]> git.sesse.net Git - ffmpeg/blob - libavcodec/vp3.c
avcodec/g723_1: Fix runtime error: signed integer overflow: -1013481472 + -1139123755...
[ffmpeg] / libavcodec / vp3.c
1 /*
2  * Copyright (C) 2003-2004 The FFmpeg project
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 /**
22  * @file
23  * On2 VP3 Video Decoder
24  *
25  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26  * For more information about the VP3 coding process, visit:
27  *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28  *
29  * Theora decoder by Alex Beregszaszi
30  */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "libavutil/imgutils.h"
37
38 #include "avcodec.h"
39 #include "get_bits.h"
40 #include "hpeldsp.h"
41 #include "internal.h"
42 #include "mathops.h"
43 #include "thread.h"
44 #include "videodsp.h"
45 #include "vp3data.h"
46 #include "vp3dsp.h"
47 #include "xiph.h"
48
49 #define FRAGMENT_PIXELS 8
50
51 // FIXME split things out into their own arrays
52 typedef struct Vp3Fragment {
53     int16_t dc;
54     uint8_t coding_method;
55     uint8_t qpi;
56 } Vp3Fragment;
57
58 #define SB_NOT_CODED        0
59 #define SB_PARTIALLY_CODED  1
60 #define SB_FULLY_CODED      2
61
62 // This is the maximum length of a single long bit run that can be encoded
63 // for superblock coding or block qps. Theora special-cases this to read a
64 // bit instead of flipping the current bit to allow for runs longer than 4129.
65 #define MAXIMUM_LONG_BIT_RUN 4129
66
67 #define MODE_INTER_NO_MV      0
68 #define MODE_INTRA            1
69 #define MODE_INTER_PLUS_MV    2
70 #define MODE_INTER_LAST_MV    3
71 #define MODE_INTER_PRIOR_LAST 4
72 #define MODE_USING_GOLDEN     5
73 #define MODE_GOLDEN_MV        6
74 #define MODE_INTER_FOURMV     7
75 #define CODING_MODE_COUNT     8
76
77 /* special internal mode */
78 #define MODE_COPY             8
79
80 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
81 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
82
83
84 /* There are 6 preset schemes, plus a free-form scheme */
85 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
86     /* scheme 1: Last motion vector dominates */
87     { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
88       MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
89       MODE_INTRA,            MODE_USING_GOLDEN,
90       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
91
92     /* scheme 2 */
93     { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
94       MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
95       MODE_INTRA,            MODE_USING_GOLDEN,
96       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
97
98     /* scheme 3 */
99     { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
100       MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
101       MODE_INTRA,            MODE_USING_GOLDEN,
102       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
103
104     /* scheme 4 */
105     { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
106       MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
107       MODE_INTRA,            MODE_USING_GOLDEN,
108       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
109
110     /* scheme 5: No motion vector dominates */
111     { MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
112       MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
113       MODE_INTRA,            MODE_USING_GOLDEN,
114       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
115
116     /* scheme 6 */
117     { MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
118       MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
119       MODE_INTER_PLUS_MV,    MODE_INTRA,
120       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
121 };
122
123 static const uint8_t hilbert_offset[16][2] = {
124     { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
125     { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
126     { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
127     { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
128 };
129
130 #define MIN_DEQUANT_VAL 2
131
132 typedef struct Vp3DecodeContext {
133     AVCodecContext *avctx;
134     int theora, theora_tables, theora_header;
135     int version;
136     int width, height;
137     int chroma_x_shift, chroma_y_shift;
138     ThreadFrame golden_frame;
139     ThreadFrame last_frame;
140     ThreadFrame current_frame;
141     int keyframe;
142     uint8_t idct_permutation[64];
143     uint8_t idct_scantable[64];
144     HpelDSPContext hdsp;
145     VideoDSPContext vdsp;
146     VP3DSPContext vp3dsp;
147     DECLARE_ALIGNED(16, int16_t, block)[64];
148     int flipped_image;
149     int last_slice_end;
150     int skip_loop_filter;
151
152     int qps[3];
153     int nqps;
154     int last_qps[3];
155
156     int superblock_count;
157     int y_superblock_width;
158     int y_superblock_height;
159     int y_superblock_count;
160     int c_superblock_width;
161     int c_superblock_height;
162     int c_superblock_count;
163     int u_superblock_start;
164     int v_superblock_start;
165     unsigned char *superblock_coding;
166
167     int macroblock_count;
168     int macroblock_width;
169     int macroblock_height;
170
171     int fragment_count;
172     int fragment_width[2];
173     int fragment_height[2];
174
175     Vp3Fragment *all_fragments;
176     int fragment_start[3];
177     int data_offset[3];
178     uint8_t offset_x;
179     uint8_t offset_y;
180     int offset_x_warned;
181
182     int8_t (*motion_val[2])[2];
183
184     /* tables */
185     uint16_t coded_dc_scale_factor[64];
186     uint32_t coded_ac_scale_factor[64];
187     uint8_t base_matrix[384][64];
188     uint8_t qr_count[2][3];
189     uint8_t qr_size[2][3][64];
190     uint16_t qr_base[2][3][64];
191
192     /**
193      * This is a list of all tokens in bitstream order. Reordering takes place
194      * by pulling from each level during IDCT. As a consequence, IDCT must be
195      * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
196      * otherwise. The 32 different tokens with up to 12 bits of extradata are
197      * collapsed into 3 types, packed as follows:
198      *   (from the low to high bits)
199      *
200      * 2 bits: type (0,1,2)
201      *   0: EOB run, 14 bits for run length (12 needed)
202      *   1: zero run, 7 bits for run length
203      *                7 bits for the next coefficient (3 needed)
204      *   2: coefficient, 14 bits (11 needed)
205      *
206      * Coefficients are signed, so are packed in the highest bits for automatic
207      * sign extension.
208      */
209     int16_t *dct_tokens[3][64];
210     int16_t *dct_tokens_base;
211 #define TOKEN_EOB(eob_run)              ((eob_run) << 2)
212 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
213 #define TOKEN_COEFF(coeff)              (((coeff) * 4) + 2)
214
215     /**
216      * number of blocks that contain DCT coefficients at
217      * the given level or higher
218      */
219     int num_coded_frags[3][64];
220     int total_num_coded_frags;
221
222     /* this is a list of indexes into the all_fragments array indicating
223      * which of the fragments are coded */
224     int *coded_fragment_list[3];
225
226     VLC dc_vlc[16];
227     VLC ac_vlc_1[16];
228     VLC ac_vlc_2[16];
229     VLC ac_vlc_3[16];
230     VLC ac_vlc_4[16];
231
232     VLC superblock_run_length_vlc;
233     VLC fragment_run_length_vlc;
234     VLC mode_code_vlc;
235     VLC motion_vector_vlc;
236
237     /* these arrays need to be on 16-byte boundaries since SSE2 operations
238      * index into them */
239     DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]
240
241     /* This table contains superblock_count * 16 entries. Each set of 16
242      * numbers corresponds to the fragment indexes 0..15 of the superblock.
243      * An entry will be -1 to indicate that no entry corresponds to that
244      * index. */
245     int *superblock_fragments;
246
247     /* This is an array that indicates how a particular macroblock
248      * is coded. */
249     unsigned char *macroblock_coding;
250
251     uint8_t *edge_emu_buffer;
252
253     /* Huffman decode */
254     int hti;
255     unsigned int hbits;
256     int entries;
257     int huff_code_size;
258     uint32_t huffman_table[80][32][2];
259
260     uint8_t filter_limit_values[64];
261     DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
262 } Vp3DecodeContext;
263
264 /************************************************************************
265  * VP3 specific functions
266  ************************************************************************/
267
268 static av_cold void free_tables(AVCodecContext *avctx)
269 {
270     Vp3DecodeContext *s = avctx->priv_data;
271
272     av_freep(&s->superblock_coding);
273     av_freep(&s->all_fragments);
274     av_freep(&s->coded_fragment_list[0]);
275     av_freep(&s->dct_tokens_base);
276     av_freep(&s->superblock_fragments);
277     av_freep(&s->macroblock_coding);
278     av_freep(&s->motion_val[0]);
279     av_freep(&s->motion_val[1]);
280 }
281
282 static void vp3_decode_flush(AVCodecContext *avctx)
283 {
284     Vp3DecodeContext *s = avctx->priv_data;
285
286     if (s->golden_frame.f)
287         ff_thread_release_buffer(avctx, &s->golden_frame);
288     if (s->last_frame.f)
289         ff_thread_release_buffer(avctx, &s->last_frame);
290     if (s->current_frame.f)
291         ff_thread_release_buffer(avctx, &s->current_frame);
292 }
293
294 static av_cold int vp3_decode_end(AVCodecContext *avctx)
295 {
296     Vp3DecodeContext *s = avctx->priv_data;
297     int i;
298
299     free_tables(avctx);
300     av_freep(&s->edge_emu_buffer);
301
302     s->theora_tables = 0;
303
304     /* release all frames */
305     vp3_decode_flush(avctx);
306     av_frame_free(&s->current_frame.f);
307     av_frame_free(&s->last_frame.f);
308     av_frame_free(&s->golden_frame.f);
309
310     if (avctx->internal->is_copy)
311         return 0;
312
313     for (i = 0; i < 16; i++) {
314         ff_free_vlc(&s->dc_vlc[i]);
315         ff_free_vlc(&s->ac_vlc_1[i]);
316         ff_free_vlc(&s->ac_vlc_2[i]);
317         ff_free_vlc(&s->ac_vlc_3[i]);
318         ff_free_vlc(&s->ac_vlc_4[i]);
319     }
320
321     ff_free_vlc(&s->superblock_run_length_vlc);
322     ff_free_vlc(&s->fragment_run_length_vlc);
323     ff_free_vlc(&s->mode_code_vlc);
324     ff_free_vlc(&s->motion_vector_vlc);
325
326     return 0;
327 }
328
329 /**
330  * This function sets up all of the various blocks mappings:
331  * superblocks <-> fragments, macroblocks <-> fragments,
332  * superblocks <-> macroblocks
333  *
334  * @return 0 is successful; returns 1 if *anything* went wrong.
335  */
336 static int init_block_mapping(Vp3DecodeContext *s)
337 {
338     int sb_x, sb_y, plane;
339     int x, y, i, j = 0;
340
341     for (plane = 0; plane < 3; plane++) {
342         int sb_width    = plane ? s->c_superblock_width
343                                 : s->y_superblock_width;
344         int sb_height   = plane ? s->c_superblock_height
345                                 : s->y_superblock_height;
346         int frag_width  = s->fragment_width[!!plane];
347         int frag_height = s->fragment_height[!!plane];
348
349         for (sb_y = 0; sb_y < sb_height; sb_y++)
350             for (sb_x = 0; sb_x < sb_width; sb_x++)
351                 for (i = 0; i < 16; i++) {
352                     x = 4 * sb_x + hilbert_offset[i][0];
353                     y = 4 * sb_y + hilbert_offset[i][1];
354
355                     if (x < frag_width && y < frag_height)
356                         s->superblock_fragments[j++] = s->fragment_start[plane] +
357                                                        y * frag_width + x;
358                     else
359                         s->superblock_fragments[j++] = -1;
360                 }
361     }
362
363     return 0;  /* successful path out */
364 }
365
366 /*
367  * This function sets up the dequantization tables used for a particular
368  * frame.
