2 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
30 #include "rangecoder.h"
33 #include "mpegvideo.h"
44 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
45 SubBand *b= &p->band[level][orientation];
49 int step= 1 << (s->spatial_decomposition_count - level);
56 //FIXME bias for nonzero ?
58 memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
59 for(y=0; y<p->height; y++){
60 for(x=0; x<p->width; x++){
61 int sx= (x-xo + step/2) / step / Q2_STEP;
62 int sy= (y-yo + step/2) / step / Q2_STEP;
63 int v= r0[x + y*p->width] - r1[x + y*p->width];
64 assert(sx>=0 && sy>=0 && sx < score_stride);
66 score[sx + sy*score_stride] += v*v;
67 assert(score[sx + sy*score_stride] >= 0);
72 static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
73 int level, orientation;
75 for(level=0; level<s->spatial_decomposition_count; level++){
76 for(orientation=level ? 1 : 0; orientation<4; orientation++){
77 SubBand *b= &p->band[level][orientation];
78 IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
80 dequantize(s, b, dst, b->stride);
85 static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
86 int level, orientation, ys, xs, x, y, pass;
87 IDWTELEM best_dequant[height * stride];
88 IDWTELEM idwt2_buffer[height * stride];
89 const int score_stride= (width + 10)/Q2_STEP;
90 int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
91 int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
92 int threshold= (s->m.lambda * s->m.lambda) >> 6;
94 //FIXME pass the copy cleanly ?
96 // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM));
97 ff_spatial_dwt(buffer, s->temp_dwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
99 for(level=0; level<s->spatial_decomposition_count; level++){
100 for(orientation=level ? 1 : 0; orientation<4; orientation++){
101 SubBand *b= &p->band[level][orientation];
102 IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
103 DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
104 assert(src == b->buf); // code does not depend on this but it is true currently
106 quantize(s, b, dst, src, b->stride, s->qbias);
109 for(pass=0; pass<1; pass++){
110 if(s->qbias == 0) //keyframe
112 for(level=0; level<s->spatial_decomposition_count; level++){
113 for(orientation=level ? 1 : 0; orientation<4; orientation++){
114 SubBand *b= &p->band[level][orientation];
115 IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
116 IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
118 for(ys= 0; ys<Q2_STEP; ys++){
119 for(xs= 0; xs<Q2_STEP; xs++){
120 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
121 dequantize_all(s, p, idwt2_buffer, width, height);
122 ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
123 find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
124 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
125 for(y=ys; y<b->height; y+= Q2_STEP){
126 for(x=xs; x<b->width; x+= Q2_STEP){
127 if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
128 if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
129 //FIXME try more than just --
132 dequantize_all(s, p, idwt2_buffer, width, height);
133 ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
134 find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
135 for(y=ys; y<b->height; y+= Q2_STEP){
136 for(x=xs; x<b->width; x+= Q2_STEP){
137 int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
138 if(score[score_idx] <= best_score[score_idx] + threshold){
139 best_score[score_idx]= score[score_idx];
140 if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
141 if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
151 memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end
154 #endif /* QUANTIZE2==1 */
156 static av_cold int encode_init(AVCodecContext *avctx)
158 SnowContext *s = avctx->priv_data;
159 int plane_index, ret;
161 if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){
162 av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
163 "Use vstrict=-2 / -strict -2 to use it anyway.\n");
167 if(avctx->prediction_method == DWT_97
168 && (avctx->flags & CODEC_FLAG_QSCALE)
169 && avctx->global_quality == 0){
170 av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
174 s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
176 s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
177 s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
179 for(plane_index=0; plane_index<3; plane_index++){
180 s->plane[plane_index].diag_mc= 1;
181 s->plane[plane_index].htaps= 6;
182 s->plane[plane_index].hcoeff[0]= 40;
183 s->plane[plane_index].hcoeff[1]= -10;
184 s->plane[plane_index].hcoeff[2]= 2;
185 s->plane[plane_index].fast_mc= 1;
188 if ((ret = ff_snow_common_init(avctx)) < 0) {
189 ff_snow_common_end(avctx->priv_data);
192 ff_snow_alloc_blocks(s);
197 s->m.flags = avctx->flags;
198 s->m.bit_rate= avctx->bit_rate;
201 s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
202 s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
203 s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
204 s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
205 ff_h263_encode_init(&s->m); //mv_penalty
207 s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
209 if(avctx->flags&CODEC_FLAG_PASS1){
210 if(!avctx->stats_out)
211 avctx->stats_out = av_mallocz(256);
213 if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
214 if(ff_rate_control_init(&s->m) < 0)
217 s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
219 avctx->coded_frame= &s->current_picture;
220 switch(avctx->pix_fmt){
221 case AV_PIX_FMT_YUV444P:
222 // case AV_PIX_FMT_YUV422P:
223 case AV_PIX_FMT_YUV420P:
224 // case AV_PIX_FMT_GRAY8:
225 // case AV_PIX_FMT_YUV411P:
226 case AV_PIX_FMT_YUV410P:
227 s->colorspace_type= 0;
229 /* case AV_PIX_FMT_RGB32:
233 av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
236 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
238 ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
239 ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
241 s->avctx->get_buffer(s->avctx, &s->input_picture);
243 if(s->avctx->me_method == ME_ITER){
245 int size= s->b_width * s->b_height << 2*s->block_max_depth;
246 for(i=0; i<s->max_ref_frames; i++){
247 s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
248 s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
255 //near copy & paste from dsputil, FIXME
256 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
261 for (i = 0; i < h; i++) {
262 for (j = 0; j < w; j++) {
266 pix += line_size - w;
271 //near copy & paste from dsputil, FIXME
272 static int pix_norm1(uint8_t * pix, int line_size, int w)
275 uint32_t *sq = ff_squareTbl + 256;
278 for (i = 0; i < w; i++) {
279 for (j = 0; j < w; j ++) {
283 pix += line_size - w;
291 #define P_TOPRIGHT P[3]
292 #define P_MEDIAN P[4]
294 #define FLAG_QPEL 1 //must be 1
296 static int encode_q_branch(SnowContext *s, int level, int x, int y){
297 uint8_t p_buffer[1024];
298 uint8_t i_buffer[1024];
299 uint8_t p_state[sizeof(s->block_state)];
300 uint8_t i_state[sizeof(s->block_state)];
302 uint8_t *pbbak= s->c.bytestream;
303 uint8_t *pbbak_start= s->c.bytestream_start;
