3 * Copyright (c) 2009 Vitor Sessak
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "libavutil/channel_layout.h"
23 #include "libavutil/float_dsp.h"
34 #include "twinvq_data.h"
37 FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
38 FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
39 FT_LONG, ///< Long frame (single sub-block + PPC)
40 FT_PPC, ///< Periodic Peak Component (part of the long frame)
44 * Parameters and tables that are different for each frame type
47 uint8_t sub; ///< Number subblocks in each frame
48 const uint16_t *bark_tab;
50 /** number of distinct bark scale envelope values */
51 uint8_t bark_env_size;
53 const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
54 uint8_t bark_n_coef;///< number of BSE CB coefficients to read
55 uint8_t bark_n_bit; ///< number of bits of the BSE coefs
58 /** main codebooks for spectrum data */
63 uint8_t cb_len_read; ///< number of spectrum coefficients to read
67 * Parameters and tables that are different for every combination of
71 struct FrameMode fmode[3]; ///< frame type-dependant parameters
73 uint16_t size; ///< frame size in samples
74 uint8_t n_lsp; ///< number of lsp coefficients
75 const float *lspcodebook;
77 /* number of bits of the different LSP CB coefficients */
82 uint8_t lsp_split; ///< number of CB entries for the LSP decoding
83 const int16_t *ppc_shape_cb; ///< PPC shape CB
85 /** number of the bits for the PPC period value */
86 uint8_t ppc_period_bit;
88 uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
89 uint8_t ppc_shape_len; ///< size of PPC shape CB
90 uint8_t pgain_bit; ///< bits for PPC gain
92 /** constant for peak period to peak width conversion */
93 uint16_t peak_per2wid;
96 static const ModeTab mode_08_08 = {
98 { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
99 { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
100 { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
102 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
105 static const ModeTab mode_11_08 = {
107 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
108 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
109 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
111 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
114 static const ModeTab mode_11_10 = {
116 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
117 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
118 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
120 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
123 static const ModeTab mode_16_16 = {
125 { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
126 { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
127 { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
129 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
132 static const ModeTab mode_22_20 = {
134 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
135 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
136 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
138 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
141 static const ModeTab mode_22_24 = {
143 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
144 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
145 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
147 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
150 static const ModeTab mode_22_32 = {
152 { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
153 { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
154 { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
156 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
159 static const ModeTab mode_44_40 = {
161 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
162 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
163 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
165 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
168 static const ModeTab mode_44_48 = {
170 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
171 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
172 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
174 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
177 typedef struct TwinContext {
178 AVCodecContext *avctx;
179 AVFloatDSPContext fdsp;
180 FFTContext mdct_ctx[3];
185 float lsp_hist[2][20]; ///< LSP coefficients of the last frame
186 float bark_hist[3][2][40]; ///< BSE coefficients of last frame
188 // bitstream parameters
189 int16_t permut[4][4096];
190 uint8_t length[4][2]; ///< main codebook stride
191 uint8_t length_change[4];
192 uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
193 int bits_main_spec_change[4];
197 float *curr_frame; ///< non-interleaved output
198 float *prev_frame; ///< non-interleaved previous frame
199 int last_block_pos[2];
200 int discarded_packets;
208 #define PPC_SHAPE_CB_SIZE 64
209 #define PPC_SHAPE_LEN_MAX 60
210 #define SUB_AMP_MAX 4500.0
211 #define MULAW_MU 100.0
213 #define AMP_MAX 13000.0
214 #define SUB_GAIN_BITS 5
215 #define WINDOW_TYPE_BITS 4
217 #define LSP_COEFS_MAX 20
218 #define LSP_SPLIT_MAX 4
219 #define CHANNELS_MAX 2
220 #define SUBBLOCKS_MAX 16
221 #define BARK_N_COEF_MAX 4
223 /** @note not speed critical, hence not optimized */
224 static void memset_float(float *buf, float val, int size)
231 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
234 * @param lsp a vector of the cosinus of the LSP values
235 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
236 * @param order the order of the LSP (and the size of the *lsp buffer). Must
237 * be a multiple of four.