369  */
370 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
371 {
372     int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
373     int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
374     int i, plane, inter, qri, bmi, bmj, qistart;
375
376     for (inter = 0; inter < 2; inter++) {
377         for (plane = 0; plane < 3; plane++) {
378             int sum = 0;
379             for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
380                 sum += s->qr_size[inter][plane][qri];
381                 if (s->qps[qpi] <= sum)
382                     break;
383             }
384             qistart = sum - s->qr_size[inter][plane][qri];
385             bmi     = s->qr_base[inter][plane][qri];
386             bmj     = s->qr_base[inter][plane][qri + 1];
387             for (i = 0; i < 64; i++) {
388                 int coeff = (2 * (sum     - s->qps[qpi]) * s->base_matrix[bmi][i] -
389                              2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
390                              s->qr_size[inter][plane][qri]) /
391                             (2 * s->qr_size[inter][plane][qri]);
392
393                 int qmin   = 8 << (inter + !i);
394                 int qscale = i ? ac_scale_factor : dc_scale_factor;
395
396                 s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
397                     av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
398             }
399             /* all DC coefficients use the same quant so as not to interfere
400              * with DC prediction */
401             s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
402         }
403     }
404 }
405
406 /*
407  * This function initializes the loop filter boundary limits if the frame's
408  * quality index is different from the previous frame's.
409  *
410  * The filter_limit_values may not be larger than 127.
411  */
412 static void init_loop_filter(Vp3DecodeContext *s)
413 {
414     int *bounding_values = s->bounding_values_array + 127;
415     int filter_limit;
416     int x;
417     int value;
418
419     filter_limit = s->filter_limit_values[s->qps[0]];
420     av_assert0(filter_limit < 128U);
421
422     /* set up the bounding values */
423     memset(s->bounding_values_array, 0, 256 * sizeof(int));
424     for (x = 0; x < filter_limit; x++) {
425         bounding_values[-x] = -x;
426         bounding_values[x] = x;
427     }
428     for (x = value = filter_limit; x < 128 && value; x++, value--) {
429         bounding_values[ x] =  value;
430         bounding_values[-x] = -value;
431     }
432     if (value)
433         bounding_values[128] = value;
434     bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
435 }
436
437 /*
438  * This function unpacks all of the superblock/macroblock/fragment coding
439  * information from the bitstream.
440  */
441 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
442 {
443     int superblock_starts[3] = {
444         0, s->u_superblock_start, s->v_superblock_start
445     };
446     int bit = 0;
447     int current_superblock = 0;
448     int current_run = 0;
449     int num_partial_superblocks = 0;
450
451     int i, j;
452     int current_fragment;
453     int plane;
454
455     if (s->keyframe) {
456         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
457     } else {
458         /* unpack the list of partially-coded superblocks */
459         bit         = get_bits1(gb) ^ 1;
460         current_run = 0;
461
462         while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
463             if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
464                 bit = get_bits1(gb);
465             else
466                 bit ^= 1;
467
468             current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
469                                    6, 2) + 1;
470             if (current_run == 34)
471                 current_run += get_bits(gb, 12);
472
473             if (current_run > s->superblock_count - current_superblock) {
474                 av_log(s->avctx, AV_LOG_ERROR,
475                        "Invalid partially coded superblock run length\n");
476                 return -1;
477             }
478
479             memset(s->superblock_coding + current_superblock, bit, current_run);
480
481             current_superblock += current_run;
482             if (bit)
483                 num_partial_superblocks += current_run;
484         }
485
486         /* unpack the list of fully coded superblocks if any of the blocks were
487          * not marked as partially coded in the previous step */
488         if (num_partial_superblocks < s->superblock_count) {
489             int superblocks_decoded = 0;
490
491             current_superblock = 0;
492             bit                = get_bits1(gb) ^ 1;
493             current_run        = 0;
494
495             while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
496                    get_bits_left(gb) > 0) {
497                 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
498                     bit = get_bits1(gb);
499                 else
500                     bit ^= 1;
501
502                 current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
503                                        6, 2) + 1;
504                 if (current_run == 34)
505                     current_run += get_bits(gb, 12);
506
507                 for (j = 0; j < current_run; current_superblock++) {
508                     if (current_superblock >= s->superblock_count) {
509                         av_log(s->avctx, AV_LOG_ERROR,
510                                "Invalid fully coded superblock run length\n");
511                         return -1;
512                     }
513
514                     /* skip any superblocks already marked as partially coded */
515                     if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
516                         s->superblock_coding[current_superblock] = 2 * bit;
517                         j++;
518                     }
519                 }
520                 superblocks_decoded += current_run;
521             }
522         }
523
524         /* if there were partial blocks, initialize bitstream for
525          * unpacking fragment codings */
526         if (num_partial_superblocks) {
527             current_run = 0;
528             bit         = get_bits1(gb);
529             /* toggle the bit because as soon as the first run length is
530              * fetched the bit will be toggled again */
531             bit ^= 1;
532         }
533     }
534
535     /* figure out which fragments are coded; iterate through each
536      * superblock (all planes) */
537     s->total_num_coded_frags = 0;
538     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
539
540     for (plane = 0; plane < 3; plane++) {
541         int sb_start = superblock_starts[plane];
542         int sb_end   = sb_start + (plane ? s->c_superblock_count
543                                          : s->y_superblock_count);
544         int num_coded_frags = 0;
545
546         for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
547             /* iterate through all 16 fragments in a superblock */
548             for (j = 0; j < 16; j++) {
549                 /* if the fragment is in bounds, check its coding status */
550                 current_fragment = s->superblock_fragments[i * 16 + j];
551                 if (current_fragment != -1) {
552                     int coded = s->superblock_coding[i];
553
554                     if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
555                         /* fragment may or may not be coded; this is the case
556                          * that cares about the fragment coding runs */
557                         if (current_run-- == 0) {
558                             bit        ^= 1;
559                             current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
560                         }
561                         coded = bit;
562                     }
563
564                     if (coded) {
565                         /* default mode; actual mode will be decoded in
566                          * the next phase */
567                         s->all_fragments[current_fragment].coding_method =
568                             MODE_INTER_NO_MV;
569                         s->coded_fragment_list[plane][num_coded_frags++] =
570                             current_fragment;
571                     } else {
572                         /* not coded; copy this fragment from the prior frame */
573                         s->all_fragments[current_fragment].coding_method =
574                             MODE_COPY;
575                     }
576                 }
577             }
578         }
579         s->total_num_coded_frags += num_coded_frags;
580         for (i = 0; i < 64; i++)
581             s->num_coded_frags[plane][i] = num_coded_frags;
582         if (plane < 2)
583             s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
584                                                 num_coded_frags;
585     }
586     return 0;
587 }
588
589 /*
590  * This function unpacks all the coding mode data for individual macroblocks
591  * from the bitstream.
592  */
593 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
594 {
595     int i, j, k, sb_x, sb_y;
596     int scheme;
597     int current_macroblock;
598     int current_fragment;
599     int coding_mode;
600     int custom_mode_alphabet[CODING_MODE_COUNT];
601     const int *alphabet;
602     Vp3Fragment *frag;
603
604     if (s->keyframe) {
605         for (i = 0; i < s->fragment_count; i++)
606             s->all_fragments[i].coding_method = MODE_INTRA;
607     } else {
608         /* fetch the mode coding scheme for this frame */
609         scheme = get_bits(gb, 3);
610
611         /* is it a custom coding scheme? */
612         if (scheme == 0) {
613             for (i = 0; i < 8; i++)
614                 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
615             for (i = 0; i < 8; i++)
616                 custom_mode_alphabet[get_bits(gb, 3)] = i;
617             alphabet = custom_mode_alphabet;
618         } else
619             alphabet = ModeAlphabet[scheme - 1];
620
621         /* iterate through all of the macroblocks that contain 1 or more
622          * coded fragments */
623         for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
624             for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
625                 if (get_bits_left(gb) <= 0)
626                     return -1;
627
628                 for (j = 0; j < 4; j++) {
629                     int mb_x = 2 * sb_x + (j >> 1);
630                     int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
631                     current_macroblock = mb_y * s->macroblock_width + mb_x;
632
633                     if (mb_x >= s->macroblock_width ||
634                         mb_y >= s->macroblock_height)
635                         continue;
636
637 #define BLOCK_X (2 * mb_x + (k & 1))
638 #define BLOCK_Y (2 * mb_y + (k >> 1))
639                     /* coding modes are only stored if the macroblock has
640                      * at least one luma block coded, otherwise it must be
641                      * INTER_NO_MV */
642                     for (k = 0; k < 4; k++) {
643                         current_fragment = BLOCK_Y *
644                                            s->fragment_width[0] + BLOCK_X;
645                         if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
646                             break;
647                     }
648                     if (k == 4) {
649                         s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
650                         continue;
651                     }
652
653                     /* mode 7 means get 3 bits for each coding mode */
654                     if (scheme == 7)
655                         coding_mode = get_bits(gb, 3);
656                     else
657                         coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
658
659                     s->macroblock_coding[current_macroblock] = coding_mode;
660                     for (k = 0; k < 4; k++) {
661                         frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
662                         if (frag->coding_method != MODE_COPY)
663                             frag->coding_method = coding_mode;
664                     }
665
666 #define SET_CHROMA_MODES                                                      \
667     if (frag[s->fragment_start[1]].coding_method != MODE_COPY)                \
668         frag[s->fragment_start[1]].coding_method = coding_mode;               \
669     if (frag[s->fragment_start[2]].coding_method != MODE_COPY)                \
670         frag[s->fragment_start[2]].coding_method = coding_mode;
671
672                     if (s->chroma_y_shift) {
673                         frag = s->all_fragments + mb_y *
674                                s->fragment_width[1] + mb_x;
675                         SET_CHROMA_MODES
676                     } else if (s->chroma_x_shift) {
677                         frag = s->all_fragments +
678                                2 * mb_y * s->fragment_width[1] + mb_x;
679                         for (k = 0; k < 2; k++) {
680                             SET_CHROMA_MODES
681                             frag += s->fragment_width[1];
682                         }
683                     } else {
684                         for (k = 0; k < 4; k++) {
685                             frag = s->all_fragments +
686                                    BLOCK_Y * s->fragment_width[1] + BLOCK_X;
687                             SET_CHROMA_MODES
688                         }
689                     }
690                 }
691             }
692         }
693     }
694
695     return 0;
696 }
697
698 /*
699  * This function unpacks all the motion vectors for the individual
700  * macroblocks from the bitstream.
