]> git.sesse.net Git - ffmpeg/blob - libavcodec/twinvqdec.c
0c1782ecbf619ac911dc83b8f61b96e7992d8c60
[ffmpeg] / libavcodec / twinvqdec.c
1 /*
2  * TwinVQ decoder
3  * Copyright (c) 2009 Vitor Sessak
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include <math.h>
23 #include <stdint.h>
24
25 #include "libavutil/channel_layout.h"
26 #include "avcodec.h"
27 #include "get_bits.h"
28 #include "internal.h"
29 #include "twinvq.h"
30 #include "metasound_data.h"
31 #include "twinvq_data.h"
32
33 static const TwinVQModeTab mode_08_08 = {
34     {
35         { 8, bark_tab_s08_64,  10, tab.fcb08s, 1, 5, tab.cb0808s0, tab.cb0808s1, 18 },
36         { 2, bark_tab_m08_256, 20, tab.fcb08m, 2, 5, tab.cb0808m0, tab.cb0808m1, 16 },
37         { 1, bark_tab_l08_512, 30, tab.fcb08l, 3, 6, tab.cb0808l0, tab.cb0808l1, 17 }
38     },
39     512, 12, ff_metasound_lsp8, 1, 5, 3, 3, tab.shape08, 8, 28, 20, 6, 40
40 };
41
42 static const TwinVQModeTab mode_11_08 = {
43     {
44         { 8, bark_tab_s11_64,  10, tab.fcb11s, 1, 5, tab.cb1108s0, tab.cb1108s1, 29 },
45         { 2, bark_tab_m11_256, 20, tab.fcb11m, 2, 5, tab.cb1108m0, tab.cb1108m1, 24 },
46         { 1, bark_tab_l11_512, 30, tab.fcb11l, 3, 6, tab.cb1108l0, tab.cb1108l1, 27 }
47     },
48     512, 16, ff_metasound_lsp11, 1, 6, 4, 3, tab.shape11, 9, 36, 30, 7, 90
49 };
50
51 static const TwinVQModeTab mode_11_10 = {
52     {
53         { 8, bark_tab_s11_64,  10, tab.fcb11s, 1, 5, tab.cb1110s0, tab.cb1110s1, 21 },
54         { 2, bark_tab_m11_256, 20, tab.fcb11m, 2, 5, tab.cb1110m0, tab.cb1110m1, 18 },
55         { 1, bark_tab_l11_512, 30, tab.fcb11l, 3, 6, tab.cb1110l0, tab.cb1110l1, 20 }
56     },
57     512, 16, ff_metasound_lsp11, 1, 6, 4, 3, tab.shape11, 9, 36, 30, 7, 90
58 };
59
60 static const TwinVQModeTab mode_16_16 = {
61     {
62         { 8, bark_tab_s16_128,  10, tab.fcb16s, 1, 5, tab.cb1616s0, tab.cb1616s1, 16 },
63         { 2, bark_tab_m16_512,  20, tab.fcb16m, 2, 5, tab.cb1616m0, tab.cb1616m1, 15 },
64         { 1, bark_tab_l16_1024, 30, tab.fcb16l, 3, 6, tab.cb1616l0, tab.cb1616l1, 16 }
65     },
66     1024, 16, ff_metasound_lsp16, 1, 6, 4, 3, tab.shape16, 9, 56, 60, 7, 180
67 };
68
69 static const TwinVQModeTab mode_22_20 = {
70     {
71         { 8, bark_tab_s22_128,  10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18 },
72         { 2, bark_tab_m22_512,  20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17 },
73         { 1, bark_tab_l22_1024, 32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18 }
74     },
75     1024, 16, ff_metasound_lsp22, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
76 };
77
78 static const TwinVQModeTab mode_22_24 = {
79     {
80         { 8, bark_tab_s22_128,  10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15 },
81         { 2, bark_tab_m22_512,  20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14 },
82         { 1, bark_tab_l22_1024, 32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15 }
83     },
84     1024, 16, ff_metasound_lsp22, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
85 };
86
87 static const TwinVQModeTab mode_22_32 = {
88     {
89         { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11 },
90         { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11 },
91         { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12 }
92     },
93     512, 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
94 };
95
96 static const TwinVQModeTab mode_44_40 = {
97     {
98         { 16, bark_tab_s44_128,  10, tab.fcb44s, 1, 6, tab.cb4440s0, tab.cb4440s1, 18 },
99         { 4,  bark_tab_m44_512,  20, tab.fcb44m, 2, 6, tab.cb4440m0, tab.cb4440m1, 17 },
100         { 1,  bark_tab_l44_2048, 40, tab.fcb44l, 4, 6, tab.cb4440l0, tab.cb4440l1, 17 }
101     },
102     2048, 20, ff_metasound_lsp44, 1, 6, 4, 4, tab.shape44, 9, 84, 54, 7, 432
103 };
104
105 static const TwinVQModeTab mode_44_48 = {
106     {
107         { 16, bark_tab_s44_128,  10, tab.fcb44s, 1, 6, tab.cb4448s0, tab.cb4448s1, 15 },
108         { 4,  bark_tab_m44_512,  20, tab.fcb44m, 2, 6, tab.cb4448m0, tab.cb4448m1, 14 },
109         { 1,  bark_tab_l44_2048, 40, tab.fcb44l, 4, 6, tab.cb4448l0, tab.cb4448l1, 14 }
110     },
111     2048, 20, ff_metasound_lsp44, 1, 6, 4, 4, tab.shape44, 9, 84, 54, 7, 432
112 };
113
114 /**
115  * Evaluate a * b / 400 rounded to the nearest integer. When, for example,
116  * a * b == 200 and the nearest integer is ill-defined, use a table to emulate
117  * the following broken float-based implementation used by the binary decoder:
118  *
119  * @code
120  * static int very_broken_op(int a, int b)
121  * {
122  *    static float test; // Ugh, force gcc to do the division first...
