]> git.sesse.net Git - ffmpeg/blob - libavcodec/utvideodec.c
avcodec: Constify AVCodecs
[ffmpeg] / libavcodec / utvideodec.c
1 /*
2  * Ut Video decoder
3  * Copyright (c) 2011 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * Ut Video decoder
25  */
26
27 #include <inttypes.h>
28 #include <stdlib.h>
29
30 #define CACHED_BITSTREAM_READER !ARCH_X86_32
31 #define UNCHECKED_BITSTREAM_READER 1
32
33 #include "libavutil/intreadwrite.h"
34 #include "libavutil/pixdesc.h"
35 #include "avcodec.h"
36 #include "bswapdsp.h"
37 #include "bytestream.h"
38 #include "get_bits.h"
39 #include "internal.h"
40 #include "thread.h"
41 #include "utvideo.h"
42
43 typedef struct HuffEntry {
44     uint8_t len;
45     uint16_t sym;
46 } HuffEntry;
47
48 static int build_huff(UtvideoContext *c, const uint8_t *src, VLC *vlc,
49                       int *fsym, unsigned nb_elems)
50 {
51     int i;
52     HuffEntry he[1024];
53     uint8_t bits[1024];
54     uint16_t codes_count[33] = { 0 };
55
56     *fsym = -1;
57     for (i = 0; i < nb_elems; i++) {
58         if (src[i] == 0) {
59             *fsym = i;
60             return 0;
61         } else if (src[i] == 255) {
62             bits[i] = 0;
63         } else if (src[i] <= 32) {
64             bits[i] = src[i];
65         } else
66             return AVERROR_INVALIDDATA;
67
68         codes_count[bits[i]]++;
69     }
70     if (codes_count[0] == nb_elems)
71         return AVERROR_INVALIDDATA;
72
73     /* For Ut Video, longer codes are to the left of the tree and
74      * for codes with the same length the symbol is descending from
75      * left to right. So after the next loop --codes_count[i] will
76      * be the index of the first (lowest) symbol of length i when
77      * indexed by the position in the tree with left nodes being first. */
78     for (int i = 31; i >= 0; i--)
79         codes_count[i] += codes_count[i + 1];
80
81     for (unsigned i = 0; i < nb_elems; i++)
82         he[--codes_count[bits[i]]] = (HuffEntry) { bits[i], i };
83
84 #define VLC_BITS 11
85     return ff_init_vlc_from_lengths(vlc, VLC_BITS, codes_count[0],
86                                     &he[0].len, sizeof(*he),
87                                     &he[0].sym, sizeof(*he), 2, 0, 0, c->avctx);
88 }
89
90 static int decode_plane10(UtvideoContext *c, int plane_no,
91                           uint16_t *dst, ptrdiff_t stride,
92                           int width, int height,
93                           const uint8_t *src, const uint8_t *huff,
94                           int use_pred)
95 {
96     int i, j, slice, pix, ret;
97     int sstart, send;
98     VLC vlc;
99     GetBitContext gb;
100     int prev, fsym;
101
102     if ((ret = build_huff(c, huff, &vlc, &fsym, 1024)) < 0) {
103         av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
104         return ret;
105     }
106     if (fsym >= 0) { // build_huff reported a symbol to fill slices with
107         send = 0;
108         for (slice = 0; slice < c->slices; slice++) {
109             uint16_t *dest;
110
111             sstart = send;
112             send   = (height * (slice + 1) / c->slices);
113             dest   = dst + sstart * stride;
114
115             prev = 0x200;
116             for (j = sstart; j < send; j++) {
117                 for (i = 0; i < width; i++) {
118                     pix = fsym;
119                     if (use_pred) {
120                         prev += pix;
121                         prev &= 0x3FF;
122                         pix   = prev;
123                     }
124                     dest[i] = pix;
125                 }
126                 dest += stride;
127             }
128         }
129         return 0;
130     }
131
132     send = 0;
133     for (slice = 0; slice < c->slices; slice++) {
134         uint16_t *dest;
135         int slice_data_start, slice_data_end, slice_size;
136
137         sstart = send;
138         send   = (height * (slice + 1) / c->slices);
139         dest   = dst + sstart * stride;
140
141         // slice offset and size validation was done earlier
142         slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
143         slice_data_end   = AV_RL32(src + slice * 4);
144         slice_size       = slice_data_end - slice_data_start;
145
146         if (!slice_size) {
147             av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
148                    "yet a slice has a length of zero.\n");
149             goto fail;
150         }
151
152         memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
153         c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