304 int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
305 const int w= s->b_width << s->block_max_depth;
306 const int h= s->b_height << s->block_max_depth;
307 const int rem_depth= s->block_max_depth - level;
308 const int index= (x + y*w) << rem_depth;
309 const int block_w= 1<<(LOG2_MB_SIZE - level);
310 int trx= (x+1)<<rem_depth;
311 int try= (y+1)<<rem_depth;
312 const BlockNode *left = x ? &s->block[index-1] : &null_block;
313 const BlockNode *top = y ? &s->block[index-w] : &null_block;
314 const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
315 const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
316 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
317 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
318 int pl = left->color[0];
319 int pcb= left->color[1];
320 int pcr= left->color[2];
324 const int stride= s->current_picture.linesize[0];
325 const int uvstride= s->current_picture.linesize[1];
326 uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
327 s->input_picture.data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
328 s->input_picture.data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
330 int16_t last_mv[3][2];
331 int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
332 const int shift= 1+qpel;
333 MotionEstContext *c= &s->m.me;
334 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
335 int mx_context= av_log2(2*FFABS(left->mx - top->mx));
336 int my_context= av_log2(2*FFABS(left->my - top->my));
337 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
338 int ref, best_ref, ref_score, ref_mx, ref_my;
340 assert(sizeof(s->block_state) >= 256);
342 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
346 // clip predictors / edge ?
352 P_TOPRIGHT[0]= tr->mx;
353 P_TOPRIGHT[1]= tr->my;
355 last_mv[0][0]= s->block[index].mx;
356 last_mv[0][1]= s->block[index].my;
357 last_mv[1][0]= right->mx;
358 last_mv[1][1]= right->my;
359 last_mv[2][0]= bottom->mx;
360 last_mv[2][1]= bottom->my;
367 assert(c-> stride == stride);
368 assert(c->uvstride == uvstride);
370 c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
371 c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
372 c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
373 c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
375 c->xmin = - x*block_w - 16+3;
376 c->ymin = - y*block_w - 16+3;
377 c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
378 c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
380 if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
381 if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
382 if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
383 if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
384 if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
385 if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
386 if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
388 P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
389 P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
392 c->pred_x= P_LEFT[0];
393 c->pred_y= P_LEFT[1];
395 c->pred_x = P_MEDIAN[0];
396 c->pred_y = P_MEDIAN[1];
401 for(ref=0; ref<s->ref_frames; ref++){
402 init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
404 ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
405 (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
407 assert(ref_mx >= c->xmin);
408 assert(ref_mx <= c->xmax);
409 assert(ref_my >= c->ymin);
410 assert(ref_my <= c->ymax);
412 ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
413 ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
414 ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
416 s->ref_mvs[ref][index][0]= ref_mx;
417 s->ref_mvs[ref][index][1]= ref_my;
418 s->ref_scores[ref][index]= ref_score;
420 if(score > ref_score){
427 //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
430 base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
433 pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
434 memcpy(p_state, s->block_state, sizeof(s->block_state));
436 if(level!=s->block_max_depth)
437 put_rac(&pc, &p_state[4 + s_context], 1);
438 put_rac(&pc, &p_state[1 + left->type + top->type], 0);
439 if(s->ref_frames > 1)
440 put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
441 pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
442 put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
443 put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
444 p_len= pc.bytestream - pc.bytestream_start;
445 score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
447 block_s= block_w*block_w;
448 sum = pix_sum(current_data[0], stride, block_w, block_w);
449 l= (sum + block_s/2)/block_s;
450 iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
452 block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
453 sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
454 cb= (sum + block_s/2)/block_s;
455 // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
456 sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
457 cr= (sum + block_s/2)/block_s;
458 // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
462 ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
463 memcpy(i_state, s->block_state, sizeof(s->block_state));
464 if(level!=s->block_max_depth)
465 put_rac(&ic, &i_state[4 + s_context], 1);
466 put_rac(&ic, &i_state[1 + left->type + top->type], 1);
467 put_symbol(&ic, &i_state[32], l-pl , 1);
468 put_symbol(&ic, &i_state[64], cb-pcb, 1);
469 put_symbol(&ic, &i_state[96], cr-pcr, 1);
470 i_len= ic.bytestream - ic.bytestream_start;
471 iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
473 // assert(score==256*256*256*64-1);
474 assert(iscore < 255*255*256 + s->lambda2*10);
476 assert(l>=0 && l<=255);
477 assert(pl>=0 && pl<=255);
480 int varc= iscore >> 8;
481 int vard= score >> 8;
482 if (vard <= 64 || vard < varc)
483 c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
485 c->scene_change_score+= s->m.qscale;
488 if(level!=s->block_max_depth){
489 put_rac(&s->c, &s->block_state[4 + s_context], 0);
490 score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
491 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
492 score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
493 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
494 score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
496 if(score2 < score && score2 < iscore)
501 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
502 memcpy(pbbak, i_buffer, i_len);
504 s->c.bytestream_start= pbbak_start;
505 s->c.bytestream= pbbak + i_len;
506 set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
507 memcpy(s->block_state, i_state, sizeof(s->block_state));
510 memcpy(pbbak, p_buffer, p_len);
512 s->c.bytestream_start= pbbak_start;
513 s->c.bytestream= pbbak + p_len;
514 set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
515 memcpy(s->block_state, p_state, sizeof(s->block_state));
520 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
521 const int w= s->b_width << s->block_max_depth;
522 const int rem_depth= s->block_max_depth - level;
523 const int index= (x + y*w) << rem_depth;
