2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * On2 VP3 Video Decoder
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
29 * Theora decoder by Alex Beregszaszi
36 #include "libavutil/imgutils.h"
47 #define FRAGMENT_PIXELS 8
49 //FIXME split things out into their own arrays
50 typedef struct Vp3Fragment {
52 uint8_t coding_method;
56 #define SB_NOT_CODED 0
57 #define SB_PARTIALLY_CODED 1
58 #define SB_FULLY_CODED 2
60 // This is the maximum length of a single long bit run that can be encoded
61 // for superblock coding or block qps. Theora special-cases this to read a
62 // bit instead of flipping the current bit to allow for runs longer than 4129.
63 #define MAXIMUM_LONG_BIT_RUN 4129
65 #define MODE_INTER_NO_MV 0
67 #define MODE_INTER_PLUS_MV 2
68 #define MODE_INTER_LAST_MV 3
69 #define MODE_INTER_PRIOR_LAST 4
70 #define MODE_USING_GOLDEN 5
71 #define MODE_GOLDEN_MV 6
72 #define MODE_INTER_FOURMV 7
73 #define CODING_MODE_COUNT 8
75 /* special internal mode */
78 /* There are 6 preset schemes, plus a free-form scheme */
79 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
81 /* scheme 1: Last motion vector dominates */
82 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
83 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
84 MODE_INTRA, MODE_USING_GOLDEN,
85 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
88 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
89 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
90 MODE_INTRA, MODE_USING_GOLDEN,
91 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
94 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
95 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
96 MODE_INTRA, MODE_USING_GOLDEN,
97 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
100 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
101 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
102 MODE_INTRA, MODE_USING_GOLDEN,
103 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
105 /* scheme 5: No motion vector dominates */
106 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
107 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
108 MODE_INTRA, MODE_USING_GOLDEN,
109 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
112 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
113 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
114 MODE_INTER_PLUS_MV, MODE_INTRA,
115 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
119 static const uint8_t hilbert_offset[16][2] = {
120 {0,0}, {1,0}, {1,1}, {0,1},
121 {0,2}, {0,3}, {1,3}, {1,2},
122 {2,2}, {2,3}, {3,3}, {3,2},
123 {3,1}, {2,1}, {2,0}, {3,0}
126 #define MIN_DEQUANT_VAL 2
128 typedef struct Vp3DecodeContext {
129 AVCodecContext *avctx;
130 int theora, theora_tables;
133 int chroma_x_shift, chroma_y_shift;
134 AVFrame golden_frame;
136 AVFrame current_frame;
139 VideoDSPContext vdsp;
140 VP3DSPContext vp3dsp;
143 int skip_loop_filter;
149 int superblock_count;
150 int y_superblock_width;
151 int y_superblock_height;
152 int y_superblock_count;
153 int c_superblock_width;
154 int c_superblock_height;
155 int c_superblock_count;
156 int u_superblock_start;
157 int v_superblock_start;
158 unsigned char *superblock_coding;
160 int macroblock_count;
161 int macroblock_width;
162 int macroblock_height;
165 int fragment_width[2];
166 int fragment_height[2];
168 Vp3Fragment *all_fragments;
169 int fragment_start[3];
172 int8_t (*motion_val[2])[2];
177 uint16_t coded_dc_scale_factor[64];
178 uint32_t coded_ac_scale_factor[64];
179 uint8_t base_matrix[384][64];
180 uint8_t qr_count[2][3];
181 uint8_t qr_size [2][3][64];
182 uint16_t qr_base[2][3][64];
185 * This is a list of all tokens in bitstream order. Reordering takes place
186 * by pulling from each level during IDCT. As a consequence, IDCT must be
187 * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
188 * otherwise. The 32 different tokens with up to 12 bits of extradata are
189 * collapsed into 3 types, packed as follows:
190 * (from the low to high bits)
192 * 2 bits: type (0,1,2)
193 * 0: EOB run, 14 bits for run length (12 needed)
194 * 1: zero run, 7 bits for run length
195 * 7 bits for the next coefficient (3 needed)
196 * 2: coefficient, 14 bits (11 needed)
198 * Coefficients are signed, so are packed in the highest bits for automatic
201 int16_t *dct_tokens[3][64];
202 int16_t *dct_tokens_base;
203 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
204 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
205 #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
208 * number of blocks that contain DCT coefficients at the given level or higher
210 int num_coded_frags[3][64];
211 int total_num_coded_frags;
213 /* this is a list of indexes into the all_fragments array indicating
214 * which of the fragments are coded */
215 int *coded_fragment_list[3];
223 VLC superblock_run_length_vlc;
224 VLC fragment_run_length_vlc;
226 VLC motion_vector_vlc;
228 /* these arrays need to be on 16-byte boundaries since SSE2 operations
230 DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
232 /* This table contains superblock_count * 16 entries. Each set of 16
233 * numbers corresponds to the fragment indexes 0..15 of the superblock.
234 * An entry will be -1 to indicate that no entry corresponds to that
236 int *superblock_fragments;
238 /* This is an array that indicates how a particular macroblock
240 unsigned char *macroblock_coding;
242 uint8_t *edge_emu_buffer;
249 uint32_t huffman_table[80][32][2];
251 uint8_t filter_limit_values[64];
252 DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
255 /************************************************************************
256 * VP3 specific functions
257 ************************************************************************/
259 static void vp3_decode_flush(AVCodecContext *avctx)
261 Vp3DecodeContext *s = avctx->priv_data;
263 if (s->golden_frame.data[0]) {
264 if (s->golden_frame.data[0] == s->last_frame.data[0])
265 memset(&s->last_frame, 0, sizeof(AVFrame));
266 if (s->current_frame.data[0] == s->golden_frame.data[0])
267 memset(&s->current_frame, 0, sizeof(AVFrame));
268 ff_thread_release_buffer(avctx, &s->golden_frame);
270 if (s->last_frame.data[0]) {
271 if (s->current_frame.data[0] == s->last_frame.data[0])
272 memset(&s->current_frame, 0, sizeof(AVFrame));
273 ff_thread_release_buffer(avctx, &s->last_frame);
275 if (s->current_frame.data[0])
276 ff_thread_release_buffer(avctx, &s->current_frame);
279 static av_cold int vp3_decode_end(AVCodecContext *avctx)
281 Vp3DecodeContext *s = avctx->priv_data;
284 av_freep(&s->superblock_coding);
285 av_freep(&s->all_fragments);
286 av_freep(&s->coded_fragment_list[0]);
287 av_freep(&s->dct_tokens_base);
288 av_freep(&s->superblock_fragments);
289 av_freep(&s->macroblock_coding);
290 av_freep(&s->motion_val[0]);
291 av_freep(&s->motion_val[1]);
292 av_freep(&s->edge_emu_buffer);
294 if (avctx->internal->is_copy)
297 for (i = 0; i < 16; i++) {
298 ff_free_vlc(&s->dc_vlc[i]);
299 ff_free_vlc(&s->ac_vlc_1[i]);
300 ff_free_vlc(&s->ac_vlc_2[i]);
301 ff_free_vlc(&s->ac_vlc_3[i]);
302 ff_free_vlc(&s->ac_vlc_4[i]);
305 ff_free_vlc(&s->superblock_run_length_vlc);
306 ff_free_vlc(&s->fragment_run_length_vlc);
307 ff_free_vlc(&s->mode_code_vlc);
308 ff_free_vlc(&s->motion_vector_vlc);
310 /* release all frames */
311 vp3_decode_flush(avctx);
317 * This function sets up all of the various blocks mappings:
318 * superblocks <-> fragments, macroblocks <-> fragments,
319 * superblocks <-> macroblocks
321 * @return 0 is successful; returns 1 if *anything* went wrong.