154                           (uint32_t *)(src + slice_data_start + c->slices * 4),
155                           (slice_data_end - slice_data_start + 3) >> 2);
156         init_get_bits(&gb, c->slice_bits, slice_size * 8);
157
158         prev = 0x200;
159         for (j = sstart; j < send; j++) {
160             for (i = 0; i < width; i++) {
161                 pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
162                 if (pix < 0) {
163                     av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
164                     goto fail;
165                 }
166                 if (use_pred) {
167                     prev += pix;
168                     prev &= 0x3FF;
169                     pix   = prev;
170                 }
171                 dest[i] = pix;
172             }
173             dest += stride;
174             if (get_bits_left(&gb) < 0) {
175                 av_log(c->avctx, AV_LOG_ERROR,
176                         "Slice decoding ran out of bits\n");
177                 goto fail;
178             }
179         }
180         if (get_bits_left(&gb) > 32)
181             av_log(c->avctx, AV_LOG_WARNING,
182                    "%d bits left after decoding slice\n", get_bits_left(&gb));
183     }
184
185     ff_free_vlc(&vlc);
186
187     return 0;
188 fail:
189     ff_free_vlc(&vlc);
190     return AVERROR_INVALIDDATA;
191 }
192
193 static int compute_cmask(int plane_no, int interlaced, enum AVPixelFormat pix_fmt)
194 {
195     const int is_luma = (pix_fmt == AV_PIX_FMT_YUV420P) && !plane_no;
196
197     if (interlaced)
198         return ~(1 + 2 * is_luma);
199
200     return ~is_luma;
201 }
202
203 static int decode_plane(UtvideoContext *c, int plane_no,
204                         uint8_t *dst, ptrdiff_t stride,
205                         int width, int height,
206                         const uint8_t *src, int use_pred)
207 {
208     int i, j, slice, pix;
209     int sstart, send;
210     VLC vlc;
211     GetBitContext gb;
212     int ret, prev, fsym;
213     const int cmask = compute_cmask(plane_no, c->interlaced, c->avctx->pix_fmt);
214
215     if (c->pack) {
216         send = 0;
217         for (slice = 0; slice < c->slices; slice++) {
218             GetBitContext cbit, pbit;
219             uint8_t *dest, *p;
220
221             ret = init_get_bits8_le(&cbit, c->control_stream[plane_no][slice], c->control_stream_size[plane_no][slice]);
222             if (ret < 0)
223                 return ret;
224
225             ret = init_get_bits8_le(&pbit, c->packed_stream[plane_no][slice], c->packed_stream_size[plane_no][slice]);
226             if (ret < 0)
227                 return ret;
228
229             sstart = send;
230             send   = (height * (slice + 1) / c->slices) & cmask;
231             dest   = dst + sstart * stride;
232
233             if (3 * ((dst + send * stride - dest + 7)/8) > get_bits_left(&cbit))
234                 return AVERROR_INVALIDDATA;
235
236             for (p = dest; p < dst + send * stride; p += 8) {
237                 int bits = get_bits_le(&cbit, 3);
238
239                 if (bits == 0) {
240                     *(uint64_t *) p = 0;
241                 } else {
242                     uint32_t sub = 0x80 >> (8 - (bits + 1)), add;
243                     int k;
244
245                     if ((bits + 1) * 8 > get_bits_left(&pbit))
246                         return AVERROR_INVALIDDATA;
247
248                     for (k = 0; k < 8; k++) {
249
250                         p[k] = get_bits_le(&pbit, bits + 1);
251                         add = (~p[k] & sub) << (8 - bits);
252                         p[k] -= sub;
253                         p[k] += add;
254                     }
255                 }
256             }
257         }
258
259         return 0;
260     }
261
262     if (build_huff(c, src, &vlc, &fsym, 256)) {
263         av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
264         return AVERROR_INVALIDDATA;
265     }
266     if (fsym >= 0) { // build_huff reported a symbol to fill slices with
267         send = 0;
268         for (slice = 0; slice < c->slices; slice++) {
269             uint8_t *dest;
270
271             sstart = send;
272             send   = (height * (slice + 1) / c->slices) & cmask;
273             dest   = dst + sstart * stride;
274
275             prev = 0x80;
276             for (j = sstart; j < send; j++) {
277                 for (i = 0; i < width; i++) {
278                     pix = fsym;
279                     if (use_pred) {
280                         prev += (unsigned)pix;