238 * @return the LPC value
240 * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
242 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
247 float two_cos_w = 2.0f*cos_val;
249 for (j = 0; j + 1 < order; j += 2*2) {
250 // Unroll the loop once since order is a multiple of four
251 q *= lsp[j ] - two_cos_w;
252 p *= lsp[j+1] - two_cos_w;
254 q *= lsp[j+2] - two_cos_w;
255 p *= lsp[j+3] - two_cos_w;
258 p *= p * (2.0f - two_cos_w);
259 q *= q * (2.0f + two_cos_w);
261 return 0.5 / (p + q);
265 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
267 static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
270 const ModeTab *mtab = tctx->mtab;
271 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
273 for (i = 0; i < size_s/2; i++) {
274 float cos_i = tctx->cos_tabs[0][i];
275 lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
276 lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
280 static void interpolate(float *out, float v1, float v2, int size)
283 float step = (v1 - v2)/(size + 1);
285 for (i = 0; i < size; i++) {
291 static inline float get_cos(int idx, int part, const float *cos_tab, int size)
293 return part ? -cos_tab[size - idx - 1] :
298 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
299 * Probably for speed reasons, the coefficients are evaluated as
300 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
301 * where s is an evaluated value, i is a value interpolated from the others
302 * and b might be either calculated or interpolated, depending on an
303 * unexplained condition.
305 * @param step the size of a block "siiiibiiii"
306 * @param in the cosinus of the LSP data
307 * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
308 (negative cossinus values)
309 * @param size the size of the whole output
311 static inline void eval_lpcenv_or_interp(TwinContext *tctx,
312 enum FrameType ftype,
313 float *out, const float *in,
314 int size, int step, int part)
317 const ModeTab *mtab = tctx->mtab;
318 const float *cos_tab = tctx->cos_tabs[ftype];
321 for (i = 0; i < size; i += step)
323 eval_lpc_spectrum(in,
324 get_cos(i, part, cos_tab, size),
327 // Fill the 'iiiibiiii'
328 for (i = step; i <= size - 2*step; i += step) {
329 if (out[i + step] + out[i - step] > 1.95*out[i] ||
330 out[i + step] >= out[i - step]) {
331 interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
334 eval_lpc_spectrum(in,
335 get_cos(i-step/2, part, cos_tab, size),
337 interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
338 interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
342 interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
345 static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
346 const float *buf, float *lpc,
349 eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
350 eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
352 interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
354 memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
358 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
359 * bitstream, sum the corresponding vectors and write the result to *out
362 static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
363 enum FrameType ftype,
364 const int16_t *cb0, const int16_t *cb1, int cb_len)
369 for (i = 0; i < tctx->n_div[ftype]; i++) {
373 const int16_t *tab0, *tab1;
374 int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
375 int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
377 int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
383 tmp0 = get_bits(gb, bits);
385 bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
393 tmp1 = get_bits(gb, bits);
395 tab0 = cb0 + tmp0*cb_len;
396 tab1 = cb1 + tmp1*cb_len;
398 for (j = 0; j < length; j++)
399 out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
406 static inline float mulawinv(float y, float clip, float mu)
408 y = av_clipf(y/clip, -1, 1);
409 return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
413 * Evaluate a*b/400 rounded to the nearest integer. When, for example,
414 * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
415 * the following broken float-based implementation used by the binary decoder:
418 * static int very_broken_op(int a, int b)
420 * static float test; // Ugh, force gcc to do the division first...
423 * return b * test + 0.5;
427 * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
428 * between the original file (before encoding with Yamaha encoder) and the
429 * decoded output increases, which leads one to believe that the encoder expects
430 * exactly this broken calculation.
432 static int very_broken_op(int a, int b)
443 size = tabs[b/5].size;
444 rtab = tabs[b/5].tab;
445 return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
449 * Sum to data a periodic peak of a given period, width and shape.