323 static int init_block_mapping(Vp3DecodeContext *s)
325 int sb_x, sb_y, plane;
328 for (plane = 0; plane < 3; plane++) {
329 int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
330 int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
331 int frag_width = s->fragment_width[!!plane];
332 int frag_height = s->fragment_height[!!plane];
334 for (sb_y = 0; sb_y < sb_height; sb_y++)
335 for (sb_x = 0; sb_x < sb_width; sb_x++)
336 for (i = 0; i < 16; i++) {
337 x = 4*sb_x + hilbert_offset[i][0];
338 y = 4*sb_y + hilbert_offset[i][1];
340 if (x < frag_width && y < frag_height)
341 s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
343 s->superblock_fragments[j++] = -1;
347 return 0; /* successful path out */
351 * This function sets up the dequantization tables used for a particular
354 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
356 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
357 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
358 int i, plane, inter, qri, bmi, bmj, qistart;
360 for(inter=0; inter<2; inter++){
361 for(plane=0; plane<3; plane++){
363 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
364 sum+= s->qr_size[inter][plane][qri];
365 if(s->qps[qpi] <= sum)
368 qistart= sum - s->qr_size[inter][plane][qri];
369 bmi= s->qr_base[inter][plane][qri ];
370 bmj= s->qr_base[inter][plane][qri+1];
372 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
373 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
374 + s->qr_size[inter][plane][qri])
375 / (2*s->qr_size[inter][plane][qri]);
377 int qmin= 8<<(inter + !i);
378 int qscale= i ? ac_scale_factor : dc_scale_factor;
380 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
382 // all DC coefficients use the same quant so as not to interfere with DC prediction
383 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
389 * This function initializes the loop filter boundary limits if the frame's
390 * quality index is different from the previous frame's.
392 * The filter_limit_values may not be larger than 127.
394 static void init_loop_filter(Vp3DecodeContext *s)
396 int *bounding_values= s->bounding_values_array+127;
401 filter_limit = s->filter_limit_values[s->qps[0]];
402 av_assert0(filter_limit < 128U);
404 /* set up the bounding values */
405 memset(s->bounding_values_array, 0, 256 * sizeof(int));
406 for (x = 0; x < filter_limit; x++) {
407 bounding_values[-x] = -x;
408 bounding_values[x] = x;
410 for (x = value = filter_limit; x < 128 && value; x++, value--) {
411 bounding_values[ x] = value;
412 bounding_values[-x] = -value;
415 bounding_values[128] = value;
416 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
420 * This function unpacks all of the superblock/macroblock/fragment coding
421 * information from the bitstream.
423 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
425 int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
427 int current_superblock = 0;
429 int num_partial_superblocks = 0;
432 int current_fragment;
436 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
440 /* unpack the list of partially-coded superblocks */
441 bit = get_bits1(gb) ^ 1;
444 while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
445 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
450 current_run = get_vlc2(gb,
451 s->superblock_run_length_vlc.table, 6, 2) + 1;
452 if (current_run == 34)
453 current_run += get_bits(gb, 12);
455 if (current_superblock + current_run > s->superblock_count) {
456 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
460 memset(s->superblock_coding + current_superblock, bit, current_run);
462 current_superblock += current_run;
464 num_partial_superblocks += current_run;
467 /* unpack the list of fully coded superblocks if any of the blocks were
468 * not marked as partially coded in the previous step */
469 if (num_partial_superblocks < s->superblock_count) {
470 int superblocks_decoded = 0;
472 current_superblock = 0;
473 bit = get_bits1(gb) ^ 1;
476 while (superblocks_decoded < s->superblock_count - num_partial_superblocks
477 && get_bits_left(gb) > 0) {
479 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
484 current_run = get_vlc2(gb,
485 s->superblock_run_length_vlc.table, 6, 2) + 1;
486 if (current_run == 34)
487 current_run += get_bits(gb, 12);
489 for (j = 0; j < current_run; current_superblock++) {
490 if (current_superblock >= s->superblock_count) {
491 av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
495 /* skip any superblocks already marked as partially coded */
496 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
497 s->superblock_coding[current_superblock] = 2*bit;
501 superblocks_decoded += current_run;
505 /* if there were partial blocks, initialize bitstream for
506 * unpacking fragment codings */
507 if (num_partial_superblocks) {
511 /* toggle the bit because as soon as the first run length is
512 * fetched the bit will be toggled again */
517 /* figure out which fragments are coded; iterate through each
518 * superblock (all planes) */
519 s->total_num_coded_frags = 0;
520 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
522 for (plane = 0; plane < 3; plane++) {
523 int sb_start = superblock_starts[plane];
524 int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
525 int num_coded_frags = 0;
527 for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
529 /* iterate through all 16 fragments in a superblock */
530 for (j = 0; j < 16; j++) {
532 /* if the fragment is in bounds, check its coding status */
533 current_fragment = s->superblock_fragments[i * 16 + j];
534 if (current_fragment != -1) {
535 int coded = s->superblock_coding[i];
537 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
539 /* fragment may or may not be coded; this is the case
540 * that cares about the fragment coding runs */
541 if (current_run-- == 0) {
543 current_run = get_vlc2(gb,
544 s->fragment_run_length_vlc.table, 5, 2);
550 /* default mode; actual mode will be decoded in
552 s->all_fragments[current_fragment].coding_method =
554 s->coded_fragment_list[plane][num_coded_frags++] =
557 /* not coded; copy this fragment from the prior frame */
558 s->all_fragments[current_fragment].coding_method =
564 s->total_num_coded_frags += num_coded_frags;
565 for (i = 0; i < 64; i++)
566 s->num_coded_frags[plane][i] = num_coded_frags;
568 s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
574 * This function unpacks all the coding mode data for individual macroblocks
575 * from the bitstream.