524 int trx= (x+1)<<rem_depth;
525 BlockNode *b= &s->block[index];
526 const BlockNode *left = x ? &s->block[index-1] : &null_block;
527 const BlockNode *top = y ? &s->block[index-w] : &null_block;
528 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
529 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
530 int pl = left->color[0];
531 int pcb= left->color[1];
532 int pcr= left->color[2];
534 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
535 int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
536 int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
537 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
540 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
544 if(level!=s->block_max_depth){
545 if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
546 put_rac(&s->c, &s->block_state[4 + s_context], 1);
548 put_rac(&s->c, &s->block_state[4 + s_context], 0);
549 encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
550 encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
551 encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
552 encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
556 if(b->type & BLOCK_INTRA){
557 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
558 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
559 put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
560 put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
561 put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
562 set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
564 pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
565 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
566 if(s->ref_frames > 1)
567 put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
568 put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
569 put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
570 set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
574 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
576 Plane *p= &s->plane[plane_index];
577 const int block_size = MB_SIZE >> s->block_max_depth;
578 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
579 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
580 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
581 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
582 const int ref_stride= s->current_picture.linesize[plane_index];
583 uint8_t *src= s-> input_picture.data[plane_index];
584 IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
585 const int b_stride = s->b_width << s->block_max_depth;
586 const int w= p->width;
587 const int h= p->height;
588 int index= mb_x + mb_y*b_stride;
589 BlockNode *b= &s->block[index];
590 BlockNode backup= *b;
594 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
596 b->type|= BLOCK_INTRA;
597 b->color[plane_index]= 0;
598 memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
601 int mb_x2= mb_x + (i &1) - 1;
602 int mb_y2= mb_y + (i>>1) - 1;
603 int x= block_w*mb_x2 + block_w/2;
604 int y= block_h*mb_y2 + block_h/2;
606 add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
607 x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
609 for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
610 for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
611 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
612 int obmc_v= obmc[index];
614 if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
615 if(x<0) obmc_v += obmc[index + block_w];
616 if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
617 if(x+block_w>w) obmc_v += obmc[index - block_w];
618 //FIXME precalculate this or simplify it somehow else
620 d = -dst[index] + (1<<(FRAC_BITS-1));
622 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
623 aa += obmc_v * obmc_v; //FIXME precalculate this
629 return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping
632 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
633 const int b_stride = s->b_width << s->block_max_depth;
634 const int b_height = s->b_height<< s->block_max_depth;
635 int index= x + y*b_stride;
636 const BlockNode *b = &s->block[index];
637 const BlockNode *left = x ? &s->block[index-1] : &null_block;
638 const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
639 const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
640 const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
642 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
643 // int my_context= av_log2(2*FFABS(left->my - top->my));
645 if(x<0 || x>=b_stride || y>=b_height)
654 //FIXME try accurate rate
655 //FIXME intra and inter predictors if surrounding blocks are not the same type
656 if(b->type & BLOCK_INTRA){
657 return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
658 + av_log2(2*FFABS(left->color[1] - b->color[1]))
659 + av_log2(2*FFABS(left->color[2] - b->color[2])));
661 pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
664 return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
665 + av_log2(2*FFABS(dmy))
666 + av_log2(2*b->ref));
670 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
671 Plane *p= &s->plane[plane_index];
672 const int block_size = MB_SIZE >> s->block_max_depth;
673 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
674 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
675 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
676 const int ref_stride= s->current_picture.linesize[plane_index];
677 uint8_t *dst= s->current_picture.data[plane_index];
678 uint8_t *src= s-> input_picture.data[plane_index];
679 IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
680 uint8_t *cur = s->scratchbuf;
681 uint8_t *tmp = s->emu_edge_buffer;
682 const int b_stride = s->b_width << s->block_max_depth;
683 const int b_height = s->b_height<< s->block_max_depth;
684 const int w= p->width;
685 const int h= p->height;
688 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
689 int sx= block_w*mb_x - block_w/2;
690 int sy= block_h*mb_y - block_h/2;
691 int x0= FFMAX(0,-sx);
692 int y0= FFMAX(0,-sy);
693 int x1= FFMIN(block_w*2, w-sx);
694 int y1= FFMIN(block_h*2, h-sy);
697 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
699 ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
701 for(y=y0; y<y1; y++){
702 const uint8_t *obmc1= obmc_edged[y];
703 const IDWTELEM *pred1 = pred + y*obmc_stride;
704 uint8_t *cur1 = cur + y*ref_stride;
705 uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
706 for(x=x0; x<x1; x++){
707 #if FRAC_BITS >= LOG2_OBMC_MAX
708 int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
710 int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
712 v = (v + pred1[x]) >> FRAC_BITS;
713 if(v&(~255)) v= ~(v>>31);
718 /* copy the regions where obmc[] = (uint8_t)256 */
719 if(LOG2_OBMC_MAX == 8
720 && (mb_x == 0 || mb_x == b_stride-1)
721 && (mb_y == 0 || mb_y == b_height-1)){
731 memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
735 /* FIXME rearrange dsputil to fit 32x32 cmp functions */
736 /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
737 /* FIXME cmps overlap but do not cover the wavelet's whole support.