281                         pix   = prev;
282                     }
283                     dest[i] = pix;
284                 }
285                 dest += stride;
286             }
287         }
288         return 0;
289     }
290
291     src      += 256;
292
293     send = 0;
294     for (slice = 0; slice < c->slices; slice++) {
295         uint8_t *dest;
296         int slice_data_start, slice_data_end, slice_size;
297
298         sstart = send;
299         send   = (height * (slice + 1) / c->slices) & cmask;
300         dest   = dst + sstart * stride;
301
302         // slice offset and size validation was done earlier
303         slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
304         slice_data_end   = AV_RL32(src + slice * 4);
305         slice_size       = slice_data_end - slice_data_start;
306
307         if (!slice_size) {
308             av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
309                    "yet a slice has a length of zero.\n");
310             goto fail;
311         }
312
313         memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
314         c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
315                           (uint32_t *)(src + slice_data_start + c->slices * 4),
316                           (slice_data_end - slice_data_start + 3) >> 2);
317         init_get_bits(&gb, c->slice_bits, slice_size * 8);
318
319         prev = 0x80;
320         for (j = sstart; j < send; j++) {
321             for (i = 0; i < width; i++) {
322                 pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
323                 if (pix < 0) {
324                     av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
325                     goto fail;
326                 }
327                 if (use_pred) {
328                     prev += pix;
329                     pix   = prev;
330                 }
331                 dest[i] = pix;
332             }
333             if (get_bits_left(&gb) < 0) {
334                 av_log(c->avctx, AV_LOG_ERROR,
335                         "Slice decoding ran out of bits\n");
336                 goto fail;
337             }
338             dest += stride;
339         }
340         if (get_bits_left(&gb) > 32)
341             av_log(c->avctx, AV_LOG_WARNING,
342                    "%d bits left after decoding slice\n", get_bits_left(&gb));
343     }
344
345     ff_free_vlc(&vlc);
346
347     return 0;
348 fail:
349     ff_free_vlc(&vlc);
350     return AVERROR_INVALIDDATA;
351 }
352
353 #undef A
354 #undef B
355 #undef C
356
357 static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
358                                   int width, int height, int slices, int rmode)
359 {
360     int i, j, slice;
361     int A, B, C;
362     uint8_t *bsrc;
363     int slice_start, slice_height;
364     const int cmask = ~rmode;
365
366     for (slice = 0; slice < slices; slice++) {
367         slice_start  = ((slice * height) / slices) & cmask;
368         slice_height = ((((slice + 1) * height) / slices) & cmask) -
369                        slice_start;
370
371         if (!slice_height)
372             continue;
373         bsrc = src + slice_start * stride;
374
375         // first line - left neighbour prediction
376         bsrc[0] += 0x80;
377         c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
378         bsrc += stride;
379         if (slice_height <= 1)
380             continue;
381         // second line - first element has top prediction, the rest uses median
382         C        = bsrc[-stride];
383         bsrc[0] += C;
384         A        = bsrc[0];
385         for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
386             B        = bsrc[i - stride];
387             bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
388             C        = B;
389             A        = bsrc[i];
390         }
391         if (width > 16)
392             c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride + 16,
393                                         bsrc + 16, width - 16, &A, &B);
394
395         bsrc += stride;
396         // the rest of lines use continuous median prediction
397         for (j = 2; j < slice_height; j++) {
398             c->llviddsp.add_median_pred(bsrc, bsrc - stride,
399                                             bsrc, width, &A, &B);
400             bsrc += stride;
401         }
402     }
403 }
404
405 /* UtVideo interlaced mode treats every two lines as a single one,
406  * so restoring function should take care of possible padding between
407  * two parts of the same "line".
