]> git.sesse.net Git - ffmpeg/blob - libavcodec/truemotion1.c
94782fef4b8ff9e5dfbe7e3b5b248d0a490b503a
[ffmpeg] / libavcodec / truemotion1.c
1 /*
2  * Duck TrueMotion 1.0 Decoder
3  * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * Duck TrueMotion v1 Video Decoder by
25  * Alex Beregszaszi and
26  * Mike Melanson (melanson@pcisys.net)
27  *
28  * The TrueMotion v1 decoder presently only decodes 16-bit TM1 data and
29  * outputs RGB555 (or RGB565) data. 24-bit TM1 data is not supported yet.
30  */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "avcodec.h"
37 #include "internal.h"
38 #include "libavutil/imgutils.h"
39 #include "libavutil/internal.h"
40 #include "libavutil/intreadwrite.h"
41 #include "libavutil/mem.h"
42
43 #include "truemotion1data.h"
44
45 typedef struct TrueMotion1Context {
46     AVCodecContext *avctx;
47     AVFrame *frame;
48
49     const uint8_t *buf;
50     int size;
51
52     const uint8_t *mb_change_bits;
53     int mb_change_bits_row_size;
54     const uint8_t *index_stream;
55     int index_stream_size;
56
57     int flags;
58     int x, y, w, h;
59
60     uint32_t y_predictor_table[1024];
61     uint32_t c_predictor_table[1024];
62     uint32_t fat_y_predictor_table[1024];
63     uint32_t fat_c_predictor_table[1024];
64
65     int compression;
66     int block_type;
67     int block_width;
68     int block_height;
69
70     int16_t ydt[8];
71     int16_t cdt[8];
72     int16_t fat_ydt[8];
73     int16_t fat_cdt[8];
74
75     int last_deltaset, last_vectable;
76
77     unsigned int *vert_pred;
78     int vert_pred_size;
79
80 } TrueMotion1Context;
81
82 #define FLAG_SPRITE         32
83 #define FLAG_KEYFRAME       16
84 #define FLAG_INTERFRAME      8
85 #define FLAG_INTERPOLATED    4
86
87 struct frame_header {
88     uint8_t header_size;
89     uint8_t compression;
90     uint8_t deltaset;
91     uint8_t vectable;
92     uint16_t ysize;
93     uint16_t xsize;
94     uint16_t checksum;
95     uint8_t version;
96     uint8_t header_type;
97     uint8_t flags;
98     uint8_t control;
99     uint16_t xoffset;
100     uint16_t yoffset;
101     uint16_t width;
102     uint16_t height;
103 };
104
105 #define ALGO_NOP        0
106 #define ALGO_RGB16V     1
107 #define ALGO_RGB16H     2
108 #define ALGO_RGB24H     3
109
110 /* these are the various block sizes that can occupy a 4x4 block */
111 #define BLOCK_2x2  0
112 #define BLOCK_2x4  1
113 #define BLOCK_4x2  2
114 #define BLOCK_4x4  3
115
116 typedef struct comp_types {
117     int algorithm;
118     int block_width; // vres
119     int block_height; // hres
120     int block_type;
121 } comp_types;
122
123 /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */
124 static const comp_types compression_types[17] = {
125     { ALGO_NOP,    0, 0, 0 },
126
127     { ALGO_RGB16V, 4, 4, BLOCK_4x4 },
128     { ALGO_RGB16H, 4, 4, BLOCK_4x4 },
129     { ALGO_RGB16V, 4, 2, BLOCK_4x2 },
130     { ALGO_RGB16H, 4, 2, BLOCK_4x2 },
131
132     { ALGO_RGB16V, 2, 4, BLOCK_2x4 },
133     { ALGO_RGB16H, 2, 4, BLOCK_2x4 },
134     { ALGO_RGB16V, 2, 2, BLOCK_2x2 },
135     { ALGO_RGB16H, 2, 2, BLOCK_2x2 },
136
137     { ALGO_NOP,    4, 4, BLOCK_4x4 },
138     { ALGO_RGB24H, 4, 4, BLOCK_4x4 },
139     { ALGO_NOP,    4, 2, BLOCK_4x2 },
140     { ALGO_RGB24H, 4, 2, BLOCK_4x2 },
141
142     { ALGO_NOP,    2, 4, BLOCK_2x4 },
143     { ALGO_RGB24H, 2, 4, BLOCK_2x4 },
144     { ALGO_NOP,    2, 2, BLOCK_2x2 },
145     { ALGO_RGB24H, 2, 2, BLOCK_2x2 }
146 };
147
148 static void select_delta_tables(TrueMotion1Context *s, int delta_table_index)
149 {
150     int i;
151
152     if (delta_table_index > 3)
153         return;
154
155     memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t));
156     memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t));
157     memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t));