738 * So improving the score of one block is not strictly guaranteed
739 * to improve the score of the whole frame, thus iterative motion
740 * estimation does not always converge. */
741 if(s->avctx->me_cmp == FF_CMP_W97)
742 distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
743 else if(s->avctx->me_cmp == FF_CMP_W53)
744 distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
748 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
749 distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
754 distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
763 rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
765 if(mb_x == b_stride-2)
766 rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
768 return distortion + rate*penalty_factor;
771 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
773 Plane *p= &s->plane[plane_index];
774 const int block_size = MB_SIZE >> s->block_max_depth;
775 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
776 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
777 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
778 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
779 const int ref_stride= s->current_picture.linesize[plane_index];
780 uint8_t *dst= s->current_picture.data[plane_index];
781 uint8_t *src= s-> input_picture.data[plane_index];
782 //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
783 // const has only been removed from zero_dst to suppress a warning
784 static IDWTELEM zero_dst[4096]; //FIXME
785 const int b_stride = s->b_width << s->block_max_depth;
786 const int w= p->width;
787 const int h= p->height;
790 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
792 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
795 int mb_x2= mb_x + (i%3) - 1;
796 int mb_y2= mb_y + (i/3) - 1;
797 int x= block_w*mb_x2 + block_w/2;
798 int y= block_h*mb_y2 + block_h/2;
800 add_yblock(s, 0, NULL, zero_dst, dst, obmc,
801 x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
803 //FIXME find a cleaner/simpler way to skip the outside stuff
804 for(y2= y; y2<0; y2++)
805 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
806 for(y2= h; y2<y+block_h; y2++)
807 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
809 for(y2= y; y2<y+block_h; y2++)
810 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
813 for(y2= y; y2<y+block_h; y2++)
814 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
817 assert(block_w== 8 || block_w==16);
818 distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
822 BlockNode *b= &s->block[mb_x+mb_y*b_stride];
823 int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
831 rate = get_block_bits(s, mb_x, mb_y, 2);
832 for(i=merged?4:0; i<9; i++){
833 static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
834 rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
837 return distortion + rate*penalty_factor;
840 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
841 const int w= b->width;
842 const int h= b->height;
847 int *runs = s->run_buffer;
854 int /*ll=0, */l=0, lt=0, t=0, rt=0;
855 v= src[x + y*stride];
858 t= src[x + (y-1)*stride];
860 lt= src[x - 1 + (y-1)*stride];
863 rt= src[x + 1 + (y-1)*stride];
867 l= src[x - 1 + y*stride];
869 if(orientation==1) ll= src[y + (x-2)*stride];
870 else ll= src[x - 2 + y*stride];
876 if(px<b->parent->width && py<b->parent->height)
877 p= parent[px + py*2*stride];
879 if(!(/*ll|*/l|lt|t|rt|p)){
881 runs[run_index++]= run;
889 max_index= run_index;
890 runs[run_index++]= run;
892 run= runs[run_index++];
894 put_symbol2(&s->c, b->state[30], max_index, 0);
895 if(run_index <= max_index)
896 put_symbol2(&s->c, b->state[1], run, 3);
899 if(s->c.bytestream_end - s->c.bytestream < w*40){
900 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
905 int /*ll=0, */l=0, lt=0, t=0, rt=0;
906 v= src[x + y*stride];
909 t= src[x + (y-1)*stride];
911 lt= src[x - 1 + (y-1)*stride];
914 rt= src[x + 1 + (y-1)*stride];
918 l= src[x - 1 + y*stride];
920 if(orientation==1) ll= src[y + (x-2)*stride];
921 else ll= src[x - 2 + y*stride];
927 if(px<b->parent->width && py<b->parent->height)
928 p= parent[px + py*2*stride];
930 if(/*ll|*/l|lt|t|rt|p){
931 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
933 put_rac(&s->c, &b->state[0][context], !!v);
936 run= runs[run_index++];
938 if(run_index <= max_index)
939 put_symbol2(&s->c, b->state[1], run, 3);
947 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
948 int l2= 2*FFABS(l) + (l<0);
949 int t2= 2*FFABS(t) + (t<0);
951 put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
952 put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
960 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
961 // encode_subband_qtree(s, b, src, parent, stride, orientation);
962 // encode_subband_z0run(s, b, src, parent, stride, orientation);
963 return encode_subband_c0run(s, b, src, parent, stride, orientation);
964 // encode_subband_dzr(s, b, src, parent, stride, orientation);
967 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
968 const int b_stride= s->b_width << s->block_max_depth;
969 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
970 BlockNode backup= *block;
974 assert(mb_x>=0 && mb_y>=0);
975 assert(mb_x<b_stride);
978 block->color[0] = p[0];
979 block->color[1] = p[1];
980 block->color[2] = p[2];
981 block->type |= BLOCK_INTRA;
983 index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
984 value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
985 if(s->me_cache[index] == value)
987 s->me_cache[index]= value;
991 block->type &= ~BLOCK_INTRA;
994 rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
1006 /* special case for int[2] args we discard afterwards,
1007 * fixes compilation problem with gcc 2.95 */
1008 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
1009 int p[2] = {p0, p1};
1010 return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
1013 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
1014 const int b_stride= s->b_width << s->block_max_depth;
1015 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
1016 BlockNode backup[4];
1020 /* We don't initialize backup[] during variable declaration, because
1021 * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
1023 backup[0] = block[0];
1024 backup[1] = block[1];
1025 backup[2] = block[b_stride];
1026 backup[3] = block[b_stride + 1];
1028 assert(mb_x>=0 && mb_y>=0);