701  */
702 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
703 {
704     int j, k, sb_x, sb_y;
705     int coding_mode;
706     int motion_x[4];
707     int motion_y[4];
708     int last_motion_x = 0;
709     int last_motion_y = 0;
710     int prior_last_motion_x = 0;
711     int prior_last_motion_y = 0;
712     int current_macroblock;
713     int current_fragment;
714     int frag;
715
716     if (s->keyframe)
717         return 0;
718
719     /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
720     coding_mode = get_bits1(gb);
721
722     /* iterate through all of the macroblocks that contain 1 or more
723      * coded fragments */
724     for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
725         for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
726             if (get_bits_left(gb) <= 0)
727                 return -1;
728
729             for (j = 0; j < 4; j++) {
730                 int mb_x = 2 * sb_x + (j >> 1);
731                 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
732                 current_macroblock = mb_y * s->macroblock_width + mb_x;
733
734                 if (mb_x >= s->macroblock_width  ||
735                     mb_y >= s->macroblock_height ||
736                     s->macroblock_coding[current_macroblock] == MODE_COPY)
737                     continue;
738
739                 switch (s->macroblock_coding[current_macroblock]) {
740                 case MODE_INTER_PLUS_MV:
741                 case MODE_GOLDEN_MV:
742                     /* all 6 fragments use the same motion vector */
743                     if (coding_mode == 0) {
744                         motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
745                         motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
746                     } else {
747                         motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
748                         motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
749                     }
750
751                     /* vector maintenance, only on MODE_INTER_PLUS_MV */
752                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
753                         prior_last_motion_x = last_motion_x;
754                         prior_last_motion_y = last_motion_y;
755                         last_motion_x       = motion_x[0];
756                         last_motion_y       = motion_y[0];
757                     }
758                     break;
759
760                 case MODE_INTER_FOURMV:
761                     /* vector maintenance */
762                     prior_last_motion_x = last_motion_x;
763                     prior_last_motion_y = last_motion_y;
764
765                     /* fetch 4 vectors from the bitstream, one for each
766                      * Y fragment, then average for the C fragment vectors */
767                     for (k = 0; k < 4; k++) {
768                         current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
769                         if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
770                             if (coding_mode == 0) {
771                                 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
772                                 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
773                             } else {
774                                 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
775                                 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
776                             }
777                             last_motion_x = motion_x[k];
778                             last_motion_y = motion_y[k];
779                         } else {
780                             motion_x[k] = 0;
781                             motion_y[k] = 0;
782                         }
783                     }
784                     break;
785
786                 case MODE_INTER_LAST_MV:
787                     /* all 6 fragments use the last motion vector */
788                     motion_x[0] = last_motion_x;
789                     motion_y[0] = last_motion_y;
790
791                     /* no vector maintenance (last vector remains the
792                      * last vector) */
793                     break;
794
795                 case MODE_INTER_PRIOR_LAST:
796                     /* all 6 fragments use the motion vector prior to the
797                      * last motion vector */
798                     motion_x[0] = prior_last_motion_x;
799                     motion_y[0] = prior_last_motion_y;
800
801                     /* vector maintenance */
802                     prior_last_motion_x = last_motion_x;
803                     prior_last_motion_y = last_motion_y;
804                     last_motion_x       = motion_x[0];
805                     last_motion_y       = motion_y[0];
806                     break;
807
808                 default:
809                     /* covers intra, inter without MV, golden without MV */
810                     motion_x[0] = 0;
811                     motion_y[0] = 0;
812
813                     /* no vector maintenance */
814                     break;
815                 }
816
817                 /* assign the motion vectors to the correct fragments */
818                 for (k = 0; k < 4; k++) {
819                     current_fragment =
820                         BLOCK_Y * s->fragment_width[0] + BLOCK_X;
821                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
822                         s->motion_val[0][current_fragment][0] = motion_x[k];
823                         s->motion_val[0][current_fragment][1] = motion_y[k];
824                     } else {
825                         s->motion_val[0][current_fragment][0] = motion_x[0];
826                         s->motion_val[0][current_fragment][1] = motion_y[0];
827                     }
828                 }
829
830                 if (s->chroma_y_shift) {
831                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
832                         motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
833                                              motion_x[2] + motion_x[3], 2);
834                         motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
835                                              motion_y[2] + motion_y[3], 2);
836                     }
837                     motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
838                     motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
839                     frag = mb_y * s->fragment_width[1] + mb_x;
840                     s->motion_val[1][frag][0] = motion_x[0];
841                     s->motion_val[1][frag][1] = motion_y[0];
842                 } else if (s->chroma_x_shift) {
843                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
844                         motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
845                         motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
846                         motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
847                         motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
848                     } else {
849                         motion_x[1] = motion_x[0];
850                         motion_y[1] = motion_y[0];
851                     }
852                     motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
853                     motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
854
855                     frag = 2 * mb_y * s->fragment_width[1] + mb_x;
856                     for (k = 0; k < 2; k++) {
857                         s->motion_val[1][frag][0] = motion_x[k];
858                         s->motion_val[1][frag][1] = motion_y[k];
859                         frag += s->fragment_width[1];
860                     }
861                 } else {
862                     for (k = 0; k < 4; k++) {
863                         frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
864                         if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
865                             s->motion_val[1][frag][0] = motion_x[k];
866                             s->motion_val[1][frag][1] = motion_y[k];
867                         } else {
868                             s->motion_val[1][frag][0] = motion_x[0];
869                             s->motion_val[1][frag][1] = motion_y[0];
870                         }
871                     }
872                 }
873             }
874         }
875     }
876
877     return 0;
878 }
879
880 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
881 {
882     int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
883     int num_blocks = s->total_num_coded_frags;
884
885     for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
886         i = blocks_decoded = num_blocks_at_qpi = 0;
887
888         bit        = get_bits1(gb) ^ 1;
889         run_length = 0;
890
891         do {
892             if (run_length == MAXIMUM_LONG_BIT_RUN)
893                 bit = get_bits1(gb);
894             else
895                 bit ^= 1;
896
897             run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
898             if (run_length == 34)
899                 run_length += get_bits(gb, 12);
900             blocks_decoded += run_length;
901
902             if (!bit)
903                 num_blocks_at_qpi += run_length;
904
905             for (j = 0; j < run_length; i++) {
906                 if (i >= s->total_num_coded_frags)
907                     return -1;
908
909                 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
910                     s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
911                     j++;
912                 }
913             }
914         } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
915
916         num_blocks -= num_blocks_at_qpi;
917     }
918
919     return 0;
920 }
921
922 /*
923  * This function is called by unpack_dct_coeffs() to extract the VLCs from
924  * the bitstream. The VLCs encode tokens which are used to unpack DCT
925  * data. This function unpacks all the VLCs for either the Y plane or both
926  * C planes, and is called for DC coefficients or different AC coefficient
927  * levels (since different coefficient types require different VLC tables.
928  *
929  * This function returns a residual eob run. E.g, if a particular token gave
930  * instructions to EOB the next 5 fragments and there were only 2 fragments
931  * left in the current fragment range, 3 would be returned so that it could
932  * be passed into the next call to this same function.
933  */
934 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
935                        VLC *table, int coeff_index,
936                        int plane,
937                        int eob_run)
938 {
939     int i, j = 0;
940     int token;
941     int zero_run  = 0;
942     int16_t coeff = 0;
943     int bits_to_get;
944     int blocks_ended;
945     int coeff_i = 0;
946     int num_coeffs      = s->num_coded_frags[plane][coeff_index];
947     int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
948
949     /* local references to structure members to avoid repeated dereferences */
950     int *coded_fragment_list   = s->coded_fragment_list[plane];
951     Vp3Fragment *all_fragments = s->all_fragments;
952     VLC_TYPE(*vlc_table)[2] = table->table;
953
954     if (num_coeffs < 0)
955         av_log(s->avctx, AV_LOG_ERROR,
956                "Invalid number of coefficients at level %d\n", coeff_index);
957
958     if (eob_run > num_coeffs) {
959         coeff_i      =
960         blocks_ended = num_coeffs;
961         eob_run     -= num_coeffs;
962     } else {
963         coeff_i      =
964         blocks_ended = eob_run;
965         eob_run      = 0;
966     }
967
968     // insert fake EOB token to cover the split between planes or zzi
969     if (blocks_ended)
970         dct_tokens[j++] = blocks_ended << 2;
971
972     while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
973         /* decode a VLC into a token */
974         token = get_vlc2(gb, vlc_table, 11, 3);
975         /* use the token to get a zero run, a coefficient, and an eob run */
976         if ((unsigned) token <= 6U) {
977             eob_run = eob_run_base[token];
978             if (eob_run_get_bits[token])
979                 eob_run += get_bits(gb, eob_run_get_bits[token]);
980
981             // record only the number of blocks ended in this plane,
982             // any spill will be recorded in the next plane.
983             if (eob_run > num_coeffs - coeff_i) {
984                 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
985                 blocks_ended   += num_coeffs - coeff_i;
986                 eob_run        -= num_coeffs - coeff_i;
987                 coeff_i         = num_coeffs;
988             } else {
989                 dct_tokens[j++] = TOKEN_EOB(eob_run);
990                 blocks_ended   += eob_run;
991                 coeff_i        += eob_run;
992                 eob_run         = 0;
993             }
994         } else if (token >= 0) {
995             bits_to_get = coeff_get_bits[token];
996             if (bits_to_get)
997                 bits_to_get = get_bits(gb, bits_to_get);
998             coeff = coeff_tables[token][bits_to_get];
999
1000             zero_run = zero_run_base[token];
1001             if (zero_run_get_bits[token])
1002                 zero_run += get_bits(gb, zero_run_get_bits[token]);
1003
1004             if (zero_run) {
1005                 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1006             } else {
1007                 // Save DC into the fragment structure. DC prediction is
1008                 // done in raster order, so the actual DC can't be in with
1009                 // other tokens. We still need the token in dct_tokens[]
1010                 // however, or else the structure collapses on itself.
1011                 if (!coeff_index)
1012                     all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1013
1014                 dct_tokens[j++] = TOKEN_COEFF(coeff);
1015             }
1016
1017             if (coeff_index + zero_run > 64) {
1018                 av_log(s->avctx, AV_LOG_DEBUG,
1019                        "Invalid zero run of %d with %d coeffs left\n",
1020                        zero_run, 64 - coeff_index);
1021                 zero_run = 64 - coeff_index;
1022             }
1023
1024             // zero runs code multiple coefficients,
1025             // so don't try to decode coeffs for those higher levels
1026             for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1027                 s->num_coded_frags[plane][i]--;
1028             coeff_i++;
1029         } else {
1030             av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1031             return -1;
1032         }
1033     }
1034
1035     if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1036         av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1037
1038     // decrement the number of blocks that have higher coefficients for each
1039     // EOB run at this level
1040     if (blocks_ended)
1041         for (i = coeff_index + 1; i < 64; i++)
1042             s->num_coded_frags[plane][i] -= blocks_ended;
1043
1044     // setup the next buffer
1045     if (plane < 2)
1046         s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1047     else if (coeff_index < 63)
1048         s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1049
1050     return eob_run;
1051 }
1052
1053 static void reverse_dc_prediction(Vp3DecodeContext *s,
1054                                   int first_fragment,
1055                                   int fragment_width,
1056                                   int fragment_height);
1057 /*
1058  * This function unpacks all of the DCT coefficient data from the
1059  * bitstream.