158     memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t));
159
160     /* Y skinny deltas need to be halved for some reason; maybe the
161      * skinny Y deltas should be modified */
162     for (i = 0; i < 8; i++)
163     {
164         /* drop the lsb before dividing by 2-- net effect: round down
165          * when dividing a negative number (e.g., -3/2 = -2, not -1) */
166         s->ydt[i] &= 0xFFFE;
167         s->ydt[i] /= 2;
168     }
169 }
170
171 #if HAVE_BIGENDIAN
172 static int make_ydt15_entry(int p2, int p1, int16_t *ydt)
173 #else
174 static int make_ydt15_entry(int p1, int p2, int16_t *ydt)
175 #endif
176 {
177     int lo, hi;
178
179     lo = ydt[p1];
180     lo += (lo * 32) + (lo * 1024);
181     hi = ydt[p2];
182     hi += (hi * 32) + (hi * 1024);
183     return (lo + (hi * (1U << 16))) * 2;
184 }
185
186 static int make_cdt15_entry(int p1, int p2, int16_t *cdt)
187 {
188     int r, b, lo;
189
190     b = cdt[p2];
191     r = cdt[p1] * 1024;
192     lo = b + r;
193     return (lo + (lo * (1U << 16))) * 2;
194 }
195
196 #if HAVE_BIGENDIAN
197 static int make_ydt16_entry(int p2, int p1, int16_t *ydt)
198 #else
199 static int make_ydt16_entry(int p1, int p2, int16_t *ydt)
200 #endif
201 {
202     int lo, hi;
203
204     lo = ydt[p1];
205     lo += (lo << 6) + (lo << 11);
206     hi = ydt[p2];
207     hi += (hi << 6) + (hi << 11);
208     return (lo + (hi << 16)) << 1;
209 }
210
211 static int make_cdt16_entry(int p1, int p2, int16_t *cdt)
212 {
213     int r, b, lo;
214
215     b = cdt[p2];
216     r = cdt[p1] << 11;
217     lo = b + r;
218     return (lo + (lo * (1 << 16))) * 2;
219 }
220
221 static int make_ydt24_entry(int p1, int p2, int16_t *ydt)
222 {
223     int lo, hi;
224
225     lo = ydt[p1];
226     hi = ydt[p2];
227     return (lo + (hi * (1 << 8)) + (hi * (1 << 16))) * 2;
228 }
229
230 static int make_cdt24_entry(int p1, int p2, int16_t *cdt)
231 {
232     int r, b;
233
234     b = cdt[p2];
235     r = cdt[p1] * (1 << 16);
236     return (b+r) * 2;
237 }
238
239 static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table)
240 {
241     int len, i, j;
242     unsigned char delta_pair;
243
244     for (i = 0; i < 1024; i += 4)
245     {
246         len = *sel_vector_table++ / 2;
247         for (j = 0; j < len; j++)
248         {
249             delta_pair = *sel_vector_table++;
250             s->y_predictor_table[i+j] = 0xfffffffe &
251                 make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
252             s->c_predictor_table[i+j] = 0xfffffffe &
253                 make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
254         }
255         s->y_predictor_table[i+(j-1)] |= 1;
256         s->c_predictor_table[i+(j-1)] |= 1;
257     }
258 }
259
260 static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table)
261 {
262     int len, i, j;
263     unsigned char delta_pair;
264
265     for (i = 0; i < 1024; i += 4)
266     {
267         len = *sel_vector_table++ / 2;
268         for (j = 0; j < len; j++)
269         {
270             delta_pair = *sel_vector_table++;
271             s->y_predictor_table[i+j] = 0xfffffffe &
272                 make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
273             s->c_predictor_table[i+j] = 0xfffffffe &
274                 make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
275         }
276         s->y_predictor_table[i+(j-1)] |= 1;
277         s->c_predictor_table[i+(j-1)] |= 1;
278     }
279 }
280
281 static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table)
282 {
283     int len, i, j;
284     unsigned char delta_pair;
285
286     for (i = 0; i < 1024; i += 4)
287     {
288         len = *sel_vector_table++ / 2;
289         for (j = 0; j < len; j++)
290         {
291             delta_pair = *sel_vector_table++;
292             s->y_predictor_table[i+j] = 0xfffffffe &