577 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
579 int i, j, k, sb_x, sb_y;
581 int current_macroblock;
582 int current_fragment;
584 int custom_mode_alphabet[CODING_MODE_COUNT];
589 for (i = 0; i < s->fragment_count; i++)
590 s->all_fragments[i].coding_method = MODE_INTRA;
594 /* fetch the mode coding scheme for this frame */
595 scheme = get_bits(gb, 3);
597 /* is it a custom coding scheme? */
599 for (i = 0; i < 8; i++)
600 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
601 for (i = 0; i < 8; i++)
602 custom_mode_alphabet[get_bits(gb, 3)] = i;
603 alphabet = custom_mode_alphabet;
605 alphabet = ModeAlphabet[scheme-1];
607 /* iterate through all of the macroblocks that contain 1 or more
609 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
610 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
611 if (get_bits_left(gb) <= 0)
614 for (j = 0; j < 4; j++) {
615 int mb_x = 2*sb_x + (j>>1);
616 int mb_y = 2*sb_y + (((j>>1)+j)&1);
617 current_macroblock = mb_y * s->macroblock_width + mb_x;
619 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
622 #define BLOCK_X (2*mb_x + (k&1))
623 #define BLOCK_Y (2*mb_y + (k>>1))
624 /* coding modes are only stored if the macroblock has at least one
625 * luma block coded, otherwise it must be INTER_NO_MV */
626 for (k = 0; k < 4; k++) {
627 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
628 if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
632 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
636 /* mode 7 means get 3 bits for each coding mode */
638 coding_mode = get_bits(gb, 3);
640 coding_mode = alphabet
641 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
643 s->macroblock_coding[current_macroblock] = coding_mode;
644 for (k = 0; k < 4; k++) {
645 frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
646 if (frag->coding_method != MODE_COPY)
647 frag->coding_method = coding_mode;
650 #define SET_CHROMA_MODES \
651 if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
652 frag[s->fragment_start[1]].coding_method = coding_mode;\
653 if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
654 frag[s->fragment_start[2]].coding_method = coding_mode;
656 if (s->chroma_y_shift) {
657 frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
659 } else if (s->chroma_x_shift) {
660 frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
661 for (k = 0; k < 2; k++) {
663 frag += s->fragment_width[1];
666 for (k = 0; k < 4; k++) {
667 frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
680 * This function unpacks all the motion vectors for the individual
681 * macroblocks from the bitstream.
683 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
685 int j, k, sb_x, sb_y;
689 int last_motion_x = 0;
690 int last_motion_y = 0;
691 int prior_last_motion_x = 0;
692 int prior_last_motion_y = 0;
693 int current_macroblock;
694 int current_fragment;
700 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
701 coding_mode = get_bits1(gb);
703 /* iterate through all of the macroblocks that contain 1 or more
705 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
706 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
707 if (get_bits_left(gb) <= 0)
710 for (j = 0; j < 4; j++) {
711 int mb_x = 2*sb_x + (j>>1);
712 int mb_y = 2*sb_y + (((j>>1)+j)&1);
713 current_macroblock = mb_y * s->macroblock_width + mb_x;
715 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
716 (s->macroblock_coding[current_macroblock] == MODE_COPY))
719 switch (s->macroblock_coding[current_macroblock]) {
721 case MODE_INTER_PLUS_MV:
723 /* all 6 fragments use the same motion vector */
724 if (coding_mode == 0) {
725 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
726 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
728 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
729 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
732 /* vector maintenance, only on MODE_INTER_PLUS_MV */
733 if (s->macroblock_coding[current_macroblock] ==
734 MODE_INTER_PLUS_MV) {
735 prior_last_motion_x = last_motion_x;
736 prior_last_motion_y = last_motion_y;
737 last_motion_x = motion_x[0];
738 last_motion_y = motion_y[0];
742 case MODE_INTER_FOURMV:
743 /* vector maintenance */
744 prior_last_motion_x = last_motion_x;
745 prior_last_motion_y = last_motion_y;
747 /* fetch 4 vectors from the bitstream, one for each
748 * Y fragment, then average for the C fragment vectors */
749 for (k = 0; k < 4; k++) {
750 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
751 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
752 if (coding_mode == 0) {
753 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
754 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
756 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
757 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
759 last_motion_x = motion_x[k];
760 last_motion_y = motion_y[k];
768 case MODE_INTER_LAST_MV:
769 /* all 6 fragments use the last motion vector */
770 motion_x[0] = last_motion_x;
771 motion_y[0] = last_motion_y;
773 /* no vector maintenance (last vector remains the
777 case MODE_INTER_PRIOR_LAST:
778 /* all 6 fragments use the motion vector prior to the
779 * last motion vector */
780 motion_x[0] = prior_last_motion_x;
781 motion_y[0] = prior_last_motion_y;
783 /* vector maintenance */
784 prior_last_motion_x = last_motion_x;
785 prior_last_motion_y = last_motion_y;
786 last_motion_x = motion_x[0];
787 last_motion_y = motion_y[0];
791 /* covers intra, inter without MV, golden without MV */
795 /* no vector maintenance */
799 /* assign the motion vectors to the correct fragments */
800 for (k = 0; k < 4; k++) {
802 BLOCK_Y*s->fragment_width[0] + BLOCK_X;
803 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
804 s->motion_val[0][current_fragment][0] = motion_x[k];
805 s->motion_val[0][current_fragment][1] = motion_y[k];
807 s->motion_val[0][current_fragment][0] = motion_x[0];
808 s->motion_val[0][current_fragment][1] = motion_y[0];
812 if (s->chroma_y_shift) {
813 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
814 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
815 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
817 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
818 motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
819 frag = mb_y*s->fragment_width[1] + mb_x;
820 s->motion_val[1][frag][0] = motion_x[0];
821 s->motion_val[1][frag][1] = motion_y[0];
822 } else if (s->chroma_x_shift) {
823 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
824 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
825 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
826 motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
827 motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
829 motion_x[1] = motion_x[0];
830 motion_y[1] = motion_y[0];
832 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
833 motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
835 frag = 2*mb_y*s->fragment_width[1] + mb_x;
836 for (k = 0; k < 2; k++) {
837 s->motion_val[1][frag][0] = motion_x[k];
838 s->motion_val[1][frag][1] = motion_y[k];
839 frag += s->fragment_width[1];
842 for (k = 0; k < 4; k++) {
843 frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
844 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
845 s->motion_val[1][frag][0] = motion_x[k];
846 s->motion_val[1][frag][1] = motion_y[k];
848 s->motion_val[1][frag][0] = motion_x[0];
849 s->motion_val[1][frag][1] = motion_y[0];
860 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
862 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
863 int num_blocks = s->total_num_coded_frags;
865 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
866 i = blocks_decoded = num_blocks_at_qpi = 0;
868 bit = get_bits1(gb) ^ 1;
872 if (run_length == MAXIMUM_LONG_BIT_RUN)
877 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
878 if (run_length == 34)
879 run_length += get_bits(gb, 12);
880 blocks_decoded += run_length;
883 num_blocks_at_qpi += run_length;
885 for (j = 0; j < run_length; i++) {
886 if (i >= s->total_num_coded_frags)
889 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
890 s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
894 } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
896 num_blocks -= num_blocks_at_qpi;
903 * This function is called by unpack_dct_coeffs() to extract the VLCs from
904 * the bitstream. The VLCs encode tokens which are used to unpack DCT
905 * data. This function unpacks all the VLCs for either the Y plane or both
906 * C planes, and is called for DC coefficients or different AC coefficient
907 * levels (since different coefficient types require different VLC tables.
909 * This function returns a residual eob run. E.g, if a particular token gave
910 * instructions to EOB the next 5 fragments and there were only 2 fragments
911 * left in the current fragment range, 3 would be returned so that it could
912 * be passed into the next call to this same function.
914 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
915 VLC *table, int coeff_index,
926 int num_coeffs = s->num_coded_frags[plane][coeff_index];
927 int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
929 /* local references to structure members to avoid repeated deferences */
930 int *coded_fragment_list = s->coded_fragment_list[plane];
931 Vp3Fragment *all_fragments = s->all_fragments;
932 VLC_TYPE (*vlc_table)[2] = table->table;
935 av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
937 if (eob_run > num_coeffs) {
938 coeff_i = blocks_ended = num_coeffs;
939 eob_run -= num_coeffs;
941 coeff_i = blocks_ended = eob_run;
945 // insert fake EOB token to cover the split between planes or zzi
947 dct_tokens[j++] = blocks_ended << 2;
949 while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
950 /* decode a VLC into a token */
951 token = get_vlc2(gb, vlc_table, 11, 3);
952 /* use the token to get a zero run, a coefficient, and an eob run */
953 if ((unsigned) token <= 6U) {
954 eob_run = eob_run_base[token];
955 if (eob_run_get_bits[token])
956 eob_run += get_bits(gb, eob_run_get_bits[token]);
958 // record only the number of blocks ended in this plane,
959 // any spill will be recorded in the next plane.