1060  */
1061 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1062 {
1063     int i;
1064     int dc_y_table;
1065     int dc_c_table;
1066     int ac_y_table;
1067     int ac_c_table;
1068     int residual_eob_run = 0;
1069     VLC *y_tables[64];
1070     VLC *c_tables[64];
1071
1072     s->dct_tokens[0][0] = s->dct_tokens_base;
1073
1074     if (get_bits_left(gb) < 16)
1075         return AVERROR_INVALIDDATA;
1076
1077     /* fetch the DC table indexes */
1078     dc_y_table = get_bits(gb, 4);
1079     dc_c_table = get_bits(gb, 4);
1080
1081     /* unpack the Y plane DC coefficients */
1082     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1083                                    0, residual_eob_run);
1084     if (residual_eob_run < 0)
1085         return residual_eob_run;
1086     if (get_bits_left(gb) < 8)
1087         return AVERROR_INVALIDDATA;
1088
1089     /* reverse prediction of the Y-plane DC coefficients */
1090     reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
1091
1092     /* unpack the C plane DC coefficients */
1093     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1094                                    1, residual_eob_run);
1095     if (residual_eob_run < 0)
1096         return residual_eob_run;
1097     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1098                                    2, residual_eob_run);
1099     if (residual_eob_run < 0)
1100         return residual_eob_run;
1101
1102     /* reverse prediction of the C-plane DC coefficients */
1103     if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
1104         reverse_dc_prediction(s, s->fragment_start[1],
1105                               s->fragment_width[1], s->fragment_height[1]);
1106         reverse_dc_prediction(s, s->fragment_start[2],
1107                               s->fragment_width[1], s->fragment_height[1]);
1108     }
1109
1110     if (get_bits_left(gb) < 8)
1111         return AVERROR_INVALIDDATA;
1112     /* fetch the AC table indexes */
1113     ac_y_table = get_bits(gb, 4);
1114     ac_c_table = get_bits(gb, 4);
1115
1116     /* build tables of AC VLC tables */
1117     for (i = 1; i <= 5; i++) {
1118         y_tables[i] = &s->ac_vlc_1[ac_y_table];
1119         c_tables[i] = &s->ac_vlc_1[ac_c_table];
1120     }
1121     for (i = 6; i <= 14; i++) {
1122         y_tables[i] = &s->ac_vlc_2[ac_y_table];
1123         c_tables[i] = &s->ac_vlc_2[ac_c_table];
1124     }
1125     for (i = 15; i <= 27; i++) {
1126         y_tables[i] = &s->ac_vlc_3[ac_y_table];
1127         c_tables[i] = &s->ac_vlc_3[ac_c_table];
1128     }
1129     for (i = 28; i <= 63; i++) {
1130         y_tables[i] = &s->ac_vlc_4[ac_y_table];
1131         c_tables[i] = &s->ac_vlc_4[ac_c_table];
1132     }
1133
1134     /* decode all AC coefficients */
1135     for (i = 1; i <= 63; i++) {
1136         residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1137                                        0, residual_eob_run);
1138         if (residual_eob_run < 0)
1139             return residual_eob_run;
1140
1141         residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1142                                        1, residual_eob_run);
1143         if (residual_eob_run < 0)
1144             return residual_eob_run;
1145         residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1146                                        2, residual_eob_run);
1147         if (residual_eob_run < 0)
1148             return residual_eob_run;
1149     }
1150
1151     return 0;
1152 }
1153
1154 /*
1155  * This function reverses the DC prediction for each coded fragment in
1156  * the frame. Much of this function is adapted directly from the original
1157  * VP3 source code.
1158  */
1159 #define COMPATIBLE_FRAME(x)                                                   \
1160     (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1161 #define DC_COEFF(u) s->all_fragments[u].dc
1162
1163 static void reverse_dc_prediction(Vp3DecodeContext *s,
1164                                   int first_fragment,
1165                                   int fragment_width,
1166                                   int fragment_height)
1167 {
1168 #define PUL 8
1169 #define PU 4
1170 #define PUR 2
1171 #define PL 1
1172
1173     int x, y;
1174     int i = first_fragment;
1175
1176     int predicted_dc;
1177
1178     /* DC values for the left, up-left, up, and up-right fragments */
1179     int vl, vul, vu, vur;
1180
1181     /* indexes for the left, up-left, up, and up-right fragments */
1182     int l, ul, u, ur;
1183
1184     /*
1185      * The 6 fields mean:
1186      *   0: up-left multiplier
1187      *   1: up multiplier
1188      *   2: up-right multiplier
1189      *   3: left multiplier
1190      */
1191     static const int predictor_transform[16][4] = {
1192         {    0,   0,   0,   0 },
1193         {    0,   0,   0, 128 }, // PL
1194         {    0,   0, 128,   0 }, // PUR
1195         {    0,   0,  53,  75 }, // PUR|PL
1196         {    0, 128,   0,   0 }, // PU
1197         {    0,  64,   0,  64 }, // PU |PL
1198         {    0, 128,   0,   0 }, // PU |PUR
1199         {    0,   0,  53,  75 }, // PU |PUR|PL
1200         {  128,   0,   0,   0 }, // PUL
1201         {    0,   0,   0, 128 }, // PUL|PL
1202         {   64,   0,  64,   0 }, // PUL|PUR
1203         {    0,   0,  53,  75 }, // PUL|PUR|PL
1204         {    0, 128,   0,   0 }, // PUL|PU
1205         { -104, 116,   0, 116 }, // PUL|PU |PL
1206         {   24,  80,  24,   0 }, // PUL|PU |PUR
1207         { -104, 116,   0, 116 }  // PUL|PU |PUR|PL
1208     };
1209
1210     /* This table shows which types of blocks can use other blocks for
1211      * prediction. For example, INTRA is the only mode in this table to
1212      * have a frame number of 0. That means INTRA blocks can only predict
1213      * from other INTRA blocks. There are 2 golden frame coding types;
1214      * blocks encoding in these modes can only predict from other blocks
1215      * that were encoded with these 1 of these 2 modes. */
1216     static const unsigned char compatible_frame[9] = {
1217         1,    /* MODE_INTER_NO_MV */
1218         0,    /* MODE_INTRA */
1219         1,    /* MODE_INTER_PLUS_MV */
1220         1,    /* MODE_INTER_LAST_MV */
1221         1,    /* MODE_INTER_PRIOR_MV */
1222         2,    /* MODE_USING_GOLDEN */
1223         2,    /* MODE_GOLDEN_MV */
1224         1,    /* MODE_INTER_FOUR_MV */
1225         3     /* MODE_COPY */
1226     };
1227     int current_frame_type;
1228
1229     /* there is a last DC predictor for each of the 3 frame types */
1230     short last_dc[3];
1231
1232     int transform = 0;
1233
1234     vul =
1235     vu  =
1236     vur =
1237     vl  = 0;
1238     last_dc[0] =
1239     last_dc[1] =
1240     last_dc[2] = 0;
1241
1242     /* for each fragment row... */
1243     for (y = 0; y < fragment_height; y++) {
1244         /* for each fragment in a row... */
1245         for (x = 0; x < fragment_width; x++, i++) {
1246
1247             /* reverse prediction if this block was coded */
1248             if (s->all_fragments[i].coding_method != MODE_COPY) {
1249                 current_frame_type =
1250                     compatible_frame[s->all_fragments[i].coding_method];
1251
1252                 transform = 0;
1253                 if (x) {
1254                     l  = i - 1;
1255                     vl = DC_COEFF(l);
1256                     if (COMPATIBLE_FRAME(l))
1257                         transform |= PL;
1258                 }
1259                 if (y) {
1260                     u  = i - fragment_width;
1261                     vu = DC_COEFF(u);
1262                     if (COMPATIBLE_FRAME(u))
1263                         transform |= PU;
1264                     if (x) {
1265                         ul  = i - fragment_width - 1;
1266                         vul = DC_COEFF(ul);
1267                         if (COMPATIBLE_FRAME(ul))
1268                             transform |= PUL;
1269                     }
1270                     if (x + 1 < fragment_width) {
1271                         ur  = i - fragment_width + 1;
1272                         vur = DC_COEFF(ur);
1273                         if (COMPATIBLE_FRAME(ur))
1274                             transform |= PUR;
1275                     }
1276                 }
1277
1278                 if (transform == 0) {
1279                     /* if there were no fragments to predict from, use last
1280                      * DC saved */
1281                     predicted_dc = last_dc[current_frame_type];
1282                 } else {
1283                     /* apply the appropriate predictor transform */
1284                     predicted_dc =
1285                         (predictor_transform[transform][0] * vul) +
1286                         (predictor_transform[transform][1] * vu) +
1287                         (predictor_transform[transform][2] * vur) +
1288                         (predictor_transform[transform][3] * vl);
1289
1290                     predicted_dc /= 128;
1291
1292                     /* check for outranging on the [ul u l] and
1293                      * [ul u ur l] predictors */
1294                     if ((transform == 15) || (transform == 13)) {
1295                         if (FFABS(predicted_dc - vu) > 128)
1296                             predicted_dc = vu;
1297                         else if (FFABS(predicted_dc - vl) > 128)
1298                             predicted_dc = vl;
1299                         else if (FFABS(predicted_dc - vul) > 128)
1300                             predicted_dc = vul;
1301                     }
1302                 }
1303
1304                 /* at long last, apply the predictor */
1305                 DC_COEFF(i) += predicted_dc;
1306                 /* save the DC */
1307                 last_dc[current_frame_type] = DC_COEFF(i);
1308             }
1309         }
1310     }
1311 }
1312
1313 static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1314                               int ystart, int yend)
1315 {
1316     int x, y;
1317     int *bounding_values = s->bounding_values_array + 127;
1318
1319     int width           = s->fragment_width[!!plane];
1320     int height          = s->fragment_height[!!plane];
1321     int fragment        = s->fragment_start[plane] + ystart * width;
1322     ptrdiff_t stride    = s->current_frame.f->linesize[plane];
1323     uint8_t *plane_data = s->current_frame.f->data[plane];
1324     if (!s->flipped_image)
1325         stride = -stride;
1326     plane_data += s->data_offset[plane] + 8 * ystart * stride;
1327
1328     for (y = ystart; y < yend; y++) {
1329         for (x = 0; x < width; x++) {
1330             /* This code basically just deblocks on the edges of coded blocks.