1029 assert(mb_x<b_stride);
1030 assert(((mb_x|mb_y)&1) == 0);
1032 index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
1033 value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
1034 if(s->me_cache[index] == value)
1036 s->me_cache[index]= value;
1041 block->type &= ~BLOCK_INTRA;
1042 block[1]= block[b_stride]= block[b_stride+1]= *block;
1044 rd= get_4block_rd(s, mb_x, mb_y, 0);
1051 block[0]= backup[0];
1052 block[1]= backup[1];
1053 block[b_stride]= backup[2];
1054 block[b_stride+1]= backup[3];
1059 static void iterative_me(SnowContext *s){
1060 int pass, mb_x, mb_y;
1061 const int b_width = s->b_width << s->block_max_depth;
1062 const int b_height= s->b_height << s->block_max_depth;
1063 const int b_stride= b_width;
1067 RangeCoder r = s->c;
1068 uint8_t state[sizeof(s->block_state)];
1069 memcpy(state, s->block_state, sizeof(s->block_state));
1070 for(mb_y= 0; mb_y<s->b_height; mb_y++)
1071 for(mb_x= 0; mb_x<s->b_width; mb_x++)
1072 encode_q_branch(s, 0, mb_x, mb_y);
1074 memcpy(s->block_state, state, sizeof(s->block_state));
1077 for(pass=0; pass<25; pass++){
1080 for(mb_y= 0; mb_y<b_height; mb_y++){
1081 for(mb_x= 0; mb_x<b_width; mb_x++){
1082 int dia_change, i, j, ref;
1083 int best_rd= INT_MAX, ref_rd;
1084 BlockNode backup, ref_b;
1085 const int index= mb_x + mb_y * b_stride;
1086 BlockNode *block= &s->block[index];
1087 BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1088 BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1089 BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1090 BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1091 BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1092 BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1093 BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1094 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1095 const int b_w= (MB_SIZE >> s->block_max_depth);
1096 uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1098 if(pass && (block->type & BLOCK_OPT))
1100 block->type |= BLOCK_OPT;
1104 if(!s->me_cache_generation)
1105 memset(s->me_cache, 0, sizeof(s->me_cache));
1106 s->me_cache_generation += 1<<22;
1108 //FIXME precalculate
1111 for (y = 0; y < b_w * 2; y++)
1112 memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1114 for(y=0; y<b_w*2; y++)
1115 memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1116 if(mb_x==b_stride-1)
1117 for(y=0; y<b_w*2; y++)
1118 memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1120 for(x=0; x<b_w*2; x++)
1121 obmc_edged[0][x] += obmc_edged[b_w-1][x];
1122 for(y=1; y<b_w; y++)
1123 memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1125 if(mb_y==b_height-1){
1126 for(x=0; x<b_w*2; x++)
1127 obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1128 for(y=b_w; y<b_w*2-1; y++)
1129 memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1133 //skip stuff outside the picture
1134 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1135 uint8_t *src= s-> input_picture.data[0];
1136 uint8_t *dst= s->current_picture.data[0];
1137 const int stride= s->current_picture.linesize[0];
1138 const int block_w= MB_SIZE >> s->block_max_depth;
1139 const int block_h= MB_SIZE >> s->block_max_depth;
1140 const int sx= block_w*mb_x - block_w/2;
1141 const int sy= block_h*mb_y - block_h/2;
1142 const int w= s->plane[0].width;
1143 const int h= s->plane[0].height;
1147 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1148 for(y=h; y<sy+block_h*2; y++)
1149 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1151 for(y=sy; y<sy+block_h*2; y++)
1152 memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1154 if(sx+block_w*2 > w){
1155 for(y=sy; y<sy+block_h*2; y++)
1156 memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1160 // intra(black) = neighbors' contribution to the current block
1162 color[i]= get_dc(s, mb_x, mb_y, i);
1164 // get previous score (cannot be cached due to OBMC)
1165 if(pass > 0 && (block->type&BLOCK_INTRA)){
1166 int color0[3]= {block->color[0], block->color[1], block->color[2]};
1167 check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1169 check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1173 for(ref=0; ref < s->ref_frames; ref++){
1174 int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1175 if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1180 check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1181 check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1183 check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1185 check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1187 check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1189 check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1192 //FIXME avoid subpel interpolation / round to nearest integer
1195 for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1197 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1198 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1199 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1200 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1206 static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1209 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1211 //FIXME or try the standard 2 pass qpel or similar
1213 mvr[0][0]= block->mx;
1214 mvr[0][1]= block->my;
1215 if(ref_rd > best_rd){
1222 check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1223 //FIXME RD style color selection
1224 if(!same_block(block, &backup)){
1225 if(tb ) tb ->type &= ~BLOCK_OPT;
1226 if(lb ) lb ->type &= ~BLOCK_OPT;
1227 if(rb ) rb ->type &= ~BLOCK_OPT;
1228 if(bb ) bb ->type &= ~BLOCK_OPT;
1229 if(tlb) tlb->type &= ~BLOCK_OPT;
1230 if(trb) trb->type &= ~BLOCK_OPT;
1231 if(blb) blb->type &= ~BLOCK_OPT;
1232 if(brb) brb->type &= ~BLOCK_OPT;
1237 av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1242 if(s->block_max_depth == 1){
1244 for(mb_y= 0; mb_y<b_height; mb_y+=2){
1245 for(mb_x= 0; mb_x<b_width; mb_x+=2){
1247 int best_rd, init_rd;
1248 const int index= mb_x + mb_y * b_stride;
1251 b[0]= &s->block[index];
1253 b[2]= b[0]+b_stride;
1255 if(same_block(b[0], b[1]) &&
1256 same_block(b[0], b[2]) &&
1257 same_block(b[0], b[3]))
1260 if(!s->me_cache_generation)
1261 memset(s->me_cache, 0, sizeof(s->me_cache));
1262 s->me_cache_generation += 1<<22;
1264 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1266 //FIXME more multiref search?