123  *
124  *    test = a / 400.0;
125  *    return b * test + 0.5;
126  * }
127  * @endcode
128  *
129  * @note if this function is replaced by just ROUNDED_DIV(a * b, 400.0), the
130  * stddev between the original file (before encoding with Yamaha encoder) and
131  * the decoded output increases, which leads one to believe that the encoder
132  * expects exactly this broken calculation.
133  */
134 static int very_broken_op(int a, int b)
135 {
136     int x = a * b + 200;
137     int size;
138     const uint8_t *rtab;
139
140     if (x % 400 || b % 5)
141         return x / 400;
142
143     x /= 400;
144
145     size = tabs[b / 5].size;
146     rtab = tabs[b / 5].tab;
147     return x - rtab[size * av_log2(2 * (x - 1) / size) + (x - 1) % size];
148 }
149
150 /**
151  * Sum to data a periodic peak of a given period, width and shape.
152  *
153  * @param period the period of the peak divided by 400.0
154  */
155 static void add_peak(int period, int width, const float *shape,
156                      float ppc_gain, float *speech, int len)
157 {
158     int i, j;
159
160     const float *shape_end = shape + len;
161     int center;
162
163     // First peak centered around zero
164     for (i = 0; i < width / 2; i++)
165         speech[i] += ppc_gain * *shape++;
166
167     for (i = 1; i < ROUNDED_DIV(len, width); i++) {
168         center = very_broken_op(period, i);
169         for (j = -width / 2; j < (width + 1) / 2; j++)
170             speech[j + center] += ppc_gain * *shape++;
171     }
172
173     // For the last block, be careful not to go beyond the end of the buffer
174     center = very_broken_op(period, i);
175     for (j = -width / 2; j < (width + 1) / 2 && shape < shape_end; j++)
176         speech[j + center] += ppc_gain * *shape++;
177 }
178
179 static void decode_ppc(TwinVQContext *tctx, int period_coef, int g_coef,
180                        const float *shape, float *speech)
181 {
182     const TwinVQModeTab *mtab = tctx->mtab;
183     int isampf = tctx->avctx->sample_rate /  1000;
184     int ibps   = tctx->avctx->bit_rate    / (1000 * tctx->avctx->channels);
185     int min_period   = ROUNDED_DIV(40 * 2 * mtab->size, isampf);
186     int max_period   = ROUNDED_DIV(40 * 2 * mtab->size * 6, isampf);
187     int period_range = max_period - min_period;
188     float pgain_step = 25000.0 / ((1 << mtab->pgain_bit) - 1);
189     float ppc_gain   = 1.0 / 8192 *
190                        twinvq_mulawinv(pgain_step * g_coef +
191                                            pgain_step / 2,
192                                        25000.0, TWINVQ_PGAIN_MU);
193
194     // This is actually the period multiplied by 400. It is just linearly coded
195     // between its maximum and minimum value.
196     int period = min_period +
197                  ROUNDED_DIV(period_coef * period_range,
198                              (1 << mtab->ppc_period_bit) - 1);
199     int width;
200
201     if (isampf == 22 && ibps == 32) {
202         // For some unknown reason, NTT decided to code this case differently...