1331              * However, it has to be much more complicated because of the
1332              * brain damaged deblock ordering used in VP3/Theora. Order matters
1333              * because some pixels get filtered twice. */
1334             if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1335                 /* do not perform left edge filter for left columns frags */
1336                 if (x > 0) {
1337                     s->vp3dsp.h_loop_filter(
1338                         plane_data + 8 * x,
1339                         stride, bounding_values);
1340                 }
1341
1342                 /* do not perform top edge filter for top row fragments */
1343                 if (y > 0) {
1344                     s->vp3dsp.v_loop_filter(
1345                         plane_data + 8 * x,
1346                         stride, bounding_values);
1347                 }
1348
1349                 /* do not perform right edge filter for right column
1350                  * fragments or if right fragment neighbor is also coded
1351                  * in this frame (it will be filtered in next iteration) */
1352                 if ((x < width - 1) &&
1353                     (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1354                     s->vp3dsp.h_loop_filter(
1355                         plane_data + 8 * x + 8,
1356                         stride, bounding_values);
1357                 }
1358
1359                 /* do not perform bottom edge filter for bottom row
1360                  * fragments or if bottom fragment neighbor is also coded
1361                  * in this frame (it will be filtered in the next row) */
1362                 if ((y < height - 1) &&
1363                     (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1364                     s->vp3dsp.v_loop_filter(
1365                         plane_data + 8 * x + 8 * stride,
1366                         stride, bounding_values);
1367                 }
1368             }
1369
1370             fragment++;
1371         }
1372         plane_data += 8 * stride;
1373     }
1374 }
1375
1376 /**
1377  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1378  * for the next block in coding order
1379  */
1380 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1381                               int plane, int inter, int16_t block[64])
1382 {
1383     int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1384     uint8_t *perm = s->idct_scantable;
1385     int i = 0;
1386
1387     do {
1388         int token = *s->dct_tokens[plane][i];
1389         switch (token & 3) {
1390         case 0: // EOB
1391             if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1392                 s->dct_tokens[plane][i]++;
1393             else
1394                 *s->dct_tokens[plane][i] = token & ~3;
1395             goto end;
1396         case 1: // zero run
1397             s->dct_tokens[plane][i]++;
1398             i += (token >> 2) & 0x7f;
1399             if (i > 63) {
1400                 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1401                 return i;
1402             }
1403             block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1404             i++;
1405             break;
1406         case 2: // coeff
1407             block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1408             s->dct_tokens[plane][i++]++;
1409             break;
1410         default: // shouldn't happen
1411             return i;
1412         }
1413     } while (i < 64);
1414     // return value is expected to be a valid level
1415     i--;
1416 end:
1417     // the actual DC+prediction is in the fragment structure
1418     block[0] = frag->dc * s->qmat[0][inter][plane][0];
1419     return i;
1420 }
1421
1422 /**
1423  * called when all pixels up to row y are complete
1424  */
1425 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1426 {
1427     int h, cy, i;
1428     int offset[AV_NUM_DATA_POINTERS];
1429
1430     if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
1431         int y_flipped = s->flipped_image ? s->height - y : y;
1432
1433         /* At the end of the frame, report INT_MAX instead of the height of
1434          * the frame. This makes the other threads' ff_thread_await_progress()
1435          * calls cheaper, because they don't have to clip their values. */
1436         ff_thread_report_progress(&s->current_frame,
1437                                   y_flipped == s->height ? INT_MAX
1438                                                          : y_flipped - 1,
1439                                   0);
1440     }
1441
1442     if (!s->avctx->draw_horiz_band)
1443         return;
1444
1445     h = y - s->last_slice_end;
1446     s->last_slice_end = y;
1447     y -= h;
1448
1449     if (!s->flipped_image)
1450         y = s->height - y - h;
1451
1452     cy        = y >> s->chroma_y_shift;
1453     offset[0] = s->current_frame.f->linesize[0] * y;
1454     offset[1] = s->current_frame.f->linesize[1] * cy;
1455     offset[2] = s->current_frame.f->linesize[2] * cy;
1456     for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1457         offset[i] = 0;
1458
1459     emms_c();
1460     s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1461 }
1462
1463 /**
1464  * Wait for the reference frame of the current fragment.
1465  * The progress value is in luma pixel rows.
1466  */
1467 static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment,
1468                                 int motion_y, int y)
1469 {
1470     ThreadFrame *ref_frame;
1471     int ref_row;
1472     int border = motion_y & 1;
1473
1474     if (fragment->coding_method == MODE_USING_GOLDEN ||
1475         fragment->coding_method == MODE_GOLDEN_MV)
1476         ref_frame = &s->golden_frame;
1477     else
1478         ref_frame = &s->last_frame;
1479
1480     ref_row = y + (motion_y >> 1);
1481     ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1482
1483     ff_thread_await_progress(ref_frame, ref_row, 0);
1484 }
1485
1486 /*
1487  * Perform the final rendering for a particular slice of data.
1488  * The slice number ranges from 0..(c_superblock_height - 1).
1489  */
1490 static void render_slice(Vp3DecodeContext *s, int slice)
1491 {
1492     int x, y, i, j, fragment;
1493     int16_t *block = s->block;
1494     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1495     int motion_halfpel_index;
1496     uint8_t *motion_source;
1497     int plane, first_pixel;
1498
1499     if (slice >= s->c_superblock_height)
1500         return;
1501
1502     for (plane = 0; plane < 3; plane++) {
1503         uint8_t *output_plane = s->current_frame.f->data[plane] +
1504                                 s->data_offset[plane];
1505         uint8_t *last_plane = s->last_frame.f->data[plane] +
1506                               s->data_offset[plane];
1507         uint8_t *golden_plane = s->golden_frame.f->data[plane] +
1508                                 s->data_offset[plane];
1509         ptrdiff_t stride = s->current_frame.f->linesize[plane];
1510         int plane_width  = s->width  >> (plane && s->chroma_x_shift);
1511         int plane_height = s->height >> (plane && s->chroma_y_shift);
1512         int8_t(*motion_val)[2] = s->motion_val[!!plane];
1513
1514         int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1515         int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1516         int slice_width  = plane ? s->c_superblock_width
1517                                  : s->y_superblock_width;
1518
1519         int fragment_width  = s->fragment_width[!!plane];
1520         int fragment_height = s->fragment_height[!!plane];
1521         int fragment_start  = s->fragment_start[plane];
1522
1523         int do_await = !plane && HAVE_THREADS &&
1524                        (s->avctx->active_thread_type & FF_THREAD_FRAME);
1525
1526         if (!s->flipped_image)
1527             stride = -stride;
1528         if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
1529             continue;
1530
1531         /* for each superblock row in the slice (both of them)... */
1532         for (; sb_y < slice_height; sb_y++) {
1533             /* for each superblock in a row... */
1534             for (sb_x = 0; sb_x < slice_width; sb_x++) {
1535                 /* for each block in a superblock... */
1536                 for (j = 0; j < 16; j++) {
1537                     x        = 4 * sb_x + hilbert_offset[j][0];
1538                     y        = 4 * sb_y + hilbert_offset[j][1];
1539                     fragment = y * fragment_width + x;
1540
1541                     i = fragment_start + fragment;
1542
1543                     // bounds check
1544                     if (x >= fragment_width || y >= fragment_height)
1545                         continue;
1546
1547                     first_pixel = 8 * y * stride + 8 * x;
1548
1549                     if (do_await &&
1550                         s->all_fragments[i].coding_method != MODE_INTRA)
1551                         await_reference_row(s, &s->all_fragments[i],
1552                                             motion_val[fragment][1],
1553                                             (16 * y) >> s->chroma_y_shift);
1554
1555                     /* transform if this block was coded */
1556                     if (s->all_fragments[i].coding_method != MODE_COPY) {
1557                         if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1558                             (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1559                             motion_source = golden_plane;
1560                         else
1561                             motion_source = last_plane;
1562
1563                         motion_source       += first_pixel;
1564                         motion_halfpel_index = 0;
1565
1566                         /* sort out the motion vector if this fragment is coded
1567                          * using a motion vector method */
1568                         if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1569                             (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1570                             int src_x, src_y;
1571                             motion_x = motion_val[fragment][0];
1572                             motion_y = motion_val[fragment][1];
1573
1574                             src_x = (motion_x >> 1) + 8 * x;
1575                             src_y = (motion_y >> 1) + 8 * y;
1576
1577                             motion_halfpel_index = motion_x & 0x01;
1578                             motion_source       += (motion_x >> 1);
1579
1580                             motion_halfpel_index |= (motion_y & 0x01) << 1;
1581                             motion_source        += ((motion_y >> 1) * stride);
1582
1583                             if (src_x < 0 || src_y < 0 ||
1584                                 src_x + 9 >= plane_width ||
1585                                 src_y + 9 >= plane_height) {
1586                                 uint8_t *temp = s->edge_emu_buffer;
1587                                 if (stride < 0)
1588                                     temp -= 8 * stride;
1589
1590                                 s->vdsp.emulated_edge_mc(temp, motion_source,
1591                                                          stride, stride,
1592                                                          9, 9, src_x, src_y,
1593                                                          plane_width,
1594                                                          plane_height);
1595                                 motion_source = temp;
1596                             }
1597                         }
1598
1599                         /* first, take care of copying a block from either the
1600                          * previous or the golden frame */
1601                         if (s->all_fragments[i].coding_method != MODE_INTRA) {
1602                             /* Note, it is possible to implement all MC cases
1603                              * with put_no_rnd_pixels_l2 which would look more
1604                              * like the VP3 source but this would be slower as
1605                              * put_no_rnd_pixels_tab is better optimized */
1606                             if (motion_halfpel_index != 3) {
1607                                 s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1608                                     output_plane + first_pixel,
1609                                     motion_source, stride, 8);
1610                             } else {
1611                                 /* d is 0 if motion_x and _y have the same sign,