293                 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
294             s->c_predictor_table[i+j] = 0xfffffffe &
295                 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
296             s->fat_y_predictor_table[i+j] = 0xfffffffe &
297                 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt);
298             s->fat_c_predictor_table[i+j] = 0xfffffffe &
299                 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt);
300         }
301         s->y_predictor_table[i+(j-1)] |= 1;
302         s->c_predictor_table[i+(j-1)] |= 1;
303         s->fat_y_predictor_table[i+(j-1)] |= 1;
304         s->fat_c_predictor_table[i+(j-1)] |= 1;
305     }
306 }
307
308 /* Returns the number of bytes consumed from the bytestream. Returns -1 if
309  * there was an error while decoding the header */
310 static int truemotion1_decode_header(TrueMotion1Context *s)
311 {
312     int i, ret;
313     int width_shift = 0;
314     int new_pix_fmt;
315     struct frame_header header;
316     uint8_t header_buffer[128] = { 0 };  /* logical maximum size of the header */
317     const uint8_t *sel_vector_table;
318
319     header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f;
320     if (s->buf[0] < 0x10)
321     {
322         av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]);
323         return AVERROR_INVALIDDATA;
324     }
325
326     if (header.header_size + 1 > s->size) {
327         av_log(s->avctx, AV_LOG_ERROR, "Input packet too small.\n");
328         return AVERROR_INVALIDDATA;
329     }
330
331     /* unscramble the header bytes with a XOR operation */
332     for (i = 1; i < header.header_size; i++)
333         header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1];
334
335     header.compression = header_buffer[0];
336     header.deltaset = header_buffer[1];
337     header.vectable = header_buffer[2];
338     header.ysize = AV_RL16(&header_buffer[3]);
339     header.xsize = AV_RL16(&header_buffer[5]);
340     header.checksum = AV_RL16(&header_buffer[7]);
341     header.version = header_buffer[9];
342     header.header_type = header_buffer[10];
343     header.flags = header_buffer[11];
344     header.control = header_buffer[12];
345
346     /* Version 2 */
347     if (header.version >= 2)
348     {
349         if (header.header_type > 3)
350         {
351             av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type);
352             return AVERROR_INVALIDDATA;
353         } else if ((header.header_type == 2) || (header.header_type == 3)) {
354             s->flags = header.flags;
355             if (!(s->flags & FLAG_INTERFRAME))
356                 s->flags |= FLAG_KEYFRAME;
357         } else
358             s->flags = FLAG_KEYFRAME;
359     } else /* Version 1 */
360         s->flags = FLAG_KEYFRAME;
361
362     if (s->flags & FLAG_SPRITE) {
363         avpriv_request_sample(s->avctx, "Frame with sprite");
364         /* FIXME header.width, height, xoffset and yoffset aren't initialized */
365         return AVERROR_PATCHWELCOME;
366     } else {
367         s->w = header.xsize;
368         s->h = header.ysize;
369         if (header.header_type < 2) {
370             if ((s->w < 213) && (s->h >= 176))
371             {
372                 s->flags |= FLAG_INTERPOLATED;
373                 avpriv_request_sample(s->avctx, "Interpolated frame");
374             }
375         }
376     }
377
378     if (header.compression >= 17) {
379         av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression);
380         return AVERROR_INVALIDDATA;
381     }
382
383     if ((header.deltaset != s->last_deltaset) ||
384         (header.vectable != s->last_vectable))
385         select_delta_tables(s, header.deltaset);
386
387     if ((header.compression & 1) && header.header_type)