408  */
409 static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
410                                      int width, int height, int slices, int rmode)
411 {
412     int i, j, slice;
413     int A, B, C;
414     uint8_t *bsrc;
415     int slice_start, slice_height;
416     const int cmask   = ~(rmode ? 3 : 1);
417     const ptrdiff_t stride2 = stride << 1;
418
419     for (slice = 0; slice < slices; slice++) {
420         slice_start    = ((slice * height) / slices) & cmask;
421         slice_height   = ((((slice + 1) * height) / slices) & cmask) -
422                          slice_start;
423         slice_height >>= 1;
424         if (!slice_height)
425             continue;
426
427         bsrc = src + slice_start * stride;
428
429         // first line - left neighbour prediction
430         bsrc[0] += 0x80;
431         A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
432         c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
433         bsrc += stride2;
434         if (slice_height <= 1)
435             continue;
436         // second line - first element has top prediction, the rest uses median
437         C        = bsrc[-stride2];
438         bsrc[0] += C;
439         A        = bsrc[0];
440         for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
441             B        = bsrc[i - stride2];
442             bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
443             C        = B;
444             A        = bsrc[i];
445         }
446         if (width > 16)
447             c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride2 + 16,
448                                         bsrc + 16, width - 16, &A, &B);
449
450         c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
451                                         bsrc + stride, width, &A, &B);
452         bsrc += stride2;
453         // the rest of lines use continuous median prediction
454         for (j = 2; j < slice_height; j++) {
455             c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
456                                             bsrc, width, &A, &B);
457             c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
458                                             bsrc + stride, width, &A, &B);
459             bsrc += stride2;
460         }
461     }
462 }
463
464 static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
465                                     int width, int height, int slices, int rmode)
466 {
467     int i, j, slice;
468     int A, B, C;
469     uint8_t *bsrc;
470     int slice_start, slice_height;
471     const int cmask = ~rmode;
472     int min_width = FFMIN(width, 32);
473
474     for (slice = 0; slice < slices; slice++) {
475         slice_start  = ((slice * height) / slices) & cmask;
476         slice_height = ((((slice + 1) * height) / slices) & cmask) -
477                        slice_start;
478
479         if (!slice_height)
480             continue;
481         bsrc = src + slice_start * stride;
482
483         // first line - left neighbour prediction
484         bsrc[0] += 0x80;
485         c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
486         bsrc += stride;
487         if (slice_height <= 1)
488             continue;
489         for (j = 1; j < slice_height; j++) {
490             // second line - first element has top prediction, the rest uses gradient
491             bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
492             for (i = 1; i < min_width; i++) { /* dsp need align 32 */
493                 A = bsrc[i - stride];
494                 B = bsrc[i - (stride + 1)];
495                 C = bsrc[i - 1];
496                 bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
497             }
498             if (width > 32)
499                 c->llviddsp.add_gradient_pred(bsrc + 32, stride, width - 32);
500             bsrc += stride;
501         }
502     }
503 }
504
505 static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
506                                       int width, int height, int slices, int rmode)
507 {
508     int i, j, slice;
509     int A, B, C;
510     uint8_t *bsrc;
511     int slice_start, slice_height;
512     const int cmask   = ~(rmode ? 3 : 1);
513     const ptrdiff_t stride2 = stride << 1;
514     int min_width = FFMIN(width, 32);
515
516     for (slice = 0; slice < slices; slice++) {
517         slice_start    = ((slice * height) / slices) & cmask;
518         slice_height   = ((((slice + 1) * height) / slices) & cmask) -
519                          slice_start;
520         slice_height >>= 1;
521         if (!slice_height)
522             continue;
523
524         bsrc = src + slice_start * stride;
525
526         // first line - left neighbour prediction
527         bsrc[0] += 0x80;
528         A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
529         c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
530         bsrc += stride2;
531         if (slice_height <= 1)
532             continue;
533         for (j = 1; j < slice_height; j++) {
534             // second line - first element has top prediction, the rest uses gradient
535             bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
536             for (i = 1; i < min_width; i++) { /* dsp need align 32 */
537                 A = bsrc[i - stride2];
538                 B = bsrc[i - (stride2 + 1)];
539                 C = bsrc[i - 1];
540                 bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
541             }
542             if (width > 32)
543                 c->llviddsp.add_gradient_pred(bsrc + 32, stride2, width - 32);
544
545             A = bsrc[-stride];
546             B = bsrc[-(1 + stride + stride - width)];