1612                                  * else -1 */
1613                                 int d = (motion_x ^ motion_y) >> 31;
1614                                 s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
1615                                                                motion_source - d,
1616                                                                motion_source + stride + 1 + d,
1617                                                                stride, 8);
1618                             }
1619                         }
1620
1621                         /* invert DCT and place (or add) in final output */
1622
1623                         if (s->all_fragments[i].coding_method == MODE_INTRA) {
1624                             vp3_dequant(s, s->all_fragments + i,
1625                                         plane, 0, block);
1626                             s->vp3dsp.idct_put(output_plane + first_pixel,
1627                                                stride,
1628                                                block);
1629                         } else {
1630                             if (vp3_dequant(s, s->all_fragments + i,
1631                                             plane, 1, block)) {
1632                                 s->vp3dsp.idct_add(output_plane + first_pixel,
1633                                                    stride,
1634                                                    block);
1635                             } else {
1636                                 s->vp3dsp.idct_dc_add(output_plane + first_pixel,
1637                                                       stride, block);
1638                             }
1639                         }
1640                     } else {
1641                         /* copy directly from the previous frame */
1642                         s->hdsp.put_pixels_tab[1][0](
1643                             output_plane + first_pixel,
1644                             last_plane + first_pixel,
1645                             stride, 8);
1646                     }
1647                 }
1648             }
1649
1650             // Filter up to the last row in the superblock row
1651             if (!s->skip_loop_filter)
1652                 apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
1653                                   FFMIN(4 * sb_y + 3, fragment_height - 1));
1654         }
1655     }
1656
1657     /* this looks like a good place for slice dispatch... */
1658     /* algorithm:
1659      *   if (slice == s->macroblock_height - 1)
1660      *     dispatch (both last slice & 2nd-to-last slice);
1661      *   else if (slice > 0)
1662      *     dispatch (slice - 1);
1663      */
1664
1665     vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
1666                                  s->height - 16));
1667 }
1668
1669 /// Allocate tables for per-frame data in Vp3DecodeContext
1670 static av_cold int allocate_tables(AVCodecContext *avctx)
1671 {
1672     Vp3DecodeContext *s = avctx->priv_data;
1673     int y_fragment_count, c_fragment_count;
1674
1675     free_tables(avctx);
1676
1677     y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1678     c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1679
1680     s->superblock_coding = av_mallocz(s->superblock_count);
1681     s->all_fragments     = av_mallocz_array(s->fragment_count, sizeof(Vp3Fragment));
1682
1683     s->coded_fragment_list[0] = av_mallocz_array(s->fragment_count, sizeof(int));
1684
1685     s->dct_tokens_base = av_mallocz_array(s->fragment_count,
1686                                           64 * sizeof(*s->dct_tokens_base));
1687     s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
1688     s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
1689
1690     /* work out the block mapping tables */
1691     s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
1692     s->macroblock_coding    = av_mallocz(s->macroblock_count + 1);
1693
1694     if (!s->superblock_coding    || !s->all_fragments          ||
1695         !s->dct_tokens_base      || !s->coded_fragment_list[0] ||
1696         !s->superblock_fragments || !s->macroblock_coding      ||
1697         !s->motion_val[0]        || !s->motion_val[1]) {
1698         vp3_decode_end(avctx);
1699         return -1;
1700     }
1701
1702     init_block_mapping(s);
1703
1704     return 0;
1705 }
1706
1707 static av_cold int init_frames(Vp3DecodeContext *s)
1708 {
1709     s->current_frame.f = av_frame_alloc();
1710     s->last_frame.f    = av_frame_alloc();
1711     s->golden_frame.f  = av_frame_alloc();
1712
1713     if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
1714         av_frame_free(&s->current_frame.f);
1715         av_frame_free(&s->last_frame.f);
1716         av_frame_free(&s->golden_frame.f);
1717         return AVERROR(ENOMEM);
1718     }
1719
1720     return 0;
1721 }
1722
1723 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1724 {
1725     Vp3DecodeContext *s = avctx->priv_data;
1726     int i, inter, plane, ret;
1727     int c_width;
1728     int c_height;
1729     int y_fragment_count, c_fragment_count;
1730
1731     ret = init_frames(s);
1732     if (ret < 0)
1733         return ret;
1734
1735     avctx->internal->allocate_progress = 1;
1736
1737     if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
1738         s->version = 0;
1739     else
1740         s->version = 1;
1741
1742     s->avctx  = avctx;
1743     s->width  = FFALIGN(avctx->coded_width, 16);
1744     s->height = FFALIGN(avctx->coded_height, 16);
1745     if (avctx->codec_id != AV_CODEC_ID_THEORA)
1746         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1747     avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1748     ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT);
1749     ff_videodsp_init(&s->vdsp, 8);
1750     ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1751
1752     for (i = 0; i < 64; i++) {
1753 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
1754         s->idct_permutation[i] = TRANSPOSE(i);
1755         s->idct_scantable[i]   = TRANSPOSE(ff_zigzag_direct[i]);
1756 #undef TRANSPOSE
1757     }
1758
1759     /* initialize to an impossible value which will force a recalculation
1760      * in the first frame decode */
1761     for (i = 0; i < 3; i++)
1762         s->qps[i] = -1;
1763
1764     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1765
1766     s->y_superblock_width  = (s->width  + 31) / 32;
1767     s->y_superblock_height = (s->height + 31) / 32;
1768     s->y_superblock_count  = s->y_superblock_width * s->y_superblock_height;
1769
1770     /* work out the dimensions for the C planes */
1771     c_width                = s->width >> s->chroma_x_shift;
1772     c_height               = s->height >> s->chroma_y_shift;
1773     s->c_superblock_width  = (c_width  + 31) / 32;
1774     s->c_superblock_height = (c_height + 31) / 32;
1775     s->c_superblock_count  = s->c_superblock_width * s->c_superblock_height;
1776
1777     s->superblock_count   = s->y_superblock_count + (s->c_superblock_count * 2);
1778     s->u_superblock_start = s->y_superblock_count;
1779     s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1780
1781     s->macroblock_width  = (s->width  + 15) / 16;
1782     s->macroblock_height = (s->height + 15) / 16;
1783     s->macroblock_count  = s->macroblock_width * s->macroblock_height;
1784
1785     s->fragment_width[0]  = s->width / FRAGMENT_PIXELS;
1786     s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1787     s->fragment_width[1]  = s->fragment_width[0] >> s->chroma_x_shift;
1788     s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1789
1790     /* fragment count covers all 8x8 blocks for all 3 planes */
1791     y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
1792     c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
1793     s->fragment_count    = y_fragment_count + 2 * c_fragment_count;
1794     s->fragment_start[1] = y_fragment_count;
1795     s->fragment_start[2] = y_fragment_count + c_fragment_count;
1796
1797     if (!s->theora_tables) {
1798         for (i = 0; i < 64; i++) {
1799             s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1800             s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1801             s->base_matrix[0][i]        = vp31_intra_y_dequant[i];
1802             s->base_matrix[1][i]        = vp31_intra_c_dequant[i];
1803             s->base_matrix[2][i]        = vp31_inter_dequant[i];
1804             s->filter_limit_values[i]   = vp31_filter_limit_values[i];
1805         }
1806
1807         for (inter = 0; inter < 2; inter++) {
1808             for (plane = 0; plane < 3; plane++) {
1809                 s->qr_count[inter][plane]   = 1;
1810                 s->qr_size[inter][plane][0] = 63;
1811                 s->qr_base[inter][plane][0] =
1812                 s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
1813             }
1814         }
1815
1816         /* init VLC tables */
1817         for (i = 0; i < 16; i++) {
1818             /* DC histograms */
1819             init_vlc(&s->dc_vlc[i], 11, 32,
1820                      &dc_bias[i][0][1], 4, 2,
1821                      &dc_bias[i][0][0], 4, 2, 0);
1822
1823             /* group 1 AC histograms */
1824             init_vlc(&s->ac_vlc_1[i], 11, 32,
1825                      &ac_bias_0[i][0][1], 4, 2,
1826                      &ac_bias_0[i][0][0], 4, 2, 0);
1827
1828             /* group 2 AC histograms */
1829             init_vlc(&s->ac_vlc_2[i], 11, 32,
1830                      &ac_bias_1[i][0][1], 4, 2,
1831                      &ac_bias_1[i][0][0], 4, 2, 0);
1832
1833             /* group 3 AC histograms */
1834             init_vlc(&s->ac_vlc_3[i], 11, 32,
1835                      &ac_bias_2[i][0][1], 4, 2,
1836                      &ac_bias_2[i][0][0], 4, 2, 0);
1837
1838             /* group 4 AC histograms */
1839             init_vlc(&s->ac_vlc_4[i], 11, 32,
1840                      &ac_bias_3[i][0][1], 4, 2,
1841                      &ac_bias_3[i][0][0], 4, 2, 0);
1842         }
1843     } else {
1844         for (i = 0; i < 16; i++) {
1845             /* DC histograms */
1846             if (init_vlc(&s->dc_vlc[i], 11, 32,
1847                          &s->huffman_table[i][0][1], 8, 4,
1848                          &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1849                 goto vlc_fail;
1850
1851             /* group 1 AC histograms */
1852             if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1853                          &s->huffman_table[i + 16][0][1], 8, 4,
1854                          &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
1855                 goto vlc_fail;
1856
1857             /* group 2 AC histograms */
1858             if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1859                          &s->huffman_table[i + 16 * 2][0][1], 8, 4,
1860                          &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
1861                 goto vlc_fail;
1862
1863             /* group 3 AC histograms */
1864             if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1865                          &s->huffman_table[i + 16 * 3][0][1], 8, 4,
1866                          &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
1867                 goto vlc_fail;
1868
1869             /* group 4 AC histograms */
1870             if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1871                          &s->huffman_table[i + 16 * 4][0][1], 8, 4,
1872                          &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
1873                 goto vlc_fail;
1874         }
1875     }
1876
1877     init_vlc(&s->superblock_run_length_vlc, 6, 34,
1878              &superblock_run_length_vlc_table[0][1], 4, 2,
1879              &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1880
1881     init_vlc(&s->fragment_run_length_vlc, 5, 30,
1882              &fragment_run_length_vlc_table[0][1], 4, 2,
1883              &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1884
1885     init_vlc(&s->mode_code_vlc, 3, 8,
1886              &mode_code_vlc_table[0][1], 2, 1,
1887              &mode_code_vlc_table[0][0], 2, 1, 0);
1888
1889     init_vlc(&s->motion_vector_vlc, 6, 63,
1890              &motion_vector_vlc_table[0][1], 2, 1,
1891              &motion_vector_vlc_table[0][0], 2, 1, 0);
1892
1893     return allocate_tables(avctx);
1894
1895 vlc_fail:
1896     av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1897     return -1;
1898 }
1899
1900 /// Release and shuffle frames after decode finishes