388         sel_vector_table = pc_tbl2;
389     else {
390         if (header.vectable > 0 && header.vectable < 4)
391             sel_vector_table = tables[header.vectable - 1];
392         else {
393             av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable);
394             return AVERROR_INVALIDDATA;
395         }
396     }
397
398     if (compression_types[header.compression].algorithm == ALGO_RGB24H) {
399         new_pix_fmt = AV_PIX_FMT_0RGB32;
400         width_shift = 1;
401     } else
402         new_pix_fmt = AV_PIX_FMT_RGB555; // RGB565 is supported as well
403
404     s->w >>= width_shift;
405     if (s->w & 1) {
406         avpriv_request_sample(s->avctx, "Frame with odd width");
407         return AVERROR_PATCHWELCOME;
408     }
409
410     if (s->w != s->avctx->width || s->h != s->avctx->height ||
411         new_pix_fmt != s->avctx->pix_fmt) {
412         av_frame_unref(s->frame);
413         s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 };
414         s->avctx->pix_fmt = new_pix_fmt;
415
416         if ((ret = ff_set_dimensions(s->avctx, s->w, s->h)) < 0)
417             return ret;
418
419         ff_set_sar(s->avctx, s->avctx->sample_aspect_ratio);
420
421         av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
422         if (!s->vert_pred)
423             return AVERROR(ENOMEM);
424     }
425
426     /* There is 1 change bit per 4 pixels, so each change byte represents
427      * 32 pixels; divide width by 4 to obtain the number of change bits and
428      * then round up to the nearest byte. */
429     s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3;
430
431     if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable))
432     {
433         if (compression_types[header.compression].algorithm == ALGO_RGB24H)
434             gen_vector_table24(s, sel_vector_table);
435         else
436         if (s->avctx->pix_fmt == AV_PIX_FMT_RGB555)
437             gen_vector_table15(s, sel_vector_table);
438         else
439             gen_vector_table16(s, sel_vector_table);
440     }
441
442     /* set up pointers to the other key data chunks */
443     s->mb_change_bits = s->buf + header.header_size;
444     if (s->flags & FLAG_KEYFRAME) {
445         /* no change bits specified for a keyframe; only index bytes */
446         s->index_stream = s->mb_change_bits;
447         if (s->avctx->width * s->avctx->height / 2048 + header.header_size > s->size)
448             return AVERROR_INVALIDDATA;
449     } else {
450         /* one change bit per 4x4 block */
451         s->index_stream = s->mb_change_bits +
452             (s->mb_change_bits_row_size * (s->avctx->height >> 2));
453     }
454     s->index_stream_size = s->size - (s->index_stream - s->buf);
455
456     s->last_deltaset = header.deltaset;
457     s->last_vectable = header.vectable;
458     s->compression = header.compression;
459     s->block_width = compression_types[header.compression].block_width;
460     s->block_height = compression_types[header.compression].block_height;
461     s->block_type = compression_types[header.compression].block_type;
462
463     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
464         av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n",
465             s->last_deltaset, s->last_vectable, s->compression, s->block_width,
466             s->block_height, s->block_type,
467             s->flags & FLAG_KEYFRAME ? " KEY" : "",
468             s->flags & FLAG_INTERFRAME ? " INTER" : "",
469             s->flags & FLAG_SPRITE ? " SPRITE" : "",
470             s->flags & FLAG_INTERPOLATED ? " INTERPOL" : "");
471
472     return header.header_size;
473 }
474
475 static av_cold int truemotion1_decode_init(AVCodecContext *avctx)
476 {
477     TrueMotion1Context *s = avctx->priv_data;
478
479     s->avctx = avctx;
480
481     // FIXME: it may change ?