960 if (eob_run > num_coeffs - coeff_i) {
961 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
962 blocks_ended += num_coeffs - coeff_i;
963 eob_run -= num_coeffs - coeff_i;
964 coeff_i = num_coeffs;
966 dct_tokens[j++] = TOKEN_EOB(eob_run);
967 blocks_ended += eob_run;
971 } else if (token >= 0) {
972 bits_to_get = coeff_get_bits[token];
974 bits_to_get = get_bits(gb, bits_to_get);
975 coeff = coeff_tables[token][bits_to_get];
977 zero_run = zero_run_base[token];
978 if (zero_run_get_bits[token])
979 zero_run += get_bits(gb, zero_run_get_bits[token]);
982 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
984 // Save DC into the fragment structure. DC prediction is
985 // done in raster order, so the actual DC can't be in with
986 // other tokens. We still need the token in dct_tokens[]
987 // however, or else the structure collapses on itself.
989 all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
991 dct_tokens[j++] = TOKEN_COEFF(coeff);
994 if (coeff_index + zero_run > 64) {
995 av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
996 " %d coeffs left\n", zero_run, 64-coeff_index);
997 zero_run = 64 - coeff_index;
1000 // zero runs code multiple coefficients,
1001 // so don't try to decode coeffs for those higher levels
1002 for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
1003 s->num_coded_frags[plane][i]--;
1006 av_log(s->avctx, AV_LOG_ERROR,
1007 "Invalid token %d\n", token);
1012 if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1013 av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1015 // decrement the number of blocks that have higher coeffecients for each
1016 // EOB run at this level
1018 for (i = coeff_index+1; i < 64; i++)
1019 s->num_coded_frags[plane][i] -= blocks_ended;
1021 // setup the next buffer
1023 s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
1024 else if (coeff_index < 63)
1025 s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
1030 static void reverse_dc_prediction(Vp3DecodeContext *s,
1033 int fragment_height);
1035 * This function unpacks all of the DCT coefficient data from the
1038 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1045 int residual_eob_run = 0;
1049 s->dct_tokens[0][0] = s->dct_tokens_base;
1051 /* fetch the DC table indexes */
1052 dc_y_table = get_bits(gb, 4);
1053 dc_c_table = get_bits(gb, 4);
1055 /* unpack the Y plane DC coefficients */
1056 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1057 0, residual_eob_run);
1058 if (residual_eob_run < 0)
1059 return residual_eob_run;
1061 /* reverse prediction of the Y-plane DC coefficients */
1062 reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
1064 /* unpack the C plane DC coefficients */
1065 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1066 1, residual_eob_run);
1067 if (residual_eob_run < 0)
1068 return residual_eob_run;
1069 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1070 2, residual_eob_run);
1071 if (residual_eob_run < 0)
1072 return residual_eob_run;
1074 /* reverse prediction of the C-plane DC coefficients */
1075 if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1077 reverse_dc_prediction(s, s->fragment_start[1],
1078 s->fragment_width[1], s->fragment_height[1]);
1079 reverse_dc_prediction(s, s->fragment_start[2],
1080 s->fragment_width[1], s->fragment_height[1]);
1083 /* fetch the AC table indexes */
1084 ac_y_table = get_bits(gb, 4);
1085 ac_c_table = get_bits(gb, 4);
1087 /* build tables of AC VLC tables */
1088 for (i = 1; i <= 5; i++) {
1089 y_tables[i] = &s->ac_vlc_1[ac_y_table];
1090 c_tables[i] = &s->ac_vlc_1[ac_c_table];
1092 for (i = 6; i <= 14; i++) {
1093 y_tables[i] = &s->ac_vlc_2[ac_y_table];
1094 c_tables[i] = &s->ac_vlc_2[ac_c_table];
1096 for (i = 15; i <= 27; i++) {
1097 y_tables[i] = &s->ac_vlc_3[ac_y_table];
1098 c_tables[i] = &s->ac_vlc_3[ac_c_table];
1100 for (i = 28; i <= 63; i++) {
1101 y_tables[i] = &s->ac_vlc_4[ac_y_table];
1102 c_tables[i] = &s->ac_vlc_4[ac_c_table];
1105 /* decode all AC coefficents */
1106 for (i = 1; i <= 63; i++) {
1107 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1108 0, residual_eob_run);
1109 if (residual_eob_run < 0)
1110 return residual_eob_run;
1112 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1113 1, residual_eob_run);
1114 if (residual_eob_run < 0)
1115 return residual_eob_run;
1116 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1117 2, residual_eob_run);
1118 if (residual_eob_run < 0)
1119 return residual_eob_run;
1126 * This function reverses the DC prediction for each coded fragment in
1127 * the frame. Much of this function is adapted directly from the original
1130 #define COMPATIBLE_FRAME(x) \
1131 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1132 #define DC_COEFF(u) s->all_fragments[u].dc
1134 static void reverse_dc_prediction(Vp3DecodeContext *s,
1137 int fragment_height)
1146 int i = first_fragment;
1150 /* DC values for the left, up-left, up, and up-right fragments */
1151 int vl, vul, vu, vur;
1153 /* indexes for the left, up-left, up, and up-right fragments */
1157 * The 6 fields mean:
1158 * 0: up-left multiplier
1160 * 2: up-right multiplier
1161 * 3: left multiplier
1163 static const int predictor_transform[16][4] = {
1165 { 0, 0, 0,128}, // PL
1166 { 0, 0,128, 0}, // PUR
1167 { 0, 0, 53, 75}, // PUR|PL
1168 { 0,128, 0, 0}, // PU
1169 { 0, 64, 0, 64}, // PU|PL
1170 { 0,128, 0, 0}, // PU|PUR
1171 { 0, 0, 53, 75}, // PU|PUR|PL
1172 {128, 0, 0, 0}, // PUL
1173 { 0, 0, 0,128}, // PUL|PL
1174 { 64, 0, 64, 0}, // PUL|PUR
1175 { 0, 0, 53, 75}, // PUL|PUR|PL
1176 { 0,128, 0, 0}, // PUL|PU
1177 {-104,116, 0,116}, // PUL|PU|PL
1178 { 24, 80, 24, 0}, // PUL|PU|PUR
1179 {-104,116, 0,116} // PUL|PU|PUR|PL
1182 /* This table shows which types of blocks can use other blocks for
1183 * prediction. For example, INTRA is the only mode in this table to
1184 * have a frame number of 0. That means INTRA blocks can only predict
1185 * from other INTRA blocks. There are 2 golden frame coding types;
1186 * blocks encoding in these modes can only predict from other blocks
1187 * that were encoded with these 1 of these 2 modes. */
1188 static const unsigned char compatible_frame[9] = {
1189 1, /* MODE_INTER_NO_MV */
1191 1, /* MODE_INTER_PLUS_MV */
1192 1, /* MODE_INTER_LAST_MV */