203         width = ROUNDED_DIV((period + 800) * mtab->peak_per2wid,
204                             400 * mtab->size);
205     } else
206         width = period * mtab->peak_per2wid / (400 * mtab->size);
207
208     add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
209 }
210
211 static void dec_bark_env(TwinVQContext *tctx, const uint8_t *in, int use_hist,
212                          int ch, float *out, float gain,
213                          enum TwinVQFrameType ftype)
214 {
215     const TwinVQModeTab *mtab = tctx->mtab;
216     int i, j;
217     float *hist     = tctx->bark_hist[ftype][ch];
218     float val       = ((const float []) { 0.4, 0.35, 0.28 })[ftype];
219     int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
220     int fw_cb_len   = mtab->fmode[ftype].bark_env_size / bark_n_coef;
221     int idx         = 0;
222
223     for (i = 0; i < fw_cb_len; i++)
224         for (j = 0; j < bark_n_coef; j++, idx++) {
225             float tmp2 = mtab->fmode[ftype].bark_cb[fw_cb_len * in[j] + i] *
226                          (1.0 / 4096);
227             float st   = use_hist ? (1.0 - val) * tmp2 + val * hist[idx] + 1.0
228                                   : tmp2 + 1.0;
229
230             hist[idx] = tmp2;
231             if (st < -1.0)
232                 st = 1.0;
233
234             twinvq_memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
235             out += mtab->fmode[ftype].bark_tab[idx];
236         }
237 }
238
239 static void read_cb_data(TwinVQContext *tctx, GetBitContext *gb,
240                          uint8_t *dst, enum TwinVQFrameType ftype)
241 {
242     int i;
243
244     for (i = 0; i < tctx->n_div[ftype]; i++) {
245         int bs_second_part = (i >= tctx->bits_main_spec_change[ftype]);
246
247         *dst++ = get_bits(gb, tctx->bits_main_spec[0][ftype][bs_second_part]);
248         *dst++ = get_bits(gb, tctx->bits_main_spec[1][ftype][bs_second_part]);
249     }
250 }
251
252 static int twinvq_read_bitstream(AVCodecContext *avctx, TwinVQContext *tctx,
253                                  const uint8_t *buf, int buf_size)
254 {
255     TwinVQFrameData     *bits = &tctx->bits[0];
256     const TwinVQModeTab *mtab = tctx->mtab;
257     int channels              = tctx->avctx->channels;
258     int sub;
259     GetBitContext gb;
260     int i, j, k, ret;
261
262     if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
263         return ret;
264     skip_bits(&gb, get_bits(&gb, 8));
265
266     bits->window_type = get_bits(&gb, TWINVQ_WINDOW_TYPE_BITS);
267
268     if (bits->window_type > 8) {
269         av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
270         return AVERROR_INVALIDDATA;
271     }
272
273     bits->ftype = ff_twinvq_wtype_to_ftype_table[tctx->bits[0].window_type];
274
275     sub = mtab->fmode[bits->ftype].sub;
276
277     read_cb_data(tctx, &gb, bits->main_coeffs, bits->ftype);
278
279     for (i = 0; i < channels; i++)
280         for (j = 0; j < sub; j++)
281             for (k = 0; k < mtab->fmode[bits->ftype].bark_n_coef; k++)
282                 bits->bark1[i][j][k] =
283                     get_bits(&gb, mtab->fmode[bits->ftype].bark_n_bit);
284
285     for (i = 0; i < channels; i++)
286         for (j = 0; j < sub; j++)
287             bits->bark_use_hist[i][j] = get_bits1(&gb);
288
289     if (bits->ftype == TWINVQ_FT_LONG) {
290         for (i = 0; i < channels; i++)
291             bits->gain_bits[i] = get_bits(&gb, TWINVQ_GAIN_BITS);
292     } else {
293         for (i = 0; i < channels; i++) {
294             bits->gain_bits[i] = get_bits(&gb, TWINVQ_GAIN_BITS);
295             for (j = 0; j < sub; j++)
296                 bits->sub_gain_bits[i * sub + j] = get_bits(&gb,
297                                                        TWINVQ_SUB_GAIN_BITS);
298         }
299     }
300
301     for (i = 0; i < channels; i++) {
302         bits->lpc_hist_idx[i] = get_bits(&gb, mtab->lsp_bit0);
303         bits->lpc_idx1[i]     = get_bits(&gb, mtab->lsp_bit1);
304
305         for (j = 0; j < mtab->lsp_split; j++)
306             bits->lpc_idx2[i][j] = get_bits(&gb, mtab->lsp_bit2);
307     }
308
309     if (bits->ftype == TWINVQ_FT_LONG) {
310         read_cb_data(tctx, &gb, bits->ppc_coeffs, 3);