482 //    if (avctx->bits_per_sample == 24)
483 //        avctx->pix_fmt = AV_PIX_FMT_RGB24;
484 //    else
485 //        avctx->pix_fmt = AV_PIX_FMT_RGB555;
486
487     s->frame = av_frame_alloc();
488     if (!s->frame)
489         return AVERROR(ENOMEM);
490
491     /* there is a vertical predictor for each pixel in a line; each vertical
492      * predictor is 0 to start with */
493     av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
494     if (!s->vert_pred)
495         return AVERROR(ENOMEM);
496
497     return 0;
498 }
499
500 /*
501 Block decoding order:
502
503 dxi: Y-Y
504 dxic: Y-C-Y
505 dxic2: Y-C-Y-C
506
507 hres,vres,i,i%vres (0 < i < 4)
508 2x2 0: 0 dxic2
509 2x2 1: 1 dxi
510 2x2 2: 0 dxic2
511 2x2 3: 1 dxi
512 2x4 0: 0 dxic2
513 2x4 1: 1 dxi
514 2x4 2: 2 dxi
515 2x4 3: 3 dxi
516 4x2 0: 0 dxic
517 4x2 1: 1 dxi
518 4x2 2: 0 dxic
519 4x2 3: 1 dxi
520 4x4 0: 0 dxic
521 4x4 1: 1 dxi
522 4x4 2: 2 dxi
523 4x4 3: 3 dxi
524 */
525
526 #define GET_NEXT_INDEX() \
527 {\
528     if (index_stream_index >= s->index_stream_size) { \
529         av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \
530         return; \
531     } \
532     index = s->index_stream[index_stream_index++] * 4; \
533 }
534
535 #define INC_INDEX                                                   \
536 do {                                                                \
537     if (index >= 1023) {                                            \
538         av_log(s->avctx, AV_LOG_ERROR, "Invalid index value.\n");   \
539         return;                                                     \
540     }                                                               \
541     index++;                                                        \
542 } while (0)
543
544 #define APPLY_C_PREDICTOR() \
545     predictor_pair = s->c_predictor_table[index]; \
546     horiz_pred += (predictor_pair >> 1); \
547     if (predictor_pair & 1) { \
548         GET_NEXT_INDEX() \
549         if (!index) { \
550             GET_NEXT_INDEX() \
551             predictor_pair = s->c_predictor_table[index]; \
552             horiz_pred += ((predictor_pair >> 1) * 5); \
553             if (predictor_pair & 1) \
554                 GET_NEXT_INDEX() \
555             else \
556                 INC_INDEX; \
557         } \
558     } else \
559         INC_INDEX;
560
561 #define APPLY_C_PREDICTOR_24() \
562     predictor_pair = s->c_predictor_table[index]; \
563     horiz_pred += (predictor_pair >> 1); \
564     if (predictor_pair & 1) { \
565         GET_NEXT_INDEX() \
566         if (!index) { \
567             GET_NEXT_INDEX() \
568             predictor_pair = s->fat_c_predictor_table[index]; \
569             horiz_pred += (predictor_pair >> 1); \
570             if (predictor_pair & 1) \
571                 GET_NEXT_INDEX() \
572             else \
573                 INC_INDEX; \
574         } \
575     } else \
576         INC_INDEX;
577
578
579 #define APPLY_Y_PREDICTOR() \
580     predictor_pair = s->y_predictor_table[index]; \
581     horiz_pred += (predictor_pair >> 1); \
582     if (predictor_pair & 1) { \
583         GET_NEXT_INDEX() \
584         if (!index) { \
585             GET_NEXT_INDEX() \
586             predictor_pair = s->y_predictor_table[index]; \
587             horiz_pred += ((predictor_pair >> 1) * 5); \
588             if (predictor_pair & 1) \
589                 GET_NEXT_INDEX() \
590             else \
591                 INC_INDEX; \
592         } \
593     } else \
594         INC_INDEX;
595
596 #define APPLY_Y_PREDICTOR_24() \
597     predictor_pair = s->y_predictor_table[index]; \
598     horiz_pred += (predictor_pair >> 1); \
599     if (predictor_pair & 1) { \
600         GET_NEXT_INDEX() \
601         if (!index) { \
602             GET_NEXT_INDEX() \
603             predictor_pair = s->fat_y_predictor_table[index]; \
604             horiz_pred += (predictor_pair >> 1); \
605             if (predictor_pair & 1) \