451 * @param period the period of the peak divised by 400.0
453 static void add_peak(int period, int width, const float *shape,
454 float ppc_gain, float *speech, int len)
458 const float *shape_end = shape + len;
461 // First peak centered around zero
462 for (i = 0; i < width/2; i++)
463 speech[i] += ppc_gain * *shape++;
465 for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
466 center = very_broken_op(period, i);
467 for (j = -width/2; j < (width+1)/2; j++)
468 speech[j+center] += ppc_gain * *shape++;
471 // For the last block, be careful not to go beyond the end of the buffer
472 center = very_broken_op(period, i);
473 for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
474 speech[j+center] += ppc_gain * *shape++;
477 static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
478 float ppc_gain, float *speech)
480 const ModeTab *mtab = tctx->mtab;
481 int isampf = tctx->avctx->sample_rate/1000;
482 int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
483 int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
484 int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
485 int period_range = max_period - min_period;
487 // This is actually the period multiplied by 400. It is just linearly coded
488 // between its maximum and minimum value.
489 int period = min_period +
490 ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
493 if (isampf == 22 && ibps == 32) {
494 // For some unknown reason, NTT decided to code this case differently...
495 width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
497 width = (period )* mtab->peak_per2wid/(400*mtab->size);
499 add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
502 static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
505 const ModeTab *mtab = tctx->mtab;
507 int sub = mtab->fmode[ftype].sub;
508 float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
509 float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
511 if (ftype == FT_LONG) {
512 for (i = 0; i < tctx->avctx->channels; i++)
513 out[i] = (1./(1<<13)) *
514 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
517 for (i = 0; i < tctx->avctx->channels; i++) {
518 float val = (1./(1<<23)) *
519 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
522 for (j = 0; j < sub; j++) {
524 val*mulawinv(sub_step* 0.5 +
525 sub_step* get_bits(gb, SUB_GAIN_BITS),
526 SUB_AMP_MAX, MULAW_MU);
533 * Rearrange the LSP coefficients so that they have a minimum distance of
534 * min_dist. This function does it exactly as described in section of 3.2.4
535 * of the G.729 specification (but interestingly is different from what the
536 * reference decoder actually does).
538 static void rearrange_lsp(int order, float *lsp, float min_dist)
541 float min_dist2 = min_dist * 0.5;
542 for (i = 1; i < order; i++)
543 if (lsp[i] - lsp[i-1] < min_dist) {
544 float avg = (lsp[i] + lsp[i-1]) * 0.5;
546 lsp[i-1] = avg - min_dist2;
547 lsp[i ] = avg + min_dist2;
551 static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
552 int lpc_hist_idx, float *lsp, float *hist)
554 const ModeTab *mtab = tctx->mtab;
557 const float *cb = mtab->lspcodebook;
558 const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
559 const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
561 const int8_t funny_rounding[4] = {
563 mtab->lsp_split == 4 ? -2 : 1,
564 mtab->lsp_split == 4 ? -2 : 1,
569 for (i = 0; i < mtab->lsp_split; i++) {
570 int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
571 for (; j < chunk_end; j++)
572 lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
573 cb2[lpc_idx2[i] * mtab->n_lsp + j];
576 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
578 for (i = 0; i < mtab->n_lsp; i++) {
579 float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
580 float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
582 lsp[i] = lsp[i] * tmp1 + tmp2;
585 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
586 rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
587 ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
590 static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
591 enum FrameType ftype, float *lpc)
594 int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
596 for (i = 0; i < tctx->mtab->n_lsp; i++)
597 lsp[i] = 2*cos(lsp[i]);
601 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
604 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
607 eval_lpcenv(tctx, lsp, lpc);
612 static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
613 float *in, float *prev, int ch)
615 FFTContext *mdct = &tctx->mdct_ctx[ftype];
616 const ModeTab *mtab = tctx->mtab;
617 int bsize = mtab->size / mtab->fmode[ftype].sub;
618 int size = mtab->size;
619 float *buf1 = tctx->tmp_buf;
621 int wsize; // Window size
622 float *out = tctx->curr_frame + 2*ch*mtab->size;
627 static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
628 int types_sizes[] = {
629 mtab->size / mtab->fmode[FT_LONG ].sub,
630 mtab->size / mtab->fmode[FT_MEDIUM].sub,