547             C = bsrc[width - 1];
548             bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
549             for (i = 1; i < width; i++) {
550                 A = bsrc[i - stride];
551                 B = bsrc[i - (1 + stride)];
552                 C = bsrc[i - 1 + stride];
553                 bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
554             }
555             bsrc += stride2;
556         }
557     }
558 }
559
560 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
561                         AVPacket *avpkt)
562 {
563     const uint8_t *buf = avpkt->data;
564     int buf_size = avpkt->size;
565     UtvideoContext *c = avctx->priv_data;
566     int i, j;
567     const uint8_t *plane_start[5];
568     int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
569     int ret;
570     GetByteContext gb;
571     ThreadFrame frame = { .f = data };
572
573     if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
574         return ret;
575
576     /* parse plane structure to get frame flags and validate slice offsets */
577     bytestream2_init(&gb, buf, buf_size);
578
579     if (c->pack) {
580         const uint8_t *packed_stream;
581         const uint8_t *control_stream;
582         GetByteContext pb;
583         uint32_t nb_cbs;
584         int left;
585
586         c->frame_info = PRED_GRADIENT << 8;
587
588         if (bytestream2_get_byte(&gb) != 1)
589             return AVERROR_INVALIDDATA;
590         bytestream2_skip(&gb, 3);
591         c->offset = bytestream2_get_le32(&gb);
592
593         if (buf_size <= c->offset + 8LL)
594             return AVERROR_INVALIDDATA;
595
596         bytestream2_init(&pb, buf + 8 + c->offset, buf_size - 8 - c->offset);
597
598         nb_cbs = bytestream2_get_le32(&pb);
599         if (nb_cbs > c->offset)
600             return AVERROR_INVALIDDATA;
601
602         packed_stream = buf + 8;
603         control_stream = packed_stream + (c->offset - nb_cbs);
604         left = control_stream - packed_stream;
605
606         for (i = 0; i < c->planes; i++) {
607             for (j = 0; j < c->slices; j++) {
608                 c->packed_stream[i][j] = packed_stream;
609                 c->packed_stream_size[i][j] = bytestream2_get_le32(&pb);
610                 if (c->packed_stream_size[i][j] > left)
611                     return AVERROR_INVALIDDATA;
612                 left -= c->packed_stream_size[i][j];
613                 packed_stream += c->packed_stream_size[i][j];
614             }
615         }
616
617         left = buf + buf_size - control_stream;
618
619         for (i = 0; i < c->planes; i++) {
620             for (j = 0; j < c->slices; j++) {
621                 c->control_stream[i][j] = control_stream;
622                 c->control_stream_size[i][j] = bytestream2_get_le32(&pb);
623                 if (c->control_stream_size[i][j] > left)
624                     return AVERROR_INVALIDDATA;
625                 left -= c->control_stream_size[i][j];
626                 control_stream += c->control_stream_size[i][j];
627             }
628         }
629     } else if (c->pro) {
630         if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
631             av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
632             return AVERROR_INVALIDDATA;
633         }
634         c->frame_info = bytestream2_get_le32u(&gb);
635         c->slices = ((c->frame_info >> 16) & 0xff) + 1;
636         for (i = 0; i < c->planes; i++) {
637             plane_start[i] = gb.buffer;
638             if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
639                 av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
640                 return AVERROR_INVALIDDATA;
641             }
642             slice_start = 0;
643             slice_end   = 0;
644             for (j = 0; j < c->slices; j++) {
645                 slice_end   = bytestream2_get_le32u(&gb);
646                 if (slice_end < 0 || slice_end < slice_start ||
647                     bytestream2_get_bytes_left(&gb) < slice_end + 1024LL) {
648                     av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
649                     return AVERROR_INVALIDDATA;
650                 }
651                 slice_size  = slice_end - slice_start;
652                 slice_start = slice_end;
653                 max_slice_size = FFMAX(max_slice_size, slice_size);
654             }
655             plane_size = slice_end;
656             bytestream2_skipu(&gb, plane_size);
657             bytestream2_skipu(&gb, 1024);
658         }
659         plane_start[c->planes] = gb.buffer;
660     } else {
661         for (i = 0; i < c->planes; i++) {
662             plane_start[i] = gb.buffer;
663             if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
664                 av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
665                 return AVERROR_INVALIDDATA;
666             }
667             bytestream2_skipu(&gb, 256);
668             slice_start = 0;
669             slice_end   = 0;
670             for (j = 0; j < c->slices; j++) {
671                 slice_end   = bytestream2_get_le32u(&gb);
672                 if (slice_end < 0 || slice_end < slice_start ||
673                     bytestream2_get_bytes_left(&gb) < slice_end) {
674                     av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
675                     return AVERROR_INVALIDDATA;
676                 }
677                 slice_size  = slice_end - slice_start;
678                 slice_start = slice_end;
679                 max_slice_size = FFMAX(max_slice_size, slice_size);
680             }
681             plane_size = slice_end;
682             bytestream2_skipu(&gb, plane_size);