606                 GET_NEXT_INDEX() \
607             else \
608                 INC_INDEX; \
609         } \
610     } else \
611         INC_INDEX;
612
613 #define OUTPUT_PIXEL_PAIR() \
614     *current_pixel_pair = *vert_pred + horiz_pred; \
615     *vert_pred++ = *current_pixel_pair++;
616
617 static void truemotion1_decode_16bit(TrueMotion1Context *s)
618 {
619     int y;
620     int pixels_left;  /* remaining pixels on this line */
621     unsigned int predictor_pair;
622     unsigned int horiz_pred;
623     unsigned int *vert_pred;
624     unsigned int *current_pixel_pair;
625     unsigned char *current_line = s->frame->data[0];
626     int keyframe = s->flags & FLAG_KEYFRAME;
627
628     /* these variables are for managing the stream of macroblock change bits */
629     const unsigned char *mb_change_bits = s->mb_change_bits;
630     unsigned char mb_change_byte;
631     unsigned char mb_change_byte_mask;
632     int mb_change_index;
633
634     /* these variables are for managing the main index stream */
635     int index_stream_index = 0;  /* yes, the index into the index stream */
636     int index;
637
638     /* clean out the line buffer */
639     memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
640
641     GET_NEXT_INDEX();
642
643     for (y = 0; y < s->avctx->height; y++) {
644
645         /* re-init variables for the next line iteration */
646         horiz_pred = 0;
647         current_pixel_pair = (unsigned int *)current_line;
648         vert_pred = s->vert_pred;
649         mb_change_index = 0;
650         if (!keyframe)
651             mb_change_byte = mb_change_bits[mb_change_index++];
652         mb_change_byte_mask = 0x01;
653         pixels_left = s->avctx->width;
654
655         while (pixels_left > 0) {
656
657             if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
658
659                 switch (y & 3) {
660                 case 0:
661                     /* if macroblock width is 2, apply C-Y-C-Y; else
662                      * apply C-Y-Y */
663                     if (s->block_width == 2) {
664                         APPLY_C_PREDICTOR();
665                         APPLY_Y_PREDICTOR();
666                         OUTPUT_PIXEL_PAIR();
667                         APPLY_C_PREDICTOR();
668                         APPLY_Y_PREDICTOR();
669                         OUTPUT_PIXEL_PAIR();
670                     } else {
671                         APPLY_C_PREDICTOR();
672                         APPLY_Y_PREDICTOR();
673                         OUTPUT_PIXEL_PAIR();
674                         APPLY_Y_PREDICTOR();
675                         OUTPUT_PIXEL_PAIR();
676                     }
677                     break;
678
679                 case 1:
680                 case 3:
681                     /* always apply 2 Y predictors on these iterations */
682                     APPLY_Y_PREDICTOR();
683                     OUTPUT_PIXEL_PAIR();
684                     APPLY_Y_PREDICTOR();
685                     OUTPUT_PIXEL_PAIR();
686                     break;
687
688                 case 2:
689                     /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
690                      * depending on the macroblock type */
691                     if (s->block_type == BLOCK_2x2) {
692                         APPLY_C_PREDICTOR();
693                         APPLY_Y_PREDICTOR();
694                         OUTPUT_PIXEL_PAIR();
695                         APPLY_C_PREDICTOR();
696                         APPLY_Y_PREDICTOR();
697                         OUTPUT_PIXEL_PAIR();
698                     } else if (s->block_type == BLOCK_4x2) {
699                         APPLY_C_PREDICTOR();
700                         APPLY_Y_PREDICTOR();
701                         OUTPUT_PIXEL_PAIR();
702                         APPLY_Y_PREDICTOR();
703                         OUTPUT_PIXEL_PAIR();
704                     } else {