1193 1, /* MODE_INTER_PRIOR_MV */
1194 2, /* MODE_USING_GOLDEN */
1195 2, /* MODE_GOLDEN_MV */
1196 1, /* MODE_INTER_FOUR_MV */
1199 int current_frame_type;
1201 /* there is a last DC predictor for each of the 3 frame types */
1206 vul = vu = vur = vl = 0;
1207 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1209 /* for each fragment row... */
1210 for (y = 0; y < fragment_height; y++) {
1212 /* for each fragment in a row... */
1213 for (x = 0; x < fragment_width; x++, i++) {
1215 /* reverse prediction if this block was coded */
1216 if (s->all_fragments[i].coding_method != MODE_COPY) {
1218 current_frame_type =
1219 compatible_frame[s->all_fragments[i].coding_method];
1225 if(COMPATIBLE_FRAME(l))
1229 u= i-fragment_width;
1231 if(COMPATIBLE_FRAME(u))
1234 ul= i-fragment_width-1;
1236 if(COMPATIBLE_FRAME(ul))
1239 if(x + 1 < fragment_width){
1240 ur= i-fragment_width+1;
1242 if(COMPATIBLE_FRAME(ur))
1247 if (transform == 0) {
1249 /* if there were no fragments to predict from, use last
1251 predicted_dc = last_dc[current_frame_type];
1254 /* apply the appropriate predictor transform */
1256 (predictor_transform[transform][0] * vul) +
1257 (predictor_transform[transform][1] * vu) +
1258 (predictor_transform[transform][2] * vur) +
1259 (predictor_transform[transform][3] * vl);
1261 predicted_dc /= 128;
1263 /* check for outranging on the [ul u l] and
1264 * [ul u ur l] predictors */
1265 if ((transform == 15) || (transform == 13)) {
1266 if (FFABS(predicted_dc - vu) > 128)
1268 else if (FFABS(predicted_dc - vl) > 128)
1270 else if (FFABS(predicted_dc - vul) > 128)
1275 /* at long last, apply the predictor */
1276 DC_COEFF(i) += predicted_dc;
1278 last_dc[current_frame_type] = DC_COEFF(i);
1284 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1287 int *bounding_values= s->bounding_values_array+127;
1289 int width = s->fragment_width[!!plane];
1290 int height = s->fragment_height[!!plane];
1291 int fragment = s->fragment_start [plane] + ystart * width;
1292 int stride = s->current_frame.linesize[plane];
1293 uint8_t *plane_data = s->current_frame.data [plane];
1294 if (!s->flipped_image) stride = -stride;
1295 plane_data += s->data_offset[plane] + 8*ystart*stride;
1297 for (y = ystart; y < yend; y++) {
1299 for (x = 0; x < width; x++) {
1300 /* This code basically just deblocks on the edges of coded blocks.
1301 * However, it has to be much more complicated because of the
1302 * braindamaged deblock ordering used in VP3/Theora. Order matters
1303 * because some pixels get filtered twice. */
1304 if( s->all_fragments[fragment].coding_method != MODE_COPY )
1306 /* do not perform left edge filter for left columns frags */
1308 s->vp3dsp.h_loop_filter(
1310 stride, bounding_values);
1313 /* do not perform top edge filter for top row fragments */
1315 s->vp3dsp.v_loop_filter(
1317 stride, bounding_values);
1320 /* do not perform right edge filter for right column
1321 * fragments or if right fragment neighbor is also coded
1322 * in this frame (it will be filtered in next iteration) */
1323 if ((x < width - 1) &&
1324 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1325 s->vp3dsp.h_loop_filter(
1326 plane_data + 8*x + 8,
1327 stride, bounding_values);
1330 /* do not perform bottom edge filter for bottom row
1331 * fragments or if bottom fragment neighbor is also coded
1332 * in this frame (it will be filtered in the next row) */
1333 if ((y < height - 1) &&
1334 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1335 s->vp3dsp.v_loop_filter(
1336 plane_data + 8*x + 8*stride,
1337 stride, bounding_values);
1343 plane_data += 8*stride;
1348 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1349 * for the next block in coding order
1351 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1352 int plane, int inter, DCTELEM block[64])
1354 int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1355 uint8_t *perm = s->scantable.permutated;
1359 int token = *s->dct_tokens[plane][i];
1360 switch (token & 3) {
1362 if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1363 s->dct_tokens[plane][i]++;
1365 *s->dct_tokens[plane][i] = token & ~3;
1368 s->dct_tokens[plane][i]++;
1369 i += (token >> 2) & 0x7f;
1371 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1374 block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1378 block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1379 s->dct_tokens[plane][i++]++;
1381 default: // shouldn't happen
1385 // return value is expected to be a valid level
1388 // the actual DC+prediction is in the fragment structure
1389 block[0] = frag->dc * s->qmat[0][inter][plane][0];
1394 * called when all pixels up to row y are complete
1396 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1399 int offset[AV_NUM_DATA_POINTERS];
1401 if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
1402 int y_flipped = s->flipped_image ? s->avctx->height-y : y;
1404 // At the end of the frame, report INT_MAX instead of the height of the frame.
1405 // This makes the other threads' ff_thread_await_progress() calls cheaper, because
1406 // they don't have to clip their values.
1407 ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
1410 if(s->avctx->draw_horiz_band==NULL)
1413 h= y - s->last_slice_end;
1414 s->last_slice_end= y;
1417 if (!s->flipped_image) {
1418 y = s->avctx->height - y - h;
1421 cy = y >> s->chroma_y_shift;
1422 offset[0] = s->current_frame.linesize[0]*y;
1423 offset[1] = s->current_frame.linesize[1]*cy;
1424 offset[2] = s->current_frame.linesize[2]*cy;
1425 for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1429 s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1433 * Wait for the reference frame of the current fragment.
1434 * The progress value is in luma pixel rows.
1436 static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
1440 int border = motion_y&1;
1442 if (fragment->coding_method == MODE_USING_GOLDEN ||
1443 fragment->coding_method == MODE_GOLDEN_MV)
1444 ref_frame = &s->golden_frame;
1446 ref_frame = &s->last_frame;
1448 ref_row = y + (motion_y>>1);
1449 ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1451 ff_thread_await_progress(ref_frame, ref_row, 0);
1455 * Perform the final rendering for a particular slice of data.
1456 * The slice number ranges from 0..(c_superblock_height - 1).
