3 * Copyright (c) 2011 Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
29 #include "libavutil/intreadwrite.h"
31 #include "bytestream.h"
37 static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
48 for (i = 0; i < 256; i++) {
52 qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
62 while (he[last].len == 255 && last)
66 for (i = last; i >= 0; i--) {
67 codes[i] = code >> (32 - he[i].len);
70 code += 0x80000000u >> (he[i].len - 1);
73 return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 10), last + 1,
74 bits, sizeof(*bits), sizeof(*bits),
75 codes, sizeof(*codes), sizeof(*codes),
76 syms, sizeof(*syms), sizeof(*syms), 0);
79 static int decode_plane(UtvideoContext *c, int plane_no,
80 uint8_t *dst, int step, int stride,
81 int width, int height,
82 const uint8_t *src, int use_pred)
89 const int cmask = ~(!plane_no && c->avctx->pix_fmt == AV_PIX_FMT_YUV420P);
91 if (build_huff(src, &vlc, &fsym)) {
92 av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
93 return AVERROR_INVALIDDATA;
95 if (fsym >= 0) { // build_huff reported a symbol to fill slices with
97 for (slice = 0; slice < c->slices; slice++) {
101 send = (height * (slice + 1) / c->slices) & cmask;
102 dest = dst + sstart * stride;
105 for (j = sstart; j < send; j++) {
106 for (i = 0; i < width * step; i += step) {
123 for (slice = 0; slice < c->slices; slice++) {
125 int slice_data_start, slice_data_end, slice_size;
128 send = (height * (slice + 1) / c->slices) & cmask;
129 dest = dst + sstart * stride;
131 // slice offset and size validation was done earlier
132 slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
133 slice_data_end = AV_RL32(src + slice * 4);
134 slice_size = slice_data_end - slice_data_start;
137 av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
138 "yet a slice has a length of zero.\n");
142 memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
144 memset(c->slice_bits + slice_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
145 c->dsp.bswap_buf((uint32_t *) c->slice_bits, (uint32_t *) c->slice_bits,
146 (slice_data_end - slice_data_start + 3) >> 2);
147 init_get_bits(&gb, c->slice_bits, slice_size * 8);
150 for (j = sstart; j < send; j++) {
151 for (i = 0; i < width * step; i += step) {
152 if (get_bits_left(&gb) <= 0) {
153 av_log(c->avctx, AV_LOG_ERROR,
154 "Slice decoding ran out of bits\n");
157 pix = get_vlc2(&gb, vlc.table, vlc.bits, 4);
159 av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
170 if (get_bits_left(&gb) > 32)
171 av_log(c->avctx, AV_LOG_WARNING,
172 "%d bits left after decoding slice\n", get_bits_left(&gb));
180 return AVERROR_INVALIDDATA;
183 static void restore_rgb_planes(uint8_t *src, int step, int stride, int width,
189 for (j = 0; j < height; j++) {
190 for (i = 0; i < width * step; i += step) {
194 src[i] = r + g - 0x80;
195 src[i + 2] = b + g - 0x80;
201 static void restore_median(uint8_t *src, int step, int stride,
202 int width, int height, int slices, int rmode)
207 int slice_start, slice_height;
208 const int cmask = ~rmode;
210 for (slice = 0; slice < slices; slice++) {
211 slice_start = ((slice * height) / slices) & cmask;
212 slice_height = ((((slice + 1) * height) / slices) & cmask) -
215 bsrc = src + slice_start * stride;
217 // first line - left neighbour prediction
220 for (i = step; i < width * step; i += step) {
225 if (slice_height == 1)
227 // second line - first element has top prediction, the rest uses median
231 for (i = step; i < width * step; i += step) {
232 B = bsrc[i - stride];
233 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
238 // the rest of lines use continuous median prediction
239 for (j = 2; j < slice_height; j++) {
240 for (i = 0; i < width * step; i += step) {
241 B = bsrc[i - stride];
242 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
251 /* UtVideo interlaced mode treats every two lines as a single one,
252 * so restoring function should take care of possible padding between
253 * two parts of the same "line".