1267 check_4block_inter(s, mb_x, mb_y,
1268 (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1269 (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1272 if(!(b[i]->type&BLOCK_INTRA))
1273 check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1275 if(init_rd != best_rd)
1279 av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1283 static void encode_blocks(SnowContext *s, int search){
1288 if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1292 if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1293 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1297 if(s->avctx->me_method == ME_ITER || !search)
1298 encode_q_branch2(s, 0, x, y);
1300 encode_q_branch (s, 0, x, y);
1305 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1306 const int w= b->width;
1307 const int h= b->height;
1308 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1309 const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1310 int x,y, thres1, thres2;
1312 if(s->qlog == LOSSLESS_QLOG){
1315 dst[x + y*stride]= src[x + y*stride];
1319 bias= bias ? 0 : (3*qmul)>>3;
1320 thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1326 int i= src[x + y*stride];
1328 if((unsigned)(i+thres1) > thres2){
1331 i/= qmul; //FIXME optimize
1332 dst[x + y*stride]= i;
1336 i/= qmul; //FIXME optimize
1337 dst[x + y*stride]= -i;
1340 dst[x + y*stride]= 0;
1346 int i= src[x + y*stride];
1348 if((unsigned)(i+thres1) > thres2){
1351 i= (i + bias) / qmul; //FIXME optimize
1352 dst[x + y*stride]= i;
1356 i= (i + bias) / qmul; //FIXME optimize
1357 dst[x + y*stride]= -i;
1360 dst[x + y*stride]= 0;
1366 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1367 const int w= b->width;
1368 const int h= b->height;
1369 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1370 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1371 const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1374 if(s->qlog == LOSSLESS_QLOG) return;
1378 int i= src[x + y*stride];
1380 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1382 src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1388 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1389 const int w= b->width;
1390 const int h= b->height;
1393 for(y=h-1; y>=0; y--){
1394 for(x=w-1; x>=0; x--){
1395 int i= x + y*stride;
1399 if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1400 else src[i] -= src[i - 1];
1402 if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1403 else src[i] -= src[i - 1];
1406 if(y) src[i] -= src[i - stride];
1412 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1413 const int w= b->width;
1414 const int h= b->height;
1419 int i= x + y*stride;
1423 if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1424 else src[i] += src[i - 1];
1426 if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1427 else src[i] += src[i - 1];
1430 if(y) src[i] += src[i - stride];
1436 static void encode_qlogs(SnowContext *s){
1437 int plane_index, level, orientation;
1439 for(plane_index=0; plane_index<2; plane_index++){
1440 for(level=0; level<s->spatial_decomposition_count; level++){
1441 for(orientation=level ? 1:0; orientation<4; orientation++){
1442 if(orientation==2) continue;
1443 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1449 static void encode_header(SnowContext *s){
1453 memset(kstate, MID_STATE, sizeof(kstate));
1455 put_rac(&s->c, kstate, s->keyframe);
1456 if(s->keyframe || s->always_reset){
1457 ff_snow_reset_contexts(s);
1458 s->last_spatial_decomposition_type=
1462 s->last_block_max_depth= 0;
1463 for(plane_index=0; plane_index<2; plane_index++){
1464 Plane *p= &s->plane[plane_index];
1467 memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1471 put_symbol(&s->c, s->header_state, s->version, 0);
1472 put_rac(&s->c, s->header_state, s->always_reset);
1473 put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1474 put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1475 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1476 put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1477 put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1478 put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1479 put_rac(&s->c, s->header_state, s->spatial_scalability);
1480 // put_rac(&s->c, s->header_state, s->rate_scalability);
1481 put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1488 for(plane_index=0; plane_index<2; plane_index++){
1489 Plane *p= &s->plane[plane_index];
1490 update_mc |= p->last_htaps != p->htaps;
1491 update_mc |= p->last_diag_mc != p->diag_mc;
1492 update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1494 put_rac(&s->c, s->header_state, update_mc);
1496 for(plane_index=0; plane_index<2; plane_index++){
1497 Plane *p= &s->plane[plane_index];
1498 put_rac(&s->c, s->header_state, p->diag_mc);
1499 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1500 for(i= p->htaps/2; i; i--)
1501 put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1504 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1505 put_rac(&s->c, s->header_state, 1);
1506 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1509 put_rac(&s->c, s->header_state, 0);
1512 put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1513 put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1514 put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1515 put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1516 put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1520 static void update_last_header_values(SnowContext *s){
1524 for(plane_index=0; plane_index<2; plane_index++){
1525 Plane *p= &s->plane[plane_index];
1526 p->last_diag_mc= p->diag_mc;
1527 p->last_htaps = p->htaps;
1528 memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1532 s->last_spatial_decomposition_type = s->spatial_decomposition_type;
1533 s->last_qlog = s->qlog;
1534 s->last_qbias = s->qbias;
1535 s->last_mv_scale = s->mv_scale;
1536 s->last_block_max_depth = s->block_max_depth;
1537 s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1540 static int qscale2qlog(int qscale){
1541 return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1542 + 61*QROOT/8; ///< 64 > 60
1545 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1547 /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1548 * FIXME we know exact mv bits at this point,
1549 * but ratecontrol isn't set up to include them. */
1550 uint32_t coef_sum= 0;
1551 int level, orientation, delta_qlog;
1553 for(level=0; level<s->spatial_decomposition_count; level++){
1554 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1555 SubBand *b= &s->plane[0].band[level][orientation];
1556 IDWTELEM *buf= b->ibuf;
1557 const int w= b->width;
1558 const int h= b->height;
1559 const int stride= b->stride;