631 mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
634 wsize = types_sizes[wtype_to_wsize[wtype]];
636 prev_buf = prev + (size - bsize)/2;
638 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
639 int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
641 if (!j && wtype == 4)
643 else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
646 wsize = types_sizes[wtype_to_wsize[sub_wtype]];
648 mdct->imdct_half(mdct, buf1 + bsize*j, in + bsize*j);
650 tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize-wsize) / 2,
652 ff_sine_windows[av_log2(wsize)],
656 memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
658 out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
660 prev_buf = buf1 + bsize*j + bsize/2;
663 tctx->last_block_pos[ch] = (size + first_wsize)/2;
666 static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
669 const ModeTab *mtab = tctx->mtab;
671 float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
674 for (i = 0; i < tctx->avctx->channels; i++) {
675 imdct_and_window(tctx, ftype, wtype,
676 tctx->spectrum + i*mtab->size,
677 prev_buf + 2*i*mtab->size,
684 size2 = tctx->last_block_pos[0];
685 size1 = mtab->size - size2;
687 memcpy(&out[0][0 ], prev_buf, size1 * sizeof(out[0][0]));
688 memcpy(&out[0][size1], tctx->curr_frame, size2 * sizeof(out[0][0]));
690 if (tctx->avctx->channels == 2) {
691 memcpy(&out[1][0], &prev_buf[2*mtab->size], size1 * sizeof(out[1][0]));
692 memcpy(&out[1][size1], &tctx->curr_frame[2*mtab->size], size2 * sizeof(out[1][0]));
693 tctx->fdsp.butterflies_float(out[0], out[1], mtab->size);
697 static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
698 int ch, float *out, float gain, enum FrameType ftype)
700 const ModeTab *mtab = tctx->mtab;
702 float *hist = tctx->bark_hist[ftype][ch];
703 float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
704 int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
705 int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
708 for (i = 0; i < fw_cb_len; i++)
709 for (j = 0; j < bark_n_coef; j++, idx++) {
711 mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
712 float st = use_hist ?
713 (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
716 if (st < -1.) st = 1.;
718 memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
719 out += mtab->fmode[ftype].bark_tab[idx];
724 static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
725 float *out, enum FrameType ftype)
727 const ModeTab *mtab = tctx->mtab;
728 int channels = tctx->avctx->channels;
729 int sub = mtab->fmode[ftype].sub;
730 int block_size = mtab->size / sub;
731 float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
732 float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
733 uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
734 uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
736 uint8_t lpc_idx1[CHANNELS_MAX];
737 uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
738 uint8_t lpc_hist_idx[CHANNELS_MAX];
742 dequant(tctx, gb, out, ftype,
743 mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
744 mtab->fmode[ftype].cb_len_read);
746 for (i = 0; i < channels; i++)
747 for (j = 0; j < sub; j++)
748 for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
750 get_bits(gb, mtab->fmode[ftype].bark_n_bit);
752 for (i = 0; i < channels; i++)
753 for (j = 0; j < sub; j++)
754 bark_use_hist[i][j] = get_bits1(gb);
756 dec_gain(tctx, gb, ftype, gain);
758 for (i = 0; i < channels; i++) {
759 lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
760 lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
762 for (j = 0; j < tctx->mtab->lsp_split; j++)
763 lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
766 if (ftype == FT_LONG) {
767 int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
769 dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
770 mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
773 for (i = 0; i < channels; i++) {
774 float *chunk = out + mtab->size * i;
775 float lsp[LSP_COEFS_MAX];
777 for (j = 0; j < sub; j++) {
778 dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
779 tctx->tmp_buf, gain[sub*i+j], ftype);
781 tctx->fdsp.vector_fmul(chunk + block_size*j, chunk + block_size*j,
782 tctx->tmp_buf, block_size);
786 if (ftype == FT_LONG) {
787 float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
788 int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
789 int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
791 mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
793 decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
797 decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
800 dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
802 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
803 tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
809 static int twin_decode_frame(AVCodecContext * avctx, void *data,
810 int *got_frame_ptr, AVPacket *avpkt)
812 AVFrame *frame = data;
813 const uint8_t *buf = avpkt->data;
814 int buf_size = avpkt->size;