1901 static int update_frames(AVCodecContext *avctx)
1902 {
1903     Vp3DecodeContext *s = avctx->priv_data;
1904     int ret = 0;
1905
1906     /* shuffle frames (last = current) */
1907     ff_thread_release_buffer(avctx, &s->last_frame);
1908     ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
1909     if (ret < 0)
1910         goto fail;
1911
1912     if (s->keyframe) {
1913         ff_thread_release_buffer(avctx, &s->golden_frame);
1914         ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
1915     }
1916
1917 fail:
1918     ff_thread_release_buffer(avctx, &s->current_frame);
1919     return ret;
1920 }
1921
1922 static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
1923 {
1924     ff_thread_release_buffer(s->avctx, dst);
1925     if (src->f->data[0])
1926         return ff_thread_ref_frame(dst, src);
1927     return 0;
1928 }
1929
1930 static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
1931 {
1932     int ret;
1933     if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
1934         (ret = ref_frame(dst, &dst->golden_frame,  &src->golden_frame)) < 0  ||
1935         (ret = ref_frame(dst, &dst->last_frame,    &src->last_frame)) < 0)
1936         return ret;
1937     return 0;
1938 }
1939
1940 #if HAVE_THREADS
1941 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
1942 {
1943     Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1944     int qps_changed = 0, i, err;
1945
1946 #define copy_fields(to, from, start_field, end_field)                         \
1947     memcpy(&to->start_field, &from->start_field,                              \
1948            (char *) &to->end_field - (char *) &to->start_field)
1949
1950     if (!s1->current_frame.f->data[0] ||
1951         s->width != s1->width || s->height != s1->height) {
1952         if (s != s1)
1953             ref_frames(s, s1);
1954         return -1;
1955     }
1956
1957     if (s != s1) {
1958         if (!s->current_frame.f)
1959             return AVERROR(ENOMEM);
1960         // init tables if the first frame hasn't been decoded
1961         if (!s->current_frame.f->data[0]) {
1962             int y_fragment_count, c_fragment_count;
1963             s->avctx = dst;
1964             err = allocate_tables(dst);
1965             if (err)
1966                 return err;
1967             y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1968             c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1969             memcpy(s->motion_val[0], s1->motion_val[0],
1970                    y_fragment_count * sizeof(*s->motion_val[0]));
1971             memcpy(s->motion_val[1], s1->motion_val[1],
1972                    c_fragment_count * sizeof(*s->motion_val[1]));
1973         }
1974
1975         // copy previous frame data
1976         if ((err = ref_frames(s, s1)) < 0)
1977             return err;
1978
1979         s->keyframe = s1->keyframe;
1980
1981         // copy qscale data if necessary
1982         for (i = 0; i < 3; i++) {
1983             if (s->qps[i] != s1->qps[1]) {
1984                 qps_changed = 1;
1985                 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1986             }
1987         }
1988
1989         if (s->qps[0] != s1->qps[0])
1990             memcpy(&s->bounding_values_array, &s1->bounding_values_array,
1991                    sizeof(s->bounding_values_array));
1992
1993         if (qps_changed)
1994             copy_fields(s, s1, qps, superblock_count);
1995 #undef copy_fields
1996     }
1997
1998     return update_frames(dst);
1999 }
2000 #endif
2001
2002 static int vp3_decode_frame(AVCodecContext *avctx,
2003                             void *data, int *got_frame,
2004                             AVPacket *avpkt)
2005 {
2006     const uint8_t *buf  = avpkt->data;
2007     int buf_size        = avpkt->size;
2008     Vp3DecodeContext *s = avctx->priv_data;
2009     GetBitContext gb;
2010     int i, ret;
2011
2012     if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
2013         return ret;
2014
2015 #if CONFIG_THEORA_DECODER
2016     if (s->theora && get_bits1(&gb)) {
2017         int type = get_bits(&gb, 7);
2018         skip_bits_long(&gb, 6*8); /* "theora" */
2019
2020         if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
2021             av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2022             return AVERROR_PATCHWELCOME;
2023         }
2024         if (type == 0) {
2025             vp3_decode_end(avctx);
2026             ret = theora_decode_header(avctx, &gb);
2027
2028             if (ret >= 0)
2029                 ret = vp3_decode_init(avctx);
2030             if (ret < 0) {
2031                 vp3_decode_end(avctx);
2032                 return ret;
2033             }
2034             return buf_size;
2035         } else if (type == 2) {
2036             vp3_decode_end(avctx);
2037             ret = theora_decode_tables(avctx, &gb);
2038             if (ret >= 0)
2039                 ret = vp3_decode_init(avctx);
2040             if (ret < 0) {
2041                 vp3_decode_end(avctx);
2042                 return ret;
2043             }
2044             return buf_size;
2045         }
2046
2047         av_log(avctx, AV_LOG_ERROR,
2048                "Header packet passed to frame decoder, skipping\n");
2049         return -1;
2050     }
2051 #endif
2052
2053     s->keyframe = !get_bits1(&gb);
2054     if (!s->all_fragments) {
2055         av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2056         return -1;
2057     }
2058     if (!s->theora)
2059         skip_bits(&gb, 1);
2060     for (i = 0; i < 3; i++)
2061         s->last_qps[i] = s->qps[i];
2062
2063     s->nqps = 0;
2064     do {
2065         s->qps[s->nqps++] = get_bits(&gb, 6);
2066     } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2067     for (i = s->nqps; i < 3; i++)
2068         s->qps[i] = -1;
2069
2070     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2071         av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2072                s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2073
2074     s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2075                           avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2076                                                                   : AVDISCARD_NONKEY);
2077
2078     if (s->qps[0] != s->last_qps[0])
2079         init_loop_filter(s);
2080
2081     for (i = 0; i < s->nqps; i++)
2082         // reinit all dequantizers if the first one changed, because
2083         // the DC of the first quantizer must be used for all matrices
2084         if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2085             init_dequantizer(s, i);
2086
2087     if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2088         return buf_size;
2089
2090     s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
2091                                                 : AV_PICTURE_TYPE_P;
2092     s->current_frame.f->key_frame = s->keyframe;
2093     if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
2094         goto error;
2095
2096     if (!s->edge_emu_buffer)
2097         s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
2098
2099     if (s->keyframe) {
2100         if (!s->theora) {
2101             skip_bits(&gb, 4); /* width code */
2102             skip_bits(&gb, 4); /* height code */
2103             if (s->version) {
2104                 s->version = get_bits(&gb, 5);
2105                 if (avctx->frame_number == 0)
2106                     av_log(s->avctx, AV_LOG_DEBUG,
2107                            "VP version: %d\n", s->version);
2108             }
2109         }
2110         if (s->version || s->theora) {
2111             if (get_bits1(&gb))
2112                 av_log(s->avctx, AV_LOG_ERROR,
2113                        "Warning, unsupported keyframe coding type?!\n");
2114             skip_bits(&gb, 2); /* reserved? */
2115         }
2116     } else {
2117         if (!s->golden_frame.f->data[0]) {
2118             av_log(s->avctx, AV_LOG_WARNING,
2119                    "vp3: first frame not a keyframe\n");
2120
2121             s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
2122             if (ff_thread_get_buffer(avctx, &s->golden_frame,
2123                                      AV_GET_BUFFER_FLAG_REF) < 0)
2124                 goto error;
2125             ff_thread_release_buffer(avctx, &s->last_frame);
2126             if ((ret = ff_thread_ref_frame(&s->last_frame,
2127                                            &s->golden_frame)) < 0)
2128                 goto error;
2129             ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2130         }
2131     }
2132
2133     memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2134     ff_thread_finish_setup(avctx);
2135
2136     if (unpack_superblocks(s, &gb)) {
2137         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2138         goto error;
2139     }
2140     if (unpack_modes(s, &gb)) {
2141         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2142         goto error;
2143     }
2144     if (unpack_vectors(s, &gb)) {
2145         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2146         goto error;
2147     }
2148     if (unpack_block_qpis(s, &gb)) {
2149         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2150         goto error;
2151     }
2152     if (unpack_dct_coeffs(s, &gb)) {
2153         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2154         goto error;
2155     }
2156
2157     for (i = 0; i < 3; i++) {
2158         int height = s->height >> (i && s->chroma_y_shift);
2159         if (s->flipped_image)
2160             s->data_offset[i] = 0;
2161         else
2162             s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2163     }
2164
2165     s->last_slice_end = 0;
2166     for (i = 0; i < s->c_superblock_height; i++)
2167         render_slice(s, i);
2168
2169     // filter the last row
2170     for (i = 0; i < 3; i++) {
2171         int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2172         apply_loop_filter(s, i, row, row + 1);
2173     }
2174     vp3_draw_horiz_band(s, s->height);
2175
2176     /* output frame, offset as needed */
2177     if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2178         return ret;
2179     for (i = 0; i < 3; i++) {
2180         AVFrame *dst = data;
2181         int off = (s->offset_x >> (i && s->chroma_y_shift)) +
2182                   (s->offset_y >> (i && s->chroma_y_shift)) * dst->linesize[i];
2183         dst->data[i] += off;
2184     }
2185     *got_frame = 1;
2186
2187     if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2188         ret = update_frames(avctx);
2189         if (ret < 0)
2190             return ret;
2191     }
2192
2193     return buf_size;
2194
2195 error:
2196     ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2197
2198     if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2199         av_frame_unref(s->current_frame.f);
2200
2201     return -1;
2202 }
2203
2204 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2205 {
2206     Vp3DecodeContext *s = avctx->priv_data;
2207
2208     if (get_bits1(gb)) {
2209         int token;
2210         if (s->entries >= 32) { /* overflow */
2211             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2212             return -1;
2213         }
2214         token = get_bits(gb, 5);
2215         ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2216                 s->hti, s->hbits, token, s->entries, s->huff_code_size);
2217         s->huffman_table[s->hti][token][0] = s->hbits;
2218         s->huffman_table[s->hti][token][1] = s->huff_code_size;
2219         s->entries++;
2220     } else {
2221         if (s->huff_code_size >= 32) { /* overflow */
2222             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2223             return -1;
2224         }
2225         s->huff_code_size++;
2226         s->hbits <<= 1;
2227         if (read_huffman_tree(avctx, gb))
2228             return -1;
2229         s->hbits |= 1;
2230         if (read_huffman_tree(avctx, gb))
2231             return -1;
2232         s->hbits >>= 1;
2233         s->huff_code_size--;
2234     }
2235     return 0;
2236 }
2237
2238 #if HAVE_THREADS
2239 static int vp3_init_thread_copy(AVCodecContext *avctx)
2240 {
2241     Vp3DecodeContext *s = avctx->priv_data;
2242
2243     s->superblock_coding      = NULL;
2244     s->all_fragments          = NULL;
2245     s->coded_fragment_list[0] = NULL;
2246     s->dct_tokens_base        = NULL;
2247     s->superblock_fragments   = NULL;
2248     s->macroblock_coding      = NULL;
2249     s->motion_val[0]          = NULL;