1560 const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1561 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1562 const int qdiv= (1<<16)/qmul;
1564 //FIXME this is ugly
1567 buf[x+y*stride]= b->buf[x+y*stride];
1569 decorrelate(s, b, buf, stride, 1, 0);
1572 coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1576 /* ugly, ratecontrol just takes a sqrt again */
1577 coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1578 assert(coef_sum < INT_MAX);
1580 if(pict->pict_type == AV_PICTURE_TYPE_I){
1581 s->m.current_picture.mb_var_sum= coef_sum;
1582 s->m.current_picture.mc_mb_var_sum= 0;
1584 s->m.current_picture.mc_mb_var_sum= coef_sum;
1585 s->m.current_picture.mb_var_sum= 0;
1588 pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1589 if (pict->quality < 0)
1591 s->lambda= pict->quality * 3/2;
1592 delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1593 s->qlog+= delta_qlog;
1597 static void calculate_visual_weight(SnowContext *s, Plane *p){
1598 int width = p->width;
1599 int height= p->height;
1600 int level, orientation, x, y;
1602 for(level=0; level<s->spatial_decomposition_count; level++){
1603 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1604 SubBand *b= &p->band[level][orientation];
1605 IDWTELEM *ibuf= b->ibuf;
1608 memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1609 ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1610 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1611 for(y=0; y<height; y++){
1612 for(x=0; x<width; x++){
1613 int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1618 b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1623 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1624 const AVFrame *pict, int *got_packet)
1626 SnowContext *s = avctx->priv_data;
1627 RangeCoder * const c= &s->c;
1628 AVFrame *pic = &s->new_picture;
1629 const int width= s->avctx->width;
1630 const int height= s->avctx->height;
1631 int level, orientation, plane_index, i, y, ret;
1632 uint8_t rc_header_bak[sizeof(s->header_state)];
1633 uint8_t rc_block_bak[sizeof(s->block_state)];
1635 if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1638 ff_init_range_encoder(c, pkt->data, pkt->size);
1639 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1642 int hshift= i ? s->chroma_h_shift : 0;
1643 int vshift= i ? s->chroma_v_shift : 0;
1644 for(y=0; y<(height>>vshift); y++)
1645 memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
1646 &pict->data[i][y * pict->linesize[i]],
1649 s->new_picture = *pict;
1651 s->m.picture_number= avctx->frame_number;
1652 if(avctx->flags&CODEC_FLAG_PASS2){
1653 s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1654 s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1655 if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1656 pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1657 if (pic->quality < 0)
1661 s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1662 s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1665 if(s->pass1_rc && avctx->frame_number == 0)
1666 pic->quality = 2*FF_QP2LAMBDA;
1668 s->qlog = qscale2qlog(pic->quality);
1669 s->lambda = pic->quality * 3/2;
1671 if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1672 s->qlog= LOSSLESS_QLOG;
1674 }//else keep previous frame's qlog until after motion estimation
1676 ff_snow_frame_start(s);
1678 s->m.current_picture_ptr= &s->m.current_picture;
1679 s->m.last_picture.f.pts = s->m.current_picture.f.pts;
1680 s->m.current_picture.f.pts = pict->pts;
1681 if(pic->pict_type == AV_PICTURE_TYPE_P){
1682 int block_width = (width +15)>>4;
1683 int block_height= (height+15)>>4;
1684 int stride= s->current_picture.linesize[0];
1686 assert(s->current_picture.data[0]);
1687 assert(s->last_picture[0].data[0]);
1689 s->m.avctx= s->avctx;
1690 s->m.current_picture.f.data[0] = s->current_picture.data[0];
1691 s->m. last_picture.f.data[0] = s->last_picture[0].data[0];
1692 s->m. new_picture.f.data[0] = s-> input_picture.data[0];
1693 s->m. last_picture_ptr= &s->m. last_picture;
1695 s->m. last_picture.f.linesize[0] =
1696 s->m. new_picture.f.linesize[0] =
1697 s->m.current_picture.f.linesize[0] = stride;
1698 s->m.uvlinesize= s->current_picture.linesize[1];
1700 s->m.height= height;
1701 s->m.mb_width = block_width;
1702 s->m.mb_height= block_height;
1703 s->m.mb_stride= s->m.mb_width+1;
1704 s->m.b8_stride= 2*s->m.mb_width+1;
1706 s->m.pict_type = pic->pict_type;
1707 s->m.me_method= s->avctx->me_method;
1708 s->m.me.scene_change_score=0;
1709 s->m.flags= s->avctx->flags;
1710 s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1711 s->m.out_format= FMT_H263;
1712 s->m.unrestricted_mv= 1;
1714 s->m.lambda = s->lambda;
1715 s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1716 s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1718 s->m.dsp= s->dsp; //move
1724 memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1725 memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1730 if (pic->pict_type == AV_PICTURE_TYPE_I)
1731 s->spatial_decomposition_count= 5;
1733 s->spatial_decomposition_count= 5;
1735 while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1736 || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1737 s->spatial_decomposition_count--;
1739 s->m.pict_type = pic->pict_type;
1740 s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1742 ff_snow_common_init_after_header(avctx);
1744 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1745 for(plane_index=0; plane_index<3; plane_index++){
1746 calculate_visual_weight(s, &s->plane[plane_index]);
1751 s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1752 encode_blocks(s, 1);
1753 s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1755 for(plane_index=0; plane_index<3; plane_index++){
1756 Plane *p= &s->plane[plane_index];
1760 // int bits= put_bits_count(&s->c.pb);
1762 if (!s->memc_only) {
1764 if(pict->data[plane_index]) //FIXME gray hack
1767 s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1770 predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1773 && pic->pict_type == AV_PICTURE_TYPE_P
1774 && !(avctx->flags&CODEC_FLAG_PASS2)
1775 && s->m.me.scene_change_score > s->avctx->scenechange_threshold){
1776 ff_init_range_encoder(c, pkt->data, pkt->size);
1777 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1778 pic->pict_type= AV_PICTURE_TYPE_I;
1780 s->current_picture.key_frame=1;
1784 if(s->qlog == LOSSLESS_QLOG){
1787 s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1793 s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
1799 dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type);
1801 ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1803 if(s->pass1_rc && plane_index==0){
1804 int delta_qlog = ratecontrol_1pass(s, pic);
1805 if (delta_qlog <= INT_MIN)
1808 //reordering qlog in the bitstream would eliminate this reset
1809 ff_init_range_encoder(c, pkt->data, pkt->size);