815 TwinContext *tctx = avctx->priv_data;
817 const ModeTab *mtab = tctx->mtab;
819 enum FrameType ftype;
820 int window_type, ret;
821 static const enum FrameType wtype_to_ftype_table[] = {
822 FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
823 FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
826 if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
827 av_log(avctx, AV_LOG_ERROR,
828 "Frame too small (%d bytes). Truncated file?\n", buf_size);
829 return AVERROR(EINVAL);
832 /* get output buffer */
833 if (tctx->discarded_packets >= 2) {
834 frame->nb_samples = mtab->size;
835 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
837 out = (float **)frame->extended_data;
840 init_get_bits(&gb, buf, buf_size * 8);
841 skip_bits(&gb, get_bits(&gb, 8));
842 window_type = get_bits(&gb, WINDOW_TYPE_BITS);
844 if (window_type > 8) {
845 av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
849 ftype = wtype_to_ftype_table[window_type];
851 read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
853 imdct_output(tctx, ftype, window_type, out);
855 FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
857 if (tctx->discarded_packets < 2) {
858 tctx->discarded_packets++;
869 * Init IMDCT and windowing tables
871 static av_cold int init_mdct_win(TwinContext *tctx)
874 const ModeTab *mtab = tctx->mtab;
875 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
876 int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
877 int channels = tctx->avctx->channels;
878 float norm = channels == 1 ? 2. : 1.;
880 for (i = 0; i < 3; i++) {
881 int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
882 if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
883 -sqrt(norm/bsize) / (1<<15))))
887 FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
888 mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
890 FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
891 2 * mtab->size * channels * sizeof(*tctx->spectrum),
893 FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
894 2 * mtab->size * channels * sizeof(*tctx->curr_frame),
896 FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
897 2 * mtab->size * channels * sizeof(*tctx->prev_frame),
900 for (i = 0; i < 3; i++) {
901 int m = 4*mtab->size/mtab->fmode[i].sub;
902 double freq = 2*M_PI/m;
903 FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
904 (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
906 for (j = 0; j <= m/8; j++)
907 tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
908 for (j = 1; j < m/8; j++)
909 tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
913 ff_init_ff_sine_windows(av_log2(size_m));
914 ff_init_ff_sine_windows(av_log2(size_s/2));
915 ff_init_ff_sine_windows(av_log2(mtab->size));
919 return AVERROR(ENOMEM);
923 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
924 * each line do a cyclic permutation, i.e.
925 * abcdefghijklm -> defghijklmabc
926 * where the amount to be shifted is evaluated depending on the column.
928 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
930 const uint8_t line_len[2], int length_div,
931 enum FrameType ftype)
936 for (i = 0; i < line_len[0]; i++) {
939 if (num_blocks == 1 ||
940 (ftype == FT_LONG && num_vect % num_blocks) ||
941 (ftype != FT_LONG && num_vect & 1 ) ||
944 } else if (ftype == FT_LONG) {
949 for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
950 tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
955 * Interpret the input data as in the following table:
966 * and transpose it, giving the output
967 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
969 static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
970 const uint8_t line_len[2], int length_div)
974 for (i = 0; i < num_vect; i++)
975 for (j = 0; j < line_len[i >= length_div]; j++)
976 out[cont++] = in[j*num_vect + i];
979 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
981 int block_size = size/n_blocks;
984 for (i = 0; i < size; i++)
985 out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
988 static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
991 const ModeTab *mtab = tctx->mtab;
993 int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
995 if (ftype == FT_PPC) {
996 size = tctx->avctx->channels;
997 block_size = mtab->ppc_shape_len;
999 size = tctx->avctx->channels * mtab->fmode[ftype].sub;
1000 block_size = mtab->size / mtab->fmode[ftype].sub;
1003 permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
1004 block_size, tctx->length[ftype],
1005 tctx->length_change[ftype], ftype);
1007 transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
1008 tctx->length[ftype], tctx->length_change[ftype]);
1010 linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
1014 static av_cold void init_bitstream_params(TwinContext *tctx)
1016 const ModeTab *mtab = tctx->mtab;
1017 int n_ch = tctx->avctx->channels;
1018 int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
1019 tctx->avctx->sample_rate;
1021 int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
