DEPRECATION_WARNINGS
1744             if(s->avctx->scenechange_threshold)
1745                 s->scenechange_threshold = s->avctx->scenechange_threshold;
1746 FF_ENABLE_DEPRECATION_WARNINGS
1747 #endif
1748
1749             if(   plane_index==0
1750                && pic->pict_type == AV_PICTURE_TYPE_P
1751                && !(avctx->flags&AV_CODEC_FLAG_PASS2)
1752                && s->m.me.scene_change_score > s->scenechange_threshold){
1753                 ff_init_range_encoder(c, pkt->data, pkt->size);
1754                 ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1755                 pic->pict_type= AV_PICTURE_TYPE_I;
1756                 s->keyframe=1;
1757                 s->current_picture->key_frame=1;
1758                 goto redo_frame;
1759             }
1760
1761             if(s->qlog == LOSSLESS_QLOG){
1762                 for(y=0; y<h; y++){
1763                     for(x=0; x<w; x++){
1764                         s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1765                     }
1766                 }
1767             }else{
1768                 for(y=0; y<h; y++){
1769                     for(x=0; x<w; x++){
1770                         s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
1771                     }
1772                 }
1773             }
1774
1775             ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1776
1777             if(s->pass1_rc && plane_index==0){
1778                 int delta_qlog = ratecontrol_1pass(s, pic);
1779                 if (delta_qlog <= INT_MIN)
1780                     return -1;
1781                 if(delta_qlog){
1782                     //reordering qlog in the bitstream would eliminate this reset
1783                     ff_init_range_encoder(c, pkt->data, pkt->size);
1784                     memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1785                     memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1786                     encode_header(s);
1787                     encode_blocks(s, 0);
1788                 }
1789             }
1790
1791             for(level=0; level<s->spatial_decomposition_count; level++){
1792                 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1793                     SubBand *b= &p->band[level][orientation];
1794
1795                     quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1796                     if(orientation==0)
1797                         decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1798                     if (!s->no_bitstream)
1799                     encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1800                     av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1801                     if(orientation==0)
1802                         correlate(s, b, b->ibuf, b->stride, 1, 0);
1803                 }
1804             }
1805
1806             for(level=0; level<s->spatial_decomposition_count; level++){
1807                 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1808                     SubBand *b= &p->band[level][orientation];
1809
1810                     dequantize(s, b, b->ibuf, b->stride);
1811                 }
1812             }
1813
1814             ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1815             if(s->qlog == LOSSLESS_QLOG){
1816                 for(y=0; y<h; y++){
1817                     for(x=0; x<w; x++){
1818                         s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1819                     }
1820                 }
1821             }
1822             predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1823         }else{
1824             //ME/MC only
1825             if(pic->pict_type == AV_PICTURE_TYPE_I){
1826                 for(y=0; y<h; y++){
1827                     for(x=0; x<w; x++){
1828                         s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1829                             pict->data[plane_index][y*pict->linesize[plane_index] + x];
1830                     }
1831                 }
1832             }else{
1833                 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1834                 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1835             }
1836         }
1837         if(s->avctx->flags&AV_CODEC_FLAG_PSNR){
1838             int64_t error= 0;
1839
1840             if(pict->data[plane_index]) //FIXME gray hack
1841                 for(y=0; y<h; y++){
1842                     for(x=0; x<w; x++){
1843                         int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1844                         error += d*d;
1845                     }
1846                 }
1847             s->avctx->error[plane_index] += error;
1848             s->encoding_error[plane_index] = error;
1849         }
1850
1851     }
1852     emms_c();
1853
1854     update_last_header_values(s);
1855
1856     ff_snow_release_buffer(avctx);