1810 memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1811 memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1813 encode_blocks(s, 0);
1817 for(level=0; level<s->spatial_decomposition_count; level++){
1818 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1819 SubBand *b= &p->band[level][orientation];
1822 quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1824 decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1825 if (!s->no_bitstream)
1826 encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1827 assert(b->parent==NULL || b->parent->stride == b->stride*2);
1829 correlate(s, b, b->ibuf, b->stride, 1, 0);
1833 for(level=0; level<s->spatial_decomposition_count; level++){
1834 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1835 SubBand *b= &p->band[level][orientation];
1837 dequantize(s, b, b->ibuf, b->stride);
1841 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1842 if(s->qlog == LOSSLESS_QLOG){
1845 s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1849 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1852 if(pic->pict_type == AV_PICTURE_TYPE_I){
1855 s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
1856 pict->data[plane_index][y*pict->linesize[plane_index] + x];
1860 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1861 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1864 if(s->avctx->flags&CODEC_FLAG_PSNR){
1867 if(pict->data[plane_index]) //FIXME gray hack
1870 int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1874 s->avctx->error[plane_index] += error;
1875 s->current_picture.error[plane_index] = error;
1880 update_last_header_values(s);
1882 ff_snow_release_buffer(avctx);
1884 s->current_picture.coded_picture_number = avctx->frame_number;
1885 s->current_picture.pict_type = pict->pict_type;
1886 s->current_picture.quality = pict->quality;
1887 s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1888 s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1889 s->m.current_picture.f.display_picture_number =
1890 s->m.current_picture.f.coded_picture_number = avctx->frame_number;
1891 s->m.current_picture.f.quality = pic->quality;
1892 s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1894 if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1896 if(avctx->flags&CODEC_FLAG_PASS1)
1897 ff_write_pass1_stats(&s->m);
1898 s->m.last_pict_type = s->m.pict_type;
1899 avctx->frame_bits = s->m.frame_bits;
1900 avctx->mv_bits = s->m.mv_bits;
1901 avctx->misc_bits = s->m.misc_bits;
1902 avctx->p_tex_bits = s->m.p_tex_bits;
1906 pkt->size = ff_rac_terminate(c);
1907 if (avctx->coded_frame->key_frame)
1908 pkt->flags |= AV_PKT_FLAG_KEY;
1914 static av_cold int encode_end(AVCodecContext *avctx)
1916 SnowContext *s = avctx->priv_data;
1918 ff_snow_common_end(s);
1919 if (s->input_picture.data[0])
1920 avctx->release_buffer(avctx, &s->input_picture);
1921 av_free(avctx->stats_out);
1926 #define OFFSET(x) offsetof(SnowContext, x)
1927 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1928 static const AVOption options[] = {
1929 { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1930 { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1934 static const AVClass snowenc_class = {
1935 .class_name = "snow encoder",
1936 .item_name = av_default_item_name,
1938 .version = LIBAVUTIL_VERSION_INT,
1941 AVCodec ff_snow_encoder = {
1943 .type = AVMEDIA_TYPE_VIDEO,
1944 .id = AV_CODEC_ID_SNOW,
1945 .priv_data_size = sizeof(SnowContext),
1946 .init = encode_init,
1947 .encode2 = encode_frame,
1948 .close = encode_end,
1949 .pix_fmts = (const enum AVPixelFormat[]){
1950 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
1953 .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1954 .priv_class = &snowenc_class,
1963 #include "libavutil/lfg.h"
1964 #include "libavutil/mathematics.h"
1969 int buffer[2][width*height];
1973 s.spatial_decomposition_count=6;
1974 s.spatial_decomposition_type=1;
1976 s.temp_dwt_buffer = av_mallocz(width * sizeof(DWTELEM));
1977 s.temp_idwt_buffer = av_mallocz(width * sizeof(IDWTELEM));
1979 av_lfg_init(&prng, 1);
1981 printf("testing 5/3 DWT\n");
1982 for(i=0; i<width*height; i++)
1983 buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1985 ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1986 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1988 for(i=0; i<width*height; i++)
1989 if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1991 printf("testing 9/7 DWT\n");
1992 s.spatial_decomposition_type=0;
1993 for(i=0; i<width*height; i++)
1994 buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1996 ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1997 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
1999 for(i=0; i<width*height; i++)
2000 if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
2003 int level, orientation, x, y;
2004 int64_t errors[8][4];
2007 memset(errors, 0, sizeof(errors));
2008 s.spatial_decomposition_count=3;
2009 s.spatial_decomposition_type=0;
2010 for(level=0; level<s.spatial_decomposition_count; level++){
2011 for(orientation=level ? 1 : 0; orientation<4; orientation++){
2012 int w= width >> (s.spatial_decomposition_count-level);
2013 int h= height >> (s.spatial_decomposition_count-level);
2014 int stride= width << (s.spatial_decomposition_count-level);
2015 DWTELEM *buf= buffer[0];
2018 if(orientation&1) buf+=w;
2019 if(orientation>1) buf+=stride>>1;
2021 memset(buffer[0], 0, sizeof(int)*width*height);
2022 buf[w/2 + h/2*stride]= 256*256;
2023 ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
2024 for(y=0; y<height; y++){
2025 for(x=0; x<width; x++){
2026 int64_t d= buffer[0][x + y*width];
2028 if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
2030 if(FFABS(height/2-y)<9 && level==2) printf("\n");
2032 error= (int)(sqrt(error)+0.5);
2033 errors[level][orientation]= error;
2034 if(g) g=av_gcd(g, error);
2038 printf("static int const visual_weight[][4]={\n");
2039 for(level=0; level<s.spatial_decomposition_count; level++){
2041 for(orientation=0; orientation<4; orientation++){
2042 printf("%8"PRId64",", errors[level][orientation]/g);
2049 int w= width >> (s.spatial_decomposition_count-level);
2050 //int h= height >> (s.spatial_decomposition_count-level);
2051 int stride= width << (s.spatial_decomposition_count-level);
2052 DWTELEM *buf= buffer[0];
2058 memset(buffer[0], 0, sizeof(int)*width*height);
2059 for(y=0; y<height; y++){
2060 for(x=0; x<width; x++){
2061 int tab[4]={0,2,3,1};
2062 buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2065 ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
2066 for(y=0; y<height; y++){
2067 for(x=0; x<width; x++){
2068 int64_t d= buffer[0][x + y*width];
2070 if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2072 if(FFABS(height/2-y)<9) printf("\n");