683         }
684         plane_start[c->planes] = gb.buffer;
685         if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
686             av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
687             return AVERROR_INVALIDDATA;
688         }
689         c->frame_info = bytestream2_get_le32u(&gb);
690     }
691     av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
692            c->frame_info);
693
694     c->frame_pred = (c->frame_info >> 8) & 3;
695
696     max_slice_size += 4*avctx->width;
697
698     if (!c->pack) {
699         av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
700                        max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
701
702         if (!c->slice_bits) {
703             av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
704             return AVERROR(ENOMEM);
705         }
706     }
707
708     switch (c->avctx->pix_fmt) {
709     case AV_PIX_FMT_GBRP:
710     case AV_PIX_FMT_GBRAP:
711         for (i = 0; i < c->planes; i++) {
712             ret = decode_plane(c, i, frame.f->data[i],
713                                frame.f->linesize[i], avctx->width,
714                                avctx->height, plane_start[i],
715                                c->frame_pred == PRED_LEFT);
716             if (ret)
717                 return ret;
718             if (c->frame_pred == PRED_MEDIAN) {
719                 if (!c->interlaced) {
720                     restore_median_planar(c, frame.f->data[i],
721                                           frame.f->linesize[i], avctx->width,
722                                           avctx->height, c->slices, 0);
723                 } else {
724                     restore_median_planar_il(c, frame.f->data[i],
725                                              frame.f->linesize[i],
726                                              avctx->width, avctx->height, c->slices,
727                                              0);
728                 }
729             } else if (c->frame_pred == PRED_GRADIENT) {
730                 if (!c->interlaced) {
731                     restore_gradient_planar(c, frame.f->data[i],
732                                             frame.f->linesize[i], avctx->width,
733                                             avctx->height, c->slices, 0);
734                 } else {
735                     restore_gradient_planar_il(c, frame.f->data[i],
736                                                frame.f->linesize[i],
737                                                avctx->width, avctx->height, c->slices,
738                                                0);
739                 }
740             }
741         }
742         c->utdsp.restore_rgb_planes(frame.f->data[2], frame.f->data[0], frame.f->data[1],
743                                     frame.f->linesize[2], frame.f->linesize[0], frame.f->linesize[1],
744                                     avctx->width, avctx->height);
745         break;
746     case AV_PIX_FMT_GBRAP10:
747     case AV_PIX_FMT_GBRP10:
748         for (i = 0; i < c->planes; i++) {
749             ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i],
750                                  frame.f->linesize[i] / 2, avctx->width,
751                                  avctx->height, plane_start[i],
752                                  plane_start[i + 1] - 1024,
753                                  c->frame_pred == PRED_LEFT);
754             if (ret)
755                 return ret;
756         }
757         c->utdsp.restore_rgb_planes10((uint16_t *)frame.f->data[2], (uint16_t *)frame.f->data[0], (uint16_t *)frame.f->data[1],
758                                       frame.f->linesize[2] / 2, frame.f->linesize[0] / 2, frame.f->linesize[1] / 2,
759                                       avctx->width, avctx->height);
760         break;
761     case AV_PIX_FMT_YUV420P:
762         for (i = 0; i < 3; i++) {
763             ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
764                                avctx->width >> !!i, avctx->height >> !!i,
765                                plane_start[i], c->frame_pred == PRED_LEFT);
766             if (ret)
767                 return ret;
768             if (c->frame_pred == PRED_MEDIAN) {
769                 if (!c->interlaced) {
770                     restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
771                                           avctx->width >> !!i, avctx->height >> !!i,
772                                           c->slices, !i);
773                 } else {
774                     restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
775                                              avctx->width  >> !!i,
776                                              avctx->height >> !!i,
777                                              c->slices, !i);
778                 }
779             } else if (c->frame_pred == PRED_GRADIENT) {
780                 if (!c->interlaced) {
781                     restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
782                                             avctx->width >> !!i, avctx->height >> !!i,
783                                             c->slices, !i);
784                 } else {
785                     restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
786                                                avctx->width  >> !!i,
787                                                avctx->height >> !!i,
788                                                c->slices, !i);
789                 }
790             }
791         }
792         break;
793     case AV_PIX_FMT_YUV422P:
794         for (i = 0; i < 3; i++) {
795             ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