1022 mtab->lsp_split*mtab->lsp_bit2);
1024 int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
1025 mtab->ppc_period_bit);
1027 int bsize_no_main_cb[3];
1030 enum FrameType frametype;
1032 for (i = 0; i < 3; i++)
1033 // +1 for history usage switch
1034 bse_bits[i] = n_ch *
1035 (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
1037 bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
1038 WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
1040 for (i = 0; i < 2; i++)
1041 bsize_no_main_cb[i] =
1042 lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
1043 mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
1045 // The remaining bits are all used for the main spectrum coefficients
1046 for (i = 0; i < 4; i++) {
1049 int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
1051 bit_size = n_ch * mtab->ppc_shape_bit;
1052 vect_size = n_ch * mtab->ppc_shape_len;
1054 bit_size = total_fr_bits - bsize_no_main_cb[i];
1055 vect_size = n_ch * mtab->size;
1058 tctx->n_div[i] = (bit_size + 13) / 14;
1060 rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1061 rounded_down = (bit_size )/tctx->n_div[i];
1062 num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
1063 num_rounded_up = tctx->n_div[i] - num_rounded_down;
1064 tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
1065 tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
1066 tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
1067 tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
1068 tctx->bits_main_spec_change[i] = num_rounded_up;
1070 rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1071 rounded_down = (vect_size )/tctx->n_div[i];
1072 num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
1073 num_rounded_up = tctx->n_div[i] - num_rounded_down;
1074 tctx->length[i][0] = rounded_up;
1075 tctx->length[i][1] = rounded_down;
1076 tctx->length_change[i] = num_rounded_up;
1079 for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
1080 construct_perm_table(tctx, frametype);
1083 static av_cold int twin_decode_close(AVCodecContext *avctx)
1085 TwinContext *tctx = avctx->priv_data;
1088 for (i = 0; i < 3; i++) {
1089 ff_mdct_end(&tctx->mdct_ctx[i]);
1090 av_free(tctx->cos_tabs[i]);
1094 av_free(tctx->curr_frame);
1095 av_free(tctx->spectrum);
1096 av_free(tctx->prev_frame);
1097 av_free(tctx->tmp_buf);
1102 static av_cold int twin_decode_init(AVCodecContext *avctx)
1105 TwinContext *tctx = avctx->priv_data;
1108 tctx->avctx = avctx;
1109 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1111 if (!avctx->extradata || avctx->extradata_size < 12) {
1112 av_log(avctx, AV_LOG_ERROR, "Missing or incomplete extradata\n");
1113 return AVERROR_INVALIDDATA;
1115 avctx->channels = AV_RB32(avctx->extradata ) + 1;
1116 avctx->bit_rate = AV_RB32(avctx->extradata + 4) * 1000;
1117 isampf = AV_RB32(avctx->extradata + 8);
1119 if (isampf < 8 || isampf > 44) {
1120 av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate\n");
1121 return AVERROR_INVALIDDATA;
1124 case 44: avctx->sample_rate = 44100; break;
1125 case 22: avctx->sample_rate = 22050; break;
1126 case 11: avctx->sample_rate = 11025; break;
1127 default: avctx->sample_rate = isampf * 1000; break;
1130 if (avctx->channels <= 0 || avctx->channels > CHANNELS_MAX) {
1131 av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
1135 avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO :
1136 AV_CH_LAYOUT_STEREO;
1138 ibps = avctx->bit_rate / (1000 * avctx->channels);
1141 av_log(avctx, AV_LOG_ERROR, "unsupported per channel bitrate %dkbps\n", ibps);
1142 return AVERROR_INVALIDDATA;
1145 switch ((isampf << 8) + ibps) {
1146 case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
1147 case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
1148 case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
1149 case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
1150 case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
1151 case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
1152 case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
1153 case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
1154 case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
1156 av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
1160 avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
1161 if ((ret = init_mdct_win(tctx))) {
1162 av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
1163 twin_decode_close(avctx);
1166 init_bitstream_params(tctx);
1168 memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
1173 AVCodec ff_twinvq_decoder = {
1175 .type = AVMEDIA_TYPE_AUDIO,
1176 .id = AV_CODEC_ID_TWINVQ,
1177 .priv_data_size = sizeof(TwinContext),
1178 .init = twin_decode_init,
1179 .close = twin_decode_close,
1180 .decode = twin_decode_frame,
1181 .capabilities = CODEC_CAP_DR1,
1182 .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
1183 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1184 AV_SAMPLE_FMT_NONE },