1458 static void render_slice(Vp3DecodeContext *s, int slice)
1460 int x, y, i, j, fragment;
1461 LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1462 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1463 int motion_halfpel_index;
1464 uint8_t *motion_source;
1465 int plane, first_pixel;
1467 if (slice >= s->c_superblock_height)
1470 for (plane = 0; plane < 3; plane++) {
1471 uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane];
1472 uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane];
1473 uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane];
1474 int stride = s->current_frame.linesize[plane];
1475 int plane_width = s->width >> (plane && s->chroma_x_shift);
1476 int plane_height = s->height >> (plane && s->chroma_y_shift);
1477 int8_t (*motion_val)[2] = s->motion_val[!!plane];
1479 int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1480 int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1481 int slice_width = plane ? s->c_superblock_width : s->y_superblock_width;
1483 int fragment_width = s->fragment_width[!!plane];
1484 int fragment_height = s->fragment_height[!!plane];
1485 int fragment_start = s->fragment_start[plane];
1486 int do_await = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
1488 if (!s->flipped_image) stride = -stride;
1489 if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1492 /* for each superblock row in the slice (both of them)... */
1493 for (; sb_y < slice_height; sb_y++) {
1495 /* for each superblock in a row... */
1496 for (sb_x = 0; sb_x < slice_width; sb_x++) {
1498 /* for each block in a superblock... */
1499 for (j = 0; j < 16; j++) {
1500 x = 4*sb_x + hilbert_offset[j][0];
1501 y = 4*sb_y + hilbert_offset[j][1];
1502 fragment = y*fragment_width + x;
1504 i = fragment_start + fragment;
1507 if (x >= fragment_width || y >= fragment_height)
1510 first_pixel = 8*y*stride + 8*x;
1512 if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
1513 await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
1515 /* transform if this block was coded */
1516 if (s->all_fragments[i].coding_method != MODE_COPY) {
1517 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1518 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1519 motion_source= golden_plane;
1521 motion_source= last_plane;
1523 motion_source += first_pixel;
1524 motion_halfpel_index = 0;
1526 /* sort out the motion vector if this fragment is coded
1527 * using a motion vector method */
1528 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1529 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1531 motion_x = motion_val[fragment][0];
1532 motion_y = motion_val[fragment][1];
1534 src_x= (motion_x>>1) + 8*x;
1535 src_y= (motion_y>>1) + 8*y;
1537 motion_halfpel_index = motion_x & 0x01;
1538 motion_source += (motion_x >> 1);
1540 motion_halfpel_index |= (motion_y & 0x01) << 1;
1541 motion_source += ((motion_y >> 1) * stride);
1543 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1544 uint8_t *temp= s->edge_emu_buffer;
1545 if(stride<0) temp -= 8*stride;
1547 s->vdsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1548 motion_source= temp;
1553 /* first, take care of copying a block from either the
1554 * previous or the golden frame */
1555 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1556 /* Note, it is possible to implement all MC cases with
1557 put_no_rnd_pixels_l2 which would look more like the
1558 VP3 source but this would be slower as
1559 put_no_rnd_pixels_tab is better optimzed */
1560 if(motion_halfpel_index != 3){
1561 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1562 output_plane + first_pixel,
1563 motion_source, stride, 8);
1565 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1566 s->dsp.put_no_rnd_pixels_l2[1](
1567 output_plane + first_pixel,
1569 motion_source + stride + 1 + d,
1574 s->dsp.clear_block(block);
1576 /* invert DCT and place (or add) in final output */
1578 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1579 vp3_dequant(s, s->all_fragments + i, plane, 0, block);
1581 output_plane + first_pixel,
1585 if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
1587 output_plane + first_pixel,
1591 s->vp3dsp.idct_dc_add(output_plane + first_pixel, stride, block);
1596 /* copy directly from the previous frame */
1597 s->dsp.put_pixels_tab[1][0](
1598 output_plane + first_pixel,
1599 last_plane + first_pixel,
1606 // Filter up to the last row in the superblock row
1607 if (!s->skip_loop_filter)
1608 apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1612 /* this looks like a good place for slice dispatch... */
1614 * if (slice == s->macroblock_height - 1)
1615 * dispatch (both last slice & 2nd-to-last slice);
1616 * else if (slice > 0)
1617 * dispatch (slice - 1);
1620 vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
1623 /// Allocate tables for per-frame data in Vp3DecodeContext
1624 static av_cold int allocate_tables(AVCodecContext *avctx)
1626 Vp3DecodeContext *s = avctx->priv_data;
1627 int y_fragment_count, c_fragment_count;
1629 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1630 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1632 s->superblock_coding = av_malloc(s->superblock_count);
1633 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1634 s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1635 s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1636 s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
1637 s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
1639 /* work out the block mapping tables */
1640 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1641 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1643 if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1644 !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
1645 !s->motion_val[0] || !s->motion_val[1]) {
1646 vp3_decode_end(avctx);
1650 init_block_mapping(s);
1655 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1657 Vp3DecodeContext *s = avctx->priv_data;
1658 int i, inter, plane;
1661 int y_fragment_count, c_fragment_count;
1663 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1669 s->width = FFALIGN(avctx->width, 16);
1670 s->height = FFALIGN(avctx->height, 16);
1671 if (avctx->codec_id != AV_CODEC_ID_THEORA)
1672 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1673 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1674 ff_dsputil_init(&s->dsp, avctx);
1675 ff_videodsp_init(&s->vdsp, 8);
1676 ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1678 ff_init_scantable_permutation(s->dsp.idct_permutation, s->vp3dsp.idct_perm);
1679 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1681 /* initialize to an impossible value which will force a recalculation
1682 * in the first frame decode */
1683 for (i = 0; i < 3; i++)
1686 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1688 s->y_superblock_width = (s->width + 31) / 32;
1689 s->y_superblock_height = (s->height + 31) / 32;
1690 s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1692 /* work out the dimensions for the C planes */
1693 c_width = s->width >> s->chroma_x_shift;
1694 c_height = s->height >> s->chroma_y_shift;
1695 s->c_superblock_width = (c_width + 31) / 32;
1696 s->c_superblock_height = (c_height + 31) / 32;
1697 s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1699 s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1700 s->u_superblock_start = s->y_superblock_count;
1701 s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1703 s->macroblock_width = (s->width + 15) / 16;
1704 s->macroblock_height = (s->height + 15) / 16;
1705 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1707 s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1708 s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1709 s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1710 s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1712 /* fragment count covers all 8x8 blocks for all 3 planes */
1713 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1714 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1715 s->fragment_count = y_fragment_count + 2*c_fragment_count;
1716 s->fragment_start[1] = y_fragment_count;
1717 s->fragment_start[2] = y_fragment_count + c_fragment_count;
1719 if (!s->theora_tables)
1721 for (i = 0; i < 64; i++) {