796                                avctx->width >> !!i, avctx->height,
797                                plane_start[i], c->frame_pred == PRED_LEFT);
798             if (ret)
799                 return ret;
800             if (c->frame_pred == PRED_MEDIAN) {
801                 if (!c->interlaced) {
802                     restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
803                                           avctx->width >> !!i, avctx->height,
804                                           c->slices, 0);
805                 } else {
806                     restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
807                                              avctx->width >> !!i, avctx->height,
808                                              c->slices, 0);
809                 }
810             } else if (c->frame_pred == PRED_GRADIENT) {
811                 if (!c->interlaced) {
812                     restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
813                                             avctx->width >> !!i, avctx->height,
814                                             c->slices, 0);
815                 } else {
816                     restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
817                                                avctx->width  >> !!i, avctx->height,
818                                                c->slices, 0);
819                 }
820             }
821         }
822         break;
823     case AV_PIX_FMT_YUV444P:
824         for (i = 0; i < 3; i++) {
825             ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
826                                avctx->width, avctx->height,
827                                plane_start[i], c->frame_pred == PRED_LEFT);
828             if (ret)
829                 return ret;
830             if (c->frame_pred == PRED_MEDIAN) {
831                 if (!c->interlaced) {
832                     restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
833                                           avctx->width, avctx->height,
834                                           c->slices, 0);
835                 } else {
836                     restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
837                                              avctx->width, avctx->height,
838                                              c->slices, 0);
839                 }
840             } else if (c->frame_pred == PRED_GRADIENT) {
841                 if (!c->interlaced) {
842                     restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
843                                             avctx->width, avctx->height,
844                                             c->slices, 0);
845                 } else {
846                     restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
847                                                avctx->width, avctx->height,
848                                                c->slices, 0);
849                 }
850             }
851         }
852         break;
853     case AV_PIX_FMT_YUV420P10:
854         for (i = 0; i < 3; i++) {
855             ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2,
856                                  avctx->width >> !!i, avctx->height >> !!i,
857                                  plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
858             if (ret)
859                 return ret;
860         }
861         break;
862     case AV_PIX_FMT_YUV422P10:
863         for (i = 0; i < 3; i++) {
864             ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2,
865                                  avctx->width >> !!i, avctx->height,
866                                  plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
867             if (ret)
868                 return ret;
869         }
870         break;
871     }
872
873     frame.f->key_frame = 1;
874     frame.f->pict_type = AV_PICTURE_TYPE_I;
875     frame.f->interlaced_frame = !!c->interlaced;
876
877     *got_frame = 1;
878
879     /* always report that the buffer was completely consumed */
880     return buf_size;
881 }
882
883 static av_cold int decode_init(AVCodecContext *avctx)
884 {
885     UtvideoContext * const c = avctx->priv_data;
886     int h_shift, v_shift;
887
888     c->avctx = avctx;
889
890     ff_utvideodsp_init(&c->utdsp);
891     ff_bswapdsp_init(&c->bdsp);
892     ff_llviddsp_init(&c->llviddsp);
893
894     c->slice_bits_size = 0;
895
896     switch (avctx->codec_tag) {
897     case MKTAG('U', 'L', 'R', 'G'):
898         c->planes      = 3;
899         avctx->pix_fmt = AV_PIX_FMT_GBRP;
900         break;
901     case MKTAG('U', 'L', 'R', 'A'):
902         c->planes      = 4;
903         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
904         break;
905     case MKTAG('U', 'L', 'Y', '0'):
906         c->planes      = 3;
907         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
908         avctx->colorspace = AVCOL_SPC_BT470BG;
909         break;
910     case MKTAG('U', 'L', 'Y', '2'):
911         c->planes      = 3;
912         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
913         avctx->colorspace = AVCOL_SPC_BT470BG;
914         break;
915     case MKTAG('U', 'L', 'Y', '4'):
916         c->planes      = 3;
917         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
918         avctx->colorspace = AVCOL_SPC_BT470BG;
919         break;
920     case MKTAG('U', 'Q', 'Y', '0'):
921         c->planes      = 3;
922         c->pro         = 1;
923         avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
924         break;
925     case MKTAG('U', 'Q', 'Y', '2'):
926         c->planes      = 3;