311         for (i = 0; i < channels; i++) {
312             bits->p_coef[i] = get_bits(&gb, mtab->ppc_period_bit);
313             bits->g_coef[i] = get_bits(&gb, mtab->pgain_bit);
314         }
315     }
316
317     return (get_bits_count(&gb) + 7) / 8;
318 }
319
320 static av_cold int twinvq_decode_init(AVCodecContext *avctx)
321 {
322     int isampf, ibps;
323     TwinVQContext *tctx = avctx->priv_data;
324
325     if (!avctx->extradata || avctx->extradata_size < 12) {
326         av_log(avctx, AV_LOG_ERROR, "Missing or incomplete extradata\n");
327         return AVERROR_INVALIDDATA;
328     }
329     avctx->channels = AV_RB32(avctx->extradata)     + 1;
330     avctx->bit_rate = AV_RB32(avctx->extradata + 4) * 1000;
331     isampf          = AV_RB32(avctx->extradata + 8);
332
333     if (isampf < 8 || isampf > 44) {
334         av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate\n");
335         return AVERROR_INVALIDDATA;
336     }
337     switch (isampf) {
338     case 44:
339         avctx->sample_rate = 44100;
340         break;
341     case 22:
342         avctx->sample_rate = 22050;
343         break;
344     case 11:
345         avctx->sample_rate = 11025;
346         break;
347     default:
348         avctx->sample_rate = isampf * 1000;
349         break;
350     }
351
352     if (avctx->channels <= 0 || avctx->channels > TWINVQ_CHANNELS_MAX) {
353         av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
354                avctx->channels);
355         return -1;
356     }
357     avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
358                                                  : AV_CH_LAYOUT_STEREO;
359
360     ibps = avctx->bit_rate / (1000 * avctx->channels);
361     if (ibps < 8 || ibps > 48) {
362         av_log(avctx, AV_LOG_ERROR, "Bad bitrate per channel value %d\n", ibps);
363         return AVERROR_INVALIDDATA;
364     }
365
366     switch ((isampf << 8) + ibps) {
367     case (8 << 8) + 8:
368         tctx->mtab = &mode_08_08;
369         break;
370     case (11 << 8) + 8:
371         tctx->mtab = &mode_11_08;
372         break;
373     case (11 << 8) + 10:
374         tctx->mtab = &mode_11_10;
375         break;
376     case (16 << 8) + 16:
377         tctx->mtab = &mode_16_16;
378         break;
379     case (22 << 8) + 20:
380         tctx->mtab = &mode_22_20;
381         break;
382     case (22 << 8) + 24:
383         tctx->mtab = &mode_22_24;
384         break;
385     case (22 << 8) + 32:
386         tctx->mtab = &mode_22_32;
387         break;
388     case (44 << 8) + 40:
389         tctx->mtab = &mode_44_40;
390         break;
391     case (44 << 8) + 48:
392         tctx->mtab = &mode_44_48;
393         break;
394     default:
395         av_log(avctx, AV_LOG_ERROR,
396                "This version does not support %d kHz - %d kbit/s/ch mode.\n",
397                isampf, isampf);
398         return -1;
399     }
400
401     tctx->codec          = TWINVQ_CODEC_VQF;
402     tctx->read_bitstream = twinvq_read_bitstream;
403     tctx->dec_bark_env   = dec_bark_env;
404     tctx->decode_ppc     = decode_ppc;
405     tctx->frame_size     = avctx->bit_rate * tctx->mtab->size
406                                            / avctx->sample_rate + 8;
407     tctx->is_6kbps       = 0;
408     if (avctx->block_align && avctx->block_align * 8LL / tctx->frame_size > 1) {
409         av_log(avctx, AV_LOG_ERROR,
410                "VQF TwinVQ should have only one frame per packet\n");
411         return AVERROR_INVALIDDATA;
412     }
413
414     return ff_twinvq_decode_init(avctx);
415 }
416
417 AVCodec ff_twinvq_decoder = {
418     .name           = "twinvq",
419     .long_name      = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
420     .type           = AVMEDIA_TYPE_AUDIO,
421     .id             = AV_CODEC_ID_TWINVQ,
422     .priv_data_size = sizeof(TwinVQContext),
423     .init           = twinvq_decode_init,
424     .close          = ff_twinvq_decode_close,
425     .decode         = ff_twinvq_decode_frame,
426     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
427     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
428                                                       AV_SAMPLE_FMT_NONE },
429 };