1722 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1723 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1724 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1725 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1726 s->base_matrix[2][i] = vp31_inter_dequant[i];
1727 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1730 for(inter=0; inter<2; inter++){
1731 for(plane=0; plane<3; plane++){
1732 s->qr_count[inter][plane]= 1;
1733 s->qr_size [inter][plane][0]= 63;
1734 s->qr_base [inter][plane][0]=
1735 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1739 /* init VLC tables */
1740 for (i = 0; i < 16; i++) {
1743 init_vlc(&s->dc_vlc[i], 11, 32,
1744 &dc_bias[i][0][1], 4, 2,
1745 &dc_bias[i][0][0], 4, 2, 0);
1747 /* group 1 AC histograms */
1748 init_vlc(&s->ac_vlc_1[i], 11, 32,
1749 &ac_bias_0[i][0][1], 4, 2,
1750 &ac_bias_0[i][0][0], 4, 2, 0);
1752 /* group 2 AC histograms */
1753 init_vlc(&s->ac_vlc_2[i], 11, 32,
1754 &ac_bias_1[i][0][1], 4, 2,
1755 &ac_bias_1[i][0][0], 4, 2, 0);
1757 /* group 3 AC histograms */
1758 init_vlc(&s->ac_vlc_3[i], 11, 32,
1759 &ac_bias_2[i][0][1], 4, 2,
1760 &ac_bias_2[i][0][0], 4, 2, 0);
1762 /* group 4 AC histograms */
1763 init_vlc(&s->ac_vlc_4[i], 11, 32,
1764 &ac_bias_3[i][0][1], 4, 2,
1765 &ac_bias_3[i][0][0], 4, 2, 0);
1769 for (i = 0; i < 16; i++) {
1771 if (init_vlc(&s->dc_vlc[i], 11, 32,
1772 &s->huffman_table[i][0][1], 8, 4,
1773 &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1776 /* group 1 AC histograms */
1777 if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1778 &s->huffman_table[i+16][0][1], 8, 4,
1779 &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
1782 /* group 2 AC histograms */
1783 if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1784 &s->huffman_table[i+16*2][0][1], 8, 4,
1785 &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
1788 /* group 3 AC histograms */
1789 if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1790 &s->huffman_table[i+16*3][0][1], 8, 4,
1791 &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
1794 /* group 4 AC histograms */
1795 if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1796 &s->huffman_table[i+16*4][0][1], 8, 4,
1797 &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
1802 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1803 &superblock_run_length_vlc_table[0][1], 4, 2,
1804 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1806 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1807 &fragment_run_length_vlc_table[0][1], 4, 2,
1808 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1810 init_vlc(&s->mode_code_vlc, 3, 8,
1811 &mode_code_vlc_table[0][1], 2, 1,
1812 &mode_code_vlc_table[0][0], 2, 1, 0);
1814 init_vlc(&s->motion_vector_vlc, 6, 63,
1815 &motion_vector_vlc_table[0][1], 2, 1,
1816 &motion_vector_vlc_table[0][0], 2, 1, 0);
1818 for (i = 0; i < 3; i++) {
1819 s->current_frame.data[i] = NULL;
1820 s->last_frame.data[i] = NULL;
1821 s->golden_frame.data[i] = NULL;
1824 return allocate_tables(avctx);
1827 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1831 /// Release and shuffle frames after decode finishes
1832 static void update_frames(AVCodecContext *avctx)
1834 Vp3DecodeContext *s = avctx->priv_data;
1836 /* release the last frame, if it is allocated and if it is not the
1838 if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1839 ff_thread_release_buffer(avctx, &s->last_frame);
1841 /* shuffle frames (last = current) */
1842 s->last_frame= s->current_frame;
1845 if (s->golden_frame.data[0])
1846 ff_thread_release_buffer(avctx, &s->golden_frame);
1847 s->golden_frame = s->current_frame;
1848 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1851 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1854 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
1856 Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1857 int qps_changed = 0, i, err;
1859 #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
1861 if (!s1->current_frame.data[0]
1862 ||s->width != s1->width
1863 ||s->height!= s1->height) {
1865 copy_fields(s, s1, golden_frame, keyframe);
1870 // init tables if the first frame hasn't been decoded
1871 if (!s->current_frame.data[0]) {
1872 int y_fragment_count, c_fragment_count;
1874 err = allocate_tables(dst);
1877 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1878 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1879 memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
1880 memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
1883 // copy previous frame data
1884 copy_fields(s, s1, golden_frame, dsp);
1886 // copy qscale data if necessary
1887 for (i = 0; i < 3; i++) {
1888 if (s->qps[i] != s1->qps[1]) {
1890 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1894 if (s->qps[0] != s1->qps[0])
1895 memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
1898 copy_fields(s, s1, qps, superblock_count);
1907 static int vp3_decode_frame(AVCodecContext *avctx,
1908 void *data, int *got_frame,
1911 const uint8_t *buf = avpkt->data;
1912 int buf_size = avpkt->size;
1913 Vp3DecodeContext *s = avctx->priv_data;
1917 init_get_bits(&gb, buf, buf_size * 8);
1919 if (s->theora && get_bits1(&gb))
1921 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1925 s->keyframe = !get_bits1(&gb);
1928 for (i = 0; i < 3; i++)
1929 s->last_qps[i] = s->qps[i];
1933 s->qps[s->nqps++]= get_bits(&gb, 6);
1934 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1935 for (i = s->nqps; i < 3; i++)
1938 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1939 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1940 s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
1942 s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
1943 avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
1945 if (s->qps[0] != s->last_qps[0])
1946 init_loop_filter(s);
1948 for (i = 0; i < s->nqps; i++)
1949 // reinit all dequantizers if the first one changed, because
1950 // the DC of the first quantizer must be used for all matrices
1951 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1952 init_dequantizer(s, i);
1954 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1957 s->current_frame.reference = 3;
1958 s->current_frame.pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1959 s->current_frame.key_frame = s->keyframe;
1960 if (ff_thread_get_buffer(avctx, &s->current_frame) < 0) {
1961 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1965 if (!s->edge_emu_buffer)
1966 s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.linesize[0]));
1971 skip_bits(&gb, 4); /* width code */
1972 skip_bits(&gb, 4); /* height code */
1975 s->version = get_bits(&gb, 5);
1976 if (avctx->frame_number == 0)
1977 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1980 if (s->version || s->theora)
1983 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1984 skip_bits(&gb, 2); /* reserved? */
1987 if (!s->golden_frame.data[0]) {
1988 av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
1990 s->golden_frame.reference = 3;
1991 s->golden_frame.pict_type = AV_PICTURE_TYPE_I;
1992 if (ff_thread_get_buffer(avctx, &s->golden_frame) < 0) {
1993 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1996 s->last_frame = s->golden_frame;
1997 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1998 ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2002 memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2003 ff_thread_finish_setup(avctx);
2005 if (unpack_superblocks(s, &gb)){
2006 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2009 if (unpack_modes(s, &gb)){
2010 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2013 if (unpack_vectors(s, &gb)){
2014 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2017 if (unpack_block_qpis(s, &gb)){
2018 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2021 if (unpack_dct_coeffs(s, &gb)){
2022 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2026 for (i = 0; i < 3; i++) {
2027 int height = s->height >> (i && s->chroma_y_shift);
2028 if (s->flipped_image)
2029 s->data_offset[i] = 0;
2031 s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
2034 s->last_slice_end = 0;
2035 for (i = 0; i < s->c_superblock_height; i++)
2038 // filter the last row
2039 for (i = 0; i < 3; i++) {
2040 int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
2041 apply_loop_filter(s, i, row, row+1);
2043 vp3_draw_horiz_band(s, s->avctx->height);
2046 *(AVFrame*)data= s->current_frame;