255 static void restore_median_il(uint8_t *src, int step, int stride,
256 int width, int height, int slices, int rmode)
261 int slice_start, slice_height;
262 const int cmask = ~(rmode ? 3 : 1);
263 const int stride2 = stride << 1;
265 for (slice = 0; slice < slices; slice++) {
266 slice_start = ((slice * height) / slices) & cmask;
267 slice_height = ((((slice + 1) * height) / slices) & cmask) -
271 bsrc = src + slice_start * stride;
273 // first line - left neighbour prediction
276 for (i = step; i < width * step; i += step) {
280 for (i = 0; i < width * step; i += step) {
281 bsrc[stride + i] += A;
282 A = bsrc[stride + i];
285 if (slice_height == 1)
287 // second line - first element has top prediction, the rest uses median
291 for (i = step; i < width * step; i += step) {
292 B = bsrc[i - stride2];
293 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
297 for (i = 0; i < width * step; i += step) {
298 B = bsrc[i - stride];
299 bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
301 A = bsrc[stride + i];
304 // the rest of lines use continuous median prediction
305 for (j = 2; j < slice_height; j++) {
306 for (i = 0; i < width * step; i += step) {
307 B = bsrc[i - stride2];
308 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
312 for (i = 0; i < width * step; i += step) {
313 B = bsrc[i - stride];
314 bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
316 A = bsrc[i + stride];
323 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
326 const uint8_t *buf = avpkt->data;
327 int buf_size = avpkt->size;
328 UtvideoContext *c = avctx->priv_data;
330 const uint8_t *plane_start[5];
331 int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
334 ThreadFrame frame = { .f = data };
336 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
339 /* parse plane structure to get frame flags and validate slice offsets */
340 bytestream2_init(&gb, buf, buf_size);
341 for (i = 0; i < c->planes; i++) {
342 plane_start[i] = gb.buffer;
343 if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
344 av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
345 return AVERROR_INVALIDDATA;
347 bytestream2_skipu(&gb, 256);
350 for (j = 0; j < c->slices; j++) {
351 slice_end = bytestream2_get_le32u(&gb);
352 slice_size = slice_end - slice_start;
353 if (slice_end < 0 || slice_size < 0 ||
354 bytestream2_get_bytes_left(&gb) < slice_end) {
355 av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
356 return AVERROR_INVALIDDATA;
358 slice_start = slice_end;
359 max_slice_size = FFMAX(max_slice_size, slice_size);
361 plane_size = slice_end;
362 bytestream2_skipu(&gb, plane_size);
364 plane_start[c->planes] = gb.buffer;
365 if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
366 av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
367 return AVERROR_INVALIDDATA;
369 c->frame_info = bytestream2_get_le32u(&gb);
370 av_log(avctx, AV_LOG_DEBUG, "frame information flags %X\n", c->frame_info);
372 c->frame_pred = (c->frame_info >> 8) & 3;
374 if (c->frame_pred == PRED_GRADIENT) {
375 avpriv_request_sample(avctx, "Frame with gradient prediction");
376 return AVERROR_PATCHWELCOME;
379 av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
380 max_slice_size + FF_INPUT_BUFFER_PADDING_SIZE);
382 if (!c->slice_bits) {
383 av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
384 return AVERROR(ENOMEM);
387 switch (c->avctx->pix_fmt) {
388 case AV_PIX_FMT_RGB24:
389 case AV_PIX_FMT_RGBA:
390 for (i = 0; i < c->planes; i++) {
391 ret = decode_plane(c, i, frame.f->data[0] + ff_ut_rgb_order[i],
392 c->planes, frame.f->linesize[0], avctx->width,
393 avctx->height, plane_start[i],
394 c->frame_pred == PRED_LEFT);
397 if (c->frame_pred == PRED_MEDIAN) {
398 if (!c->interlaced) {