1857
1858     s->current_picture->coded_picture_number = avctx->frame_number;
1859     s->current_picture->pict_type = pic->pict_type;
1860     s->current_picture->quality = pic->quality;
1861     s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1862     s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1863     s->m.current_picture.f->display_picture_number =
1864     s->m.current_picture.f->coded_picture_number   = avctx->frame_number;
1865     s->m.current_picture.f->quality                = pic->quality;
1866     s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1867     if(s->pass1_rc)
1868         if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1869             return -1;
1870     if(avctx->flags&AV_CODEC_FLAG_PASS1)
1871         ff_write_pass1_stats(&s->m);
1872     s->m.last_pict_type = s->m.pict_type;
1873 #if FF_API_STAT_BITS
1874 FF_DISABLE_DEPRECATION_WARNINGS
1875     avctx->frame_bits = s->m.frame_bits;
1876     avctx->mv_bits = s->m.mv_bits;
1877     avctx->misc_bits = s->m.misc_bits;
1878     avctx->p_tex_bits = s->m.p_tex_bits;
1879 FF_ENABLE_DEPRECATION_WARNINGS
1880 #endif
1881
1882     emms_c();
1883
1884     ff_side_data_set_encoder_stats(pkt, s->current_picture->quality,
1885                                    s->encoding_error,
1886                                    (s->avctx->flags&AV_CODEC_FLAG_PSNR) ? 4 : 0,
1887                                    s->current_picture->pict_type);
1888
1889 #if FF_API_ERROR_FRAME
1890 FF_DISABLE_DEPRECATION_WARNINGS
1891     memcpy(s->current_picture->error, s->encoding_error, sizeof(s->encoding_error));
1892 FF_ENABLE_DEPRECATION_WARNINGS
1893 #endif
1894
1895     pkt->size = ff_rac_terminate(c);
1896     if (s->current_picture->key_frame)
1897         pkt->flags |= AV_PKT_FLAG_KEY;
1898     *got_packet = 1;
1899
1900     return 0;
1901 }
1902
1903 static av_cold int encode_end(AVCodecContext *avctx)
1904 {
1905     SnowContext *s = avctx->priv_data;
1906
1907     ff_snow_common_end(s);
1908     ff_rate_control_uninit(&s->m);
1909     av_frame_free(&s->input_picture);
1910     av_freep(&avctx->stats_out);
1911
1912     return 0;
1913 }
1914
1915 #define OFFSET(x) offsetof(SnowContext, x)
1916 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1917 static const AVOption options[] = {
1918     {"motion_est", "motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, {.i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_ITER, VE, "motion_est" },
1919     { "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, VE, "motion_est" },
1920     { "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, VE, "motion_est" },
1921     { "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, VE, "motion_est" },
1922     { "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, VE, "motion_est" },
1923     { "memc_only",      "Only do ME/MC (I frames -> ref, P frame -> ME+MC).",   OFFSET(memc_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1924     { "no_bitstream",   "Skip final bitstream writeout.",                    OFFSET(no_bitstream), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1925     { "intra_penalty",  "Penalty for intra blocks in block decission",      OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1926     { "iterative_dia_size",  "Dia size for the iterative ME",          OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1927     { "sc_threshold",   "Scene change threshold",                   OFFSET(scenechange_threshold), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, VE },
1928     { "pred",           "Spatial decomposition type",                                OFFSET(pred), AV_OPT_TYPE_INT, { .i64 = 0 }, DWT_97, DWT_53, VE, "pred" },
1929         { "dwt97", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, INT_MIN, INT_MAX, VE, "pred" },
1930         { "dwt53", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, INT_MIN, INT_MAX, VE, "pred" },
1931     { NULL },
1932 };
1933
1934 static const AVClass snowenc_class = {
1935     .class_name = "snow encoder",
1936     .item_name  = av_default_item_name,
1937     .option     = options,
1938     .version    = LIBAVUTIL_VERSION_INT,
1939 };
1940
1941 AVCodec ff_snow_encoder = {
1942     .name           = "snow",
1943     .long_name      = NULL_IF_CONFIG_SMALL("Snow"),
1944     .type           = AVMEDIA_TYPE_VIDEO,
1945     .id             = AV_CODEC_ID_SNOW,
1946     .priv_data_size = sizeof(SnowContext),
1947     .init           = encode_init,
1948     .encode2        = encode_frame,
1949     .close          = encode_end,
1950     .pix_fmts       = (const enum AVPixelFormat[]){
1951         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
1952         AV_PIX_FMT_GRAY8,
1953         AV_PIX_FMT_NONE
1954     },
1955     .priv_class     = &snowenc_class,
1956     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE |
1957                       FF_CODEC_CAP_INIT_CLEANUP,
1958 };