2048 if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
2049 update_frames(avctx);
2054 ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2056 if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
2057 avctx->release_buffer(avctx, &s->current_frame);
2062 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2064 Vp3DecodeContext *s = avctx->priv_data;
2066 if (get_bits1(gb)) {
2068 if (s->entries >= 32) { /* overflow */
2069 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2072 token = get_bits(gb, 5);
2073 av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2074 s->hti, s->hbits, token, s->entries, s->huff_code_size);
2075 s->huffman_table[s->hti][token][0] = s->hbits;
2076 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2080 if (s->huff_code_size >= 32) {/* overflow */
2081 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2084 s->huff_code_size++;
2086 if (read_huffman_tree(avctx, gb))
2089 if (read_huffman_tree(avctx, gb))
2092 s->huff_code_size--;
2097 static int vp3_init_thread_copy(AVCodecContext *avctx)
2099 Vp3DecodeContext *s = avctx->priv_data;
2101 s->superblock_coding = NULL;
2102 s->all_fragments = NULL;
2103 s->coded_fragment_list[0] = NULL;
2104 s->dct_tokens_base = NULL;
2105 s->superblock_fragments = NULL;
2106 s->macroblock_coding = NULL;
2107 s->motion_val[0] = NULL;
2108 s->motion_val[1] = NULL;
2109 s->edge_emu_buffer = NULL;
2114 #if CONFIG_THEORA_DECODER
2115 static const enum AVPixelFormat theora_pix_fmts[4] = {
2116 AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
2119 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2121 Vp3DecodeContext *s = avctx->priv_data;
2122 int visible_width, visible_height, colorspace;
2123 int offset_x = 0, offset_y = 0;
2124 AVRational fps, aspect;
2126 s->theora = get_bits_long(gb, 24);
2127 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2129 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2130 /* but previous versions have the image flipped relative to vp3 */
2131 if (s->theora < 0x030200)
2133 s->flipped_image = 1;
2134 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2137 visible_width = s->width = get_bits(gb, 16) << 4;
2138 visible_height = s->height = get_bits(gb, 16) << 4;
2140 if(av_image_check_size(s->width, s->height, 0, avctx)){
2141 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2142 s->width= s->height= 0;
2146 if (s->theora >= 0x030200) {
2147 visible_width = get_bits_long(gb, 24);
2148 visible_height = get_bits_long(gb, 24);
2150 offset_x = get_bits(gb, 8); /* offset x */
2151 offset_y = get_bits(gb, 8); /* offset y, from bottom */
2154 fps.num = get_bits_long(gb, 32);
2155 fps.den = get_bits_long(gb, 32);
2156 if (fps.num && fps.den) {
2157 av_reduce(&avctx->time_base.num, &avctx->time_base.den,
2158 fps.den, fps.num, 1<<30);
2161 aspect.num = get_bits_long(gb, 24);
2162 aspect.den = get_bits_long(gb, 24);
2163 if (aspect.num && aspect.den) {
2164 av_reduce(&avctx->sample_aspect_ratio.num,
2165 &avctx->sample_aspect_ratio.den,
2166 aspect.num, aspect.den, 1<<30);
2169 if (s->theora < 0x030200)
2170 skip_bits(gb, 5); /* keyframe frequency force */
2171 colorspace = get_bits(gb, 8);
2172 skip_bits(gb, 24); /* bitrate */
2174 skip_bits(gb, 6); /* quality hint */
2176 if (s->theora >= 0x030200)
2178 skip_bits(gb, 5); /* keyframe frequency force */
2179 avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2180 if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2181 av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2182 return AVERROR_INVALIDDATA;
2184 skip_bits(gb, 3); /* reserved */
2187 // align_get_bits(gb);
2189 if ( visible_width <= s->width && visible_width > s->width-16
2190 && visible_height <= s->height && visible_height > s->height-16
2191 && !offset_x && (offset_y == s->height - visible_height))
2192 avcodec_set_dimensions(avctx, visible_width, visible_height);
2194 avcodec_set_dimensions(avctx, s->width, s->height);
2196 if (colorspace == 1) {
2197 avctx->color_primaries = AVCOL_PRI_BT470M;
2198 } else if (colorspace == 2) {
2199 avctx->color_primaries = AVCOL_PRI_BT470BG;
2201 if (colorspace == 1 || colorspace == 2) {
2202 avctx->colorspace = AVCOL_SPC_BT470BG;
2203 avctx->color_trc = AVCOL_TRC_BT709;
2209 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2211 Vp3DecodeContext *s = avctx->priv_data;
2212 int i, n, matrices, inter, plane;
2214 if (s->theora >= 0x030200) {
2215 n = get_bits(gb, 3);
2216 /* loop filter limit values table */
2218 for (i = 0; i < 64; i++)
2219 s->filter_limit_values[i] = get_bits(gb, n);
2222 if (s->theora >= 0x030200)
2223 n = get_bits(gb, 4) + 1;
2226 /* quality threshold table */
2227 for (i = 0; i < 64; i++)
2228 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2230 if (s->theora >= 0x030200)
2231 n = get_bits(gb, 4) + 1;
2234 /* dc scale factor table */
2235 for (i = 0; i < 64; i++)
2236 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2238 if (s->theora >= 0x030200)
2239 matrices = get_bits(gb, 9) + 1;
2244 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2248 for(n=0; n<matrices; n++){
2249 for (i = 0; i < 64; i++)
2250 s->base_matrix[n][i]= get_bits(gb, 8);
2253 for (inter = 0; inter <= 1; inter++) {
2254 for (plane = 0; plane <= 2; plane++) {
2256 if (inter || plane > 0)
2257 newqr = get_bits1(gb);
2260 if(inter && get_bits1(gb)){
2264 qtj= (3*inter + plane - 1) / 3;
2265 plj= (plane + 2) % 3;
2267 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2268 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2269 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2275 i= get_bits(gb, av_log2(matrices-1)+1);
2277 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2280 s->qr_base[inter][plane][qri]= i;
2283 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2284 s->qr_size[inter][plane][qri++]= i;
2289 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2292 s->qr_count[inter][plane]= qri;
2297 /* Huffman tables */
2298 for (s->hti = 0; s->hti < 80; s->hti++) {
2300 s->huff_code_size = 1;
2301 if (!get_bits1(gb)) {
2303 if(read_huffman_tree(avctx, gb))
2306 if(read_huffman_tree(avctx, gb))
2311 s->theora_tables = 1;
2316 static av_cold int theora_decode_init(AVCodecContext *avctx)
2318 Vp3DecodeContext *s = avctx->priv_data;
2321 uint8_t *header_start[3];
2325 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2329 if (!avctx->extradata_size)
2331 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2335 if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2336 42, header_start, header_len) < 0) {
2337 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2342 if (header_len[i] <= 0)
2344 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2346 ptype = get_bits(&gb, 8);
2348 if (!(ptype & 0x80))
2350 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2354 // FIXME: Check for this as well.
2355 skip_bits_long(&gb, 6*8); /* "theora" */
2360 if (theora_decode_header(avctx, &gb) < 0)
2364 // FIXME: is this needed? it breaks sometimes
2365 // theora_decode_comments(avctx, gb);
2368 if (theora_decode_tables(avctx, &gb))
2372 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2375 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2376 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2377 if (s->theora < 0x030200)
2381 return vp3_decode_init(avctx);
2384 AVCodec ff_theora_decoder = {
2386 .type = AVMEDIA_TYPE_VIDEO,
2387 .id = AV_CODEC_ID_THEORA,
2388 .priv_data_size = sizeof(Vp3DecodeContext),
2389 .init = theora_decode_init,
2390 .close = vp3_decode_end,
2391 .decode = vp3_decode_frame,
2392 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2393 CODEC_CAP_FRAME_THREADS,
2394 .flush = vp3_decode_flush,
2395 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2396 .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2397 .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2401 AVCodec ff_vp3_decoder = {
2403 .type = AVMEDIA_TYPE_VIDEO,
2404 .id = AV_CODEC_ID_VP3,
2405 .priv_data_size = sizeof(Vp3DecodeContext),
2406 .init = vp3_decode_init,
2407 .close = vp3_decode_end,
2408 .decode = vp3_decode_frame,
2409 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2410 CODEC_CAP_FRAME_THREADS,
2411 .flush = vp3_decode_flush,
2412 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2413 .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2414 .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),