399 restore_median(frame.f->data[0] + ff_ut_rgb_order[i],
400 c->planes, frame.f->linesize[0], avctx->width,
401 avctx->height, c->slices, 0);
403 restore_median_il(frame.f->data[0] + ff_ut_rgb_order[i],
404 c->planes, frame.f->linesize[0],
405 avctx->width, avctx->height, c->slices,
410 restore_rgb_planes(frame.f->data[0], c->planes, frame.f->linesize[0],
411 avctx->width, avctx->height);
413 case AV_PIX_FMT_YUV420P:
414 for (i = 0; i < 3; i++) {
415 ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
416 avctx->width >> !!i, avctx->height >> !!i,
417 plane_start[i], c->frame_pred == PRED_LEFT);
420 if (c->frame_pred == PRED_MEDIAN) {
421 if (!c->interlaced) {
422 restore_median(frame.f->data[i], 1, frame.f->linesize[i],
423 avctx->width >> !!i, avctx->height >> !!i,
426 restore_median_il(frame.f->data[i], 1, frame.f->linesize[i],
428 avctx->height >> !!i,
434 case AV_PIX_FMT_YUV422P:
435 for (i = 0; i < 3; i++) {
436 ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
437 avctx->width >> !!i, avctx->height,
438 plane_start[i], c->frame_pred == PRED_LEFT);
441 if (c->frame_pred == PRED_MEDIAN) {
442 if (!c->interlaced) {
443 restore_median(frame.f->data[i], 1, frame.f->linesize[i],
444 avctx->width >> !!i, avctx->height,
447 restore_median_il(frame.f->data[i], 1, frame.f->linesize[i],
448 avctx->width >> !!i, avctx->height,
456 frame.f->key_frame = 1;
457 frame.f->pict_type = AV_PICTURE_TYPE_I;
458 frame.f->interlaced_frame = !!c->interlaced;
462 /* always report that the buffer was completely consumed */
466 static av_cold int decode_init(AVCodecContext *avctx)
468 UtvideoContext * const c = avctx->priv_data;
472 ff_dsputil_init(&c->dsp, avctx);
474 if (avctx->extradata_size < 16) {
475 av_log(avctx, AV_LOG_ERROR,
476 "Insufficient extradata size %d, should be at least 16\n",
477 avctx->extradata_size);
478 return AVERROR_INVALIDDATA;
481 av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
482 avctx->extradata[3], avctx->extradata[2],
483 avctx->extradata[1], avctx->extradata[0]);
484 av_log(avctx, AV_LOG_DEBUG, "Original format %X\n",
485 AV_RB32(avctx->extradata + 4));
486 c->frame_info_size = AV_RL32(avctx->extradata + 8);
487 c->flags = AV_RL32(avctx->extradata + 12);
489 if (c->frame_info_size != 4)
490 avpriv_request_sample(avctx, "Frame info not 4 bytes");
491 av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08X\n", c->flags);
492 c->slices = (c->flags >> 24) + 1;
493 c->compression = c->flags & 1;
494 c->interlaced = c->flags & 0x800;
496 c->slice_bits_size = 0;
498 switch (avctx->codec_tag) {
499 case MKTAG('U', 'L', 'R', 'G'):
501 avctx->pix_fmt = AV_PIX_FMT_RGB24;
503 case MKTAG('U', 'L', 'R', 'A'):
505 avctx->pix_fmt = AV_PIX_FMT_RGBA;
507 case MKTAG('U', 'L', 'Y', '0'):
509 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
510 avctx->colorspace = AVCOL_SPC_BT470BG;
512 case MKTAG('U', 'L', 'Y', '2'):
514 avctx->pix_fmt = AV_PIX_FMT_YUV422P;
515 avctx->colorspace = AVCOL_SPC_BT470BG;
517 case MKTAG('U', 'L', 'H', '0'):
519 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
520 avctx->colorspace = AVCOL_SPC_BT709;
522 case MKTAG('U', 'L', 'H', '2'):
524 avctx->pix_fmt = AV_PIX_FMT_YUV422P;
525 avctx->colorspace = AVCOL_SPC_BT709;
528 av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
530 return AVERROR_INVALIDDATA;
536 static av_cold int decode_end(AVCodecContext *avctx)
538 UtvideoContext * const c = avctx->priv_data;
540 av_freep(&c->slice_bits);
545 AVCodec ff_utvideo_decoder = {
547 .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
548 .type = AVMEDIA_TYPE_VIDEO,
549 .id = AV_CODEC_ID_UTVIDEO,
550 .priv_data_size = sizeof(UtvideoContext),
553 .decode = decode_frame,
554 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,