705                         APPLY_Y_PREDICTOR();
706                         OUTPUT_PIXEL_PAIR();
707                         APPLY_Y_PREDICTOR();
708                         OUTPUT_PIXEL_PAIR();
709                     }
710                     break;
711                 }
712
713             } else {
714
715                 /* skip (copy) four pixels, but reassign the horizontal
716                  * predictor */
717                 *vert_pred++ = *current_pixel_pair++;
718                 horiz_pred = *current_pixel_pair - *vert_pred;
719                 *vert_pred++ = *current_pixel_pair++;
720
721             }
722
723             if (!keyframe) {
724                 mb_change_byte_mask <<= 1;
725
726                 /* next byte */
727                 if (!mb_change_byte_mask) {
728                     mb_change_byte = mb_change_bits[mb_change_index++];
729                     mb_change_byte_mask = 0x01;
730                 }
731             }
732
733             pixels_left -= 4;
734         }
735
736         /* next change row */
737         if (((y + 1) & 3) == 0)
738             mb_change_bits += s->mb_change_bits_row_size;
739
740         current_line += s->frame->linesize[0];
741     }
742 }
743
744 static void truemotion1_decode_24bit(TrueMotion1Context *s)
745 {
746     int y;
747     int pixels_left;  /* remaining pixels on this line */
748     unsigned int predictor_pair;
749     unsigned int horiz_pred;
750     unsigned int *vert_pred;
751     unsigned int *current_pixel_pair;
752     unsigned char *current_line = s->frame->data[0];
753     int keyframe = s->flags & FLAG_KEYFRAME;
754
755     /* these variables are for managing the stream of macroblock change bits */
756     const unsigned char *mb_change_bits = s->mb_change_bits;
757     unsigned char mb_change_byte;
758     unsigned char mb_change_byte_mask;
759     int mb_change_index;
760
761     /* these variables are for managing the main index stream */
762     int index_stream_index = 0;  /* yes, the index into the index stream */
763     int index;
764
765     /* clean out the line buffer */
766     memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
767
768     GET_NEXT_INDEX();
769
770     for (y = 0; y < s->avctx->height; y++) {
771
772         /* re-init variables for the next line iteration */
773         horiz_pred = 0;
774         current_pixel_pair = (unsigned int *)current_line;
775         vert_pred = s->vert_pred;
776         mb_change_index = 0;
777         mb_change_byte = mb_change_bits[mb_change_index++];
778         mb_change_byte_mask = 0x01;
779         pixels_left = s->avctx->width;
780
781         while (pixels_left > 0) {
782
783             if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
784
785                 switch (y & 3) {
786                 case 0:
787                     /* if macroblock width is 2, apply C-Y-C-Y; else
788                      * apply C-Y-Y */
789                     if (s->block_width == 2) {
790                         APPLY_C_PREDICTOR_24();
791                         APPLY_Y_PREDICTOR_24();
792                         OUTPUT_PIXEL_PAIR();
793                         APPLY_C_PREDICTOR_24();
794                         APPLY_Y_PREDICTOR_24();
795                         OUTPUT_PIXEL_PAIR();
796                     } else {
797                         APPLY_C_PREDICTOR_24();
798                         APPLY_Y_PREDICTOR_24();
799                         OUTPUT_PIXEL_PAIR();
800                         APPLY_Y_PREDICTOR_24();
801                         OUTPUT_PIXEL_PAIR();
802                     }
803                     break;
804
805                 case 1:
806                 case 3:
807                     /* always apply 2 Y predictors on these iterations */
808                     APPLY_Y_PREDICTOR_24();
809                     OUTPUT_PIXEL_PAIR();
810                     APPLY_Y_PREDICTOR_24();
811                     OUTPUT_PIXEL_PAIR();
812                     break;