2250     s->motion_val[1]          = NULL;
2251     s->edge_emu_buffer        = NULL;
2252
2253     return init_frames(s);
2254 }
2255 #endif
2256
2257 #if CONFIG_THEORA_DECODER
2258 static const enum AVPixelFormat theora_pix_fmts[4] = {
2259     AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
2260 };
2261
2262 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2263 {
2264     Vp3DecodeContext *s = avctx->priv_data;
2265     int visible_width, visible_height, colorspace;
2266     uint8_t offset_x = 0, offset_y = 0;
2267     int ret;
2268     AVRational fps, aspect;
2269
2270     s->theora_header = 0;
2271     s->theora = get_bits_long(gb, 24);
2272     av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2273
2274     /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2275      * but previous versions have the image flipped relative to vp3 */
2276     if (s->theora < 0x030200) {
2277         s->flipped_image = 1;
2278         av_log(avctx, AV_LOG_DEBUG,
2279                "Old (<alpha3) Theora bitstream, flipped image\n");
2280     }
2281
2282     visible_width  =
2283     s->width       = get_bits(gb, 16) << 4;
2284     visible_height =
2285     s->height      = get_bits(gb, 16) << 4;
2286
2287     if (s->theora >= 0x030200) {
2288         visible_width  = get_bits_long(gb, 24);
2289         visible_height = get_bits_long(gb, 24);
2290
2291         offset_x = get_bits(gb, 8); /* offset x */
2292         offset_y = get_bits(gb, 8); /* offset y, from bottom */
2293     }
2294
2295     /* sanity check */
2296     if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
2297         visible_width  + offset_x > s->width ||
2298         visible_height + offset_y > s->height) {
2299         av_log(avctx, AV_LOG_ERROR,
2300                "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2301                visible_width, visible_height, offset_x, offset_y,
2302                s->width, s->height);
2303         return AVERROR_INVALIDDATA;
2304     }
2305
2306     fps.num = get_bits_long(gb, 32);
2307     fps.den = get_bits_long(gb, 32);
2308     if (fps.num && fps.den) {
2309         if (fps.num < 0 || fps.den < 0) {
2310             av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2311             return AVERROR_INVALIDDATA;
2312         }
2313         av_reduce(&avctx->framerate.den, &avctx->framerate.num,
2314                   fps.den, fps.num, 1 << 30);
2315     }
2316
2317     aspect.num = get_bits_long(gb, 24);
2318     aspect.den = get_bits_long(gb, 24);
2319     if (aspect.num && aspect.den) {
2320         av_reduce(&avctx->sample_aspect_ratio.num,
2321                   &avctx->sample_aspect_ratio.den,
2322                   aspect.num, aspect.den, 1 << 30);
2323         ff_set_sar(avctx, avctx->sample_aspect_ratio);
2324     }
2325
2326     if (s->theora < 0x030200)
2327         skip_bits(gb, 5); /* keyframe frequency force */
2328     colorspace = get_bits(gb, 8);
2329     skip_bits(gb, 24); /* bitrate */
2330
2331     skip_bits(gb, 6); /* quality hint */
2332
2333     if (s->theora >= 0x030200) {
2334         skip_bits(gb, 5); /* keyframe frequency force */
2335         avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2336         if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2337             av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2338             return AVERROR_INVALIDDATA;
2339         }
2340         skip_bits(gb, 3); /* reserved */
2341     } else
2342         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2343
2344     ret = ff_set_dimensions(avctx, s->width, s->height);
2345     if (ret < 0)
2346         return ret;
2347     if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
2348         avctx->width  = visible_width;
2349         avctx->height = visible_height;
2350         // translate offsets from theora axis ([0,0] lower left)
2351         // to normal axis ([0,0] upper left)
2352         s->offset_x = offset_x;
2353         s->offset_y = s->height - visible_height - offset_y;
2354
2355         if ((s->offset_x & 0x1F) && !(avctx->flags & AV_CODEC_FLAG_UNALIGNED)) {
2356             s->offset_x &= ~0x1F;
2357             if (!s->offset_x_warned) {
2358                 s->offset_x_warned = 1;
2359                 av_log(avctx, AV_LOG_WARNING, "Reducing offset_x from %d to %d"
2360                     "chroma samples to preserve alignment.\n",
2361                     offset_x, s->offset_x);
2362             }
2363         }
2364     }
2365
2366     if (colorspace == 1)
2367         avctx->color_primaries = AVCOL_PRI_BT470M;
2368     else if (colorspace == 2)
2369         avctx->color_primaries = AVCOL_PRI_BT470BG;
2370
2371     if (colorspace == 1 || colorspace == 2) {
2372         avctx->colorspace = AVCOL_SPC_BT470BG;
2373         avctx->color_trc  = AVCOL_TRC_BT709;
2374     }
2375
2376     s->theora_header = 1;
2377     return 0;
2378 }
2379
2380 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2381 {
2382     Vp3DecodeContext *s = avctx->priv_data;
2383     int i, n, matrices, inter, plane;
2384
2385     if (!s->theora_header)
2386         return AVERROR_INVALIDDATA;
2387
2388     if (s->theora >= 0x030200) {
2389         n = get_bits(gb, 3);
2390         /* loop filter limit values table */
2391         if (n)
2392             for (i = 0; i < 64; i++)
2393                 s->filter_limit_values[i] = get_bits(gb, n);
2394     }
2395
2396     if (s->theora >= 0x030200)
2397         n = get_bits(gb, 4) + 1;
2398     else
2399         n = 16;
2400     /* quality threshold table */
2401     for (i = 0; i < 64; i++)
2402         s->coded_ac_scale_factor[i] = get_bits(gb, n);
2403
2404     if (s->theora >= 0x030200)
2405         n = get_bits(gb, 4) + 1;
2406     else
2407         n = 16;
2408     /* dc scale factor table */
2409     for (i = 0; i < 64; i++)
2410         s->coded_dc_scale_factor[i] = get_bits(gb, n);
2411
2412     if (s->theora >= 0x030200)
2413         matrices = get_bits(gb, 9) + 1;
2414     else
2415         matrices = 3;
2416
2417     if (matrices > 384) {
2418         av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2419         return -1;
2420     }
2421
2422     for (n = 0; n < matrices; n++)
2423         for (i = 0; i < 64; i++)
2424             s->base_matrix[n][i] = get_bits(gb, 8);
2425
2426     for (inter = 0; inter <= 1; inter++) {
2427         for (plane = 0; plane <= 2; plane++) {
2428             int newqr = 1;
2429             if (inter || plane > 0)
2430                 newqr = get_bits1(gb);
2431             if (!newqr) {
2432                 int qtj, plj;
2433                 if (inter && get_bits1(gb)) {
2434                     qtj = 0;
2435                     plj = plane;
2436                 } else {
2437                     qtj = (3 * inter + plane - 1) / 3;
2438                     plj = (plane + 2) % 3;
2439                 }
2440                 s->qr_count[inter][plane] = s->qr_count[qtj][plj];
2441                 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
2442                        sizeof(s->qr_size[0][0]));
2443                 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
2444                        sizeof(s->qr_base[0][0]));
2445             } else {
2446                 int qri = 0;
2447                 int qi  = 0;
2448
2449                 for (;;) {
2450                     i = get_bits(gb, av_log2(matrices - 1) + 1);
2451                     if (i >= matrices) {
2452                         av_log(avctx, AV_LOG_ERROR,
2453                                "invalid base matrix index\n");
2454                         return -1;
2455                     }
2456                     s->qr_base[inter][plane][qri] = i;
2457                     if (qi >= 63)
2458                         break;
2459                     i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
2460                     s->qr_size[inter][plane][qri++] = i;
2461                     qi += i;
2462                 }
2463
2464                 if (qi > 63) {
2465                     av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2466                     return -1;
2467                 }
2468                 s->qr_count[inter][plane] = qri;
2469             }
2470         }
2471     }
2472
2473     /* Huffman tables */
2474     for (s->hti = 0; s->hti < 80; s->hti++) {
2475         s->entries        = 0;
2476         s->huff_code_size = 1;
2477         if (!get_bits1(gb)) {
2478             s->hbits = 0;
2479             if (read_huffman_tree(avctx, gb))
2480                 return -1;
2481             s->hbits = 1;
2482             if (read_huffman_tree(avctx, gb))
2483                 return -1;
2484         }
2485     }
2486
2487     s->theora_tables = 1;
2488
2489     return 0;
2490 }
2491
2492 static av_cold int theora_decode_init(AVCodecContext *avctx)
2493 {
2494     Vp3DecodeContext *s = avctx->priv_data;
2495     GetBitContext gb;
2496     int ptype;
2497     const uint8_t *header_start[3];
2498     int header_len[3];
2499     int i;
2500     int ret;
2501
2502     avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2503
2504     s->theora = 1;
2505
2506     if (!avctx->extradata_size) {
2507         av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2508         return -1;
2509     }
2510
2511     if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2512                                   42, header_start, header_len) < 0) {
2513         av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2514         return -1;
2515     }
2516
2517     for (i = 0; i < 3; i++) {
2518         if (header_len[i] <= 0)
2519             continue;
2520         ret = init_get_bits8(&gb, header_start[i], header_len[i]);
2521         if (ret < 0)
2522             return ret;
2523
2524         ptype = get_bits(&gb, 8);
2525
2526         if (!(ptype & 0x80)) {
2527             av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2528 //          return -1;
2529         }
2530
2531         // FIXME: Check for this as well.
2532         skip_bits_long(&gb, 6 * 8); /* "theora" */
2533
2534         switch (ptype) {
2535         case 0x80:
2536             if (theora_decode_header(avctx, &gb) < 0)
2537                 return -1;
2538             break;
2539         case 0x81:
2540 // FIXME: is this needed? it breaks sometimes
2541 //            theora_decode_comments(avctx, gb);
2542             break;
2543         case 0x82:
2544             if (theora_decode_tables(avctx, &gb))
2545                 return -1;
2546             break;
2547         default:
2548             av_log(avctx, AV_LOG_ERROR,
2549                    "Unknown Theora config packet: %d\n", ptype & ~0x80);
2550             break;
2551         }
2552         if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
2553             av_log(avctx, AV_LOG_WARNING,
2554                    "%d bits left in packet %X\n",
2555                    8 * header_len[i] - get_bits_count(&gb), ptype);
2556         if (s->theora < 0x030200)
2557             break;
2558     }
2559
2560     return vp3_decode_init(avctx);
2561 }
2562
2563 AVCodec ff_theora_decoder = {
2564     .name                  = "theora",
2565     .long_name             = NULL_IF_CONFIG_SMALL("Theora"),
2566     .type                  = AVMEDIA_TYPE_VIDEO,
2567     .id                    = AV_CODEC_ID_THEORA,
2568     .priv_data_size        = sizeof(Vp3DecodeContext),
2569     .init                  = theora_decode_init,
2570     .close                 = vp3_decode_end,
2571     .decode                = vp3_decode_frame,
2572     .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
2573                              AV_CODEC_CAP_FRAME_THREADS,
2574     .flush                 = vp3_decode_flush,
2575     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2576     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2577 };
2578 #endif
2579
2580 AVCodec ff_vp3_decoder = {
2581     .name                  = "vp3",
2582     .long_name             = NULL_IF_CONFIG_SMALL("On2 VP3"),
2583     .type                  = AVMEDIA_TYPE_VIDEO,
2584     .id                    = AV_CODEC_ID_VP3,
2585     .priv_data_size        = sizeof(Vp3DecodeContext),
2586     .init                  = vp3_decode_init,
2587     .close                 = vp3_decode_end,
2588     .decode                = vp3_decode_frame,
2589     .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
2590                              AV_CODEC_CAP_FRAME_THREADS,
2591     .flush                 = vp3_decode_flush,
2592     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2593     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2594 };