927         c->pro         = 1;
928         avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
929         break;
930     case MKTAG('U', 'Q', 'R', 'G'):
931         c->planes      = 3;
932         c->pro         = 1;
933         avctx->pix_fmt = AV_PIX_FMT_GBRP10;
934         break;
935     case MKTAG('U', 'Q', 'R', 'A'):
936         c->planes      = 4;
937         c->pro         = 1;
938         avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
939         break;
940     case MKTAG('U', 'L', 'H', '0'):
941         c->planes      = 3;
942         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
943         avctx->colorspace = AVCOL_SPC_BT709;
944         break;
945     case MKTAG('U', 'L', 'H', '2'):
946         c->planes      = 3;
947         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
948         avctx->colorspace = AVCOL_SPC_BT709;
949         break;
950     case MKTAG('U', 'L', 'H', '4'):
951         c->planes      = 3;
952         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
953         avctx->colorspace = AVCOL_SPC_BT709;
954         break;
955     case MKTAG('U', 'M', 'Y', '2'):
956         c->planes      = 3;
957         c->pack        = 1;
958         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
959         avctx->colorspace = AVCOL_SPC_BT470BG;
960         break;
961     case MKTAG('U', 'M', 'H', '2'):
962         c->planes      = 3;
963         c->pack        = 1;
964         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
965         avctx->colorspace = AVCOL_SPC_BT709;
966         break;
967     case MKTAG('U', 'M', 'Y', '4'):
968         c->planes      = 3;
969         c->pack        = 1;
970         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
971         avctx->colorspace = AVCOL_SPC_BT470BG;
972         break;
973     case MKTAG('U', 'M', 'H', '4'):
974         c->planes      = 3;
975         c->pack        = 1;
976         avctx->pix_fmt = AV_PIX_FMT_YUV444P;
977         avctx->colorspace = AVCOL_SPC_BT709;
978         break;
979     case MKTAG('U', 'M', 'R', 'G'):
980         c->planes      = 3;
981         c->pack        = 1;
982         avctx->pix_fmt = AV_PIX_FMT_GBRP;
983         break;
984     case MKTAG('U', 'M', 'R', 'A'):
985         c->planes      = 4;
986         c->pack        = 1;
987         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
988         break;
989     default:
990         av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
991                avctx->codec_tag);
992         return AVERROR_INVALIDDATA;
993     }
994
995     av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &h_shift, &v_shift);
996     if ((avctx->width  & ((1<<h_shift)-1)) ||
997         (avctx->height & ((1<<v_shift)-1))) {
998         avpriv_request_sample(avctx, "Odd dimensions");
999         return AVERROR_PATCHWELCOME;
1000     }
1001
1002     if (c->pack && avctx->extradata_size >= 16) {
1003         av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1004                avctx->extradata[3], avctx->extradata[2],
1005                avctx->extradata[1], avctx->extradata[0]);
1006         av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1007                AV_RB32(avctx->extradata + 4));
1008         c->compression = avctx->extradata[8];
1009         if (c->compression != 2)
1010             avpriv_request_sample(avctx, "Unknown compression type");
1011         c->slices      = avctx->extradata[9] + 1;
1012     } else if (!c->pro && avctx->extradata_size >= 16) {
1013         av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1014                avctx->extradata[3], avctx->extradata[2],
1015                avctx->extradata[1], avctx->extradata[0]);
1016         av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1017                AV_RB32(avctx->extradata + 4));
1018         c->frame_info_size = AV_RL32(avctx->extradata + 8);
1019         c->flags           = AV_RL32(avctx->extradata + 12);
1020
1021         if (c->frame_info_size != 4)
1022             avpriv_request_sample(avctx, "Frame info not 4 bytes");
1023         av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
1024         c->slices      = (c->flags >> 24) + 1;
1025         c->compression = c->flags & 1;
1026         c->interlaced  = c->flags & 0x800;
1027     } else if (c->pro && avctx->extradata_size == 8) {
1028         av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1029                avctx->extradata[3], avctx->extradata[2],
1030                avctx->extradata[1], avctx->extradata[0]);
1031         av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1032                AV_RB32(avctx->extradata + 4));
1033         c->interlaced  = 0;
1034         c->frame_info_size = 4;
1035     } else {
1036         av_log(avctx, AV_LOG_ERROR,
1037                "Insufficient extradata size %d, should be at least 16\n",
1038                avctx->extradata_size);
1039         return AVERROR_INVALIDDATA;
1040     }
1041
1042     return 0;
1043 }
1044
1045 static av_cold int decode_end(AVCodecContext *avctx)
1046 {
1047     UtvideoContext * const c = avctx->priv_data;
1048
1049     av_freep(&c->slice_bits);
1050
1051     return 0;
1052 }
1053
1054 const AVCodec ff_utvideo_decoder = {
1055     .name           = "utvideo",
1056     .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
1057     .type           = AVMEDIA_TYPE_VIDEO,
1058     .id             = AV_CODEC_ID_UTVIDEO,
1059     .priv_data_size = sizeof(UtvideoContext),
1060     .init           = decode_init,
1061     .close          = decode_end,
1062     .decode         = decode_frame,
1063     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
1064     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1065 };