813
814                 case 2:
815                     /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
816                      * depending on the macroblock type */
817                     if (s->block_type == BLOCK_2x2) {
818                         APPLY_C_PREDICTOR_24();
819                         APPLY_Y_PREDICTOR_24();
820                         OUTPUT_PIXEL_PAIR();
821                         APPLY_C_PREDICTOR_24();
822                         APPLY_Y_PREDICTOR_24();
823                         OUTPUT_PIXEL_PAIR();
824                     } else if (s->block_type == BLOCK_4x2) {
825                         APPLY_C_PREDICTOR_24();
826                         APPLY_Y_PREDICTOR_24();
827                         OUTPUT_PIXEL_PAIR();
828                         APPLY_Y_PREDICTOR_24();
829                         OUTPUT_PIXEL_PAIR();
830                     } else {
831                         APPLY_Y_PREDICTOR_24();
832                         OUTPUT_PIXEL_PAIR();
833                         APPLY_Y_PREDICTOR_24();
834                         OUTPUT_PIXEL_PAIR();
835                     }
836                     break;
837                 }
838
839             } else {
840
841                 /* skip (copy) four pixels, but reassign the horizontal
842                  * predictor */
843                 *vert_pred++ = *current_pixel_pair++;
844                 horiz_pred = *current_pixel_pair - *vert_pred;
845                 *vert_pred++ = *current_pixel_pair++;
846
847             }
848
849             if (!keyframe) {
850                 mb_change_byte_mask <<= 1;
851
852                 /* next byte */
853                 if (!mb_change_byte_mask) {
854                     mb_change_byte = mb_change_bits[mb_change_index++];
855                     mb_change_byte_mask = 0x01;
856                 }
857             }
858
859             pixels_left -= 2;
860         }
861
862         /* next change row */
863         if (((y + 1) & 3) == 0)
864             mb_change_bits += s->mb_change_bits_row_size;
865
866         current_line += s->frame->linesize[0];
867     }
868 }
869
870
871 static int truemotion1_decode_frame(AVCodecContext *avctx,
872                                     void *data, int *got_frame,
873                                     AVPacket *avpkt)
874 {
875     const uint8_t *buf = avpkt->data;
876     int ret, buf_size = avpkt->size;
877     TrueMotion1Context *s = avctx->priv_data;
878
879     s->buf = buf;
880     s->size = buf_size;
881
882     if ((ret = truemotion1_decode_header(s)) < 0)
883         return ret;
884
885     if ((ret = ff_reget_buffer(avctx, s->frame, 0)) < 0)
886         return ret;
887
888     if (compression_types[s->compression].algorithm == ALGO_RGB24H) {
889         truemotion1_decode_24bit(s);
890     } else if (compression_types[s->compression].algorithm != ALGO_NOP) {
891         truemotion1_decode_16bit(s);
892     }
893
894     if ((ret = av_frame_ref(data, s->frame)) < 0)
895         return ret;
896
897     *got_frame      = 1;
898
899     /* report that the buffer was completely consumed */
900     return buf_size;
901 }
902
903 static av_cold int truemotion1_decode_end(AVCodecContext *avctx)
904 {
905     TrueMotion1Context *s = avctx->priv_data;
906
907     av_frame_free(&s->frame);
908     av_freep(&s->vert_pred);
909
910     return 0;
911 }
912
913 AVCodec ff_truemotion1_decoder = {
914     .name           = "truemotion1",
915     .long_name      = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"),
916     .type           = AVMEDIA_TYPE_VIDEO,
917     .id             = AV_CODEC_ID_TRUEMOTION1,
918     .priv_data_size = sizeof(TrueMotion1Context),
919     .init           = truemotion1_decode_init,
920     .close          = truemotion1_decode_end,
921     .decode         = truemotion1_decode_frame,
922     .capabilities   = AV_CODEC_CAP_DR1,
923     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
924 };