]> git.sesse.net Git - ffmpeg/blob - libavcodec/wma.c
lavc: Drop deprecated VDPAU buffer fields
[ffmpeg] / libavcodec / wma.c
1 /*
2  * WMA compatible codec
3  * Copyright (c) 2002-2007 The Libav Project
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "libavutil/attributes.h"
23
24 #include "avcodec.h"
25 #include "bitstream.h"
26 #include "internal.h"
27 #include "sinewin.h"
28 #include "wma.h"
29 #include "wma_common.h"
30 #include "wma_freqs.h"
31 #include "wmadata.h"
32
33 /* XXX: use same run/length optimization as mpeg decoders */
34 // FIXME maybe split decode / encode or pass flag
35 static av_cold int init_coef_vlc(VLC *vlc, uint16_t **prun_table,
36                                  float **plevel_table, uint16_t **pint_table,
37                                  const CoefVLCTable *vlc_table)
38 {
39     int n                        = vlc_table->n;
40     const uint8_t  *table_bits   = vlc_table->huffbits;
41     const uint32_t *table_codes  = vlc_table->huffcodes;
42     const uint16_t *levels_table = vlc_table->levels;
43     uint16_t *run_table, *level_table, *int_table;
44     float *flevel_table;
45     int i, l, j, k, level;
46
47     init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
48
49     run_table    = av_malloc(n * sizeof(uint16_t));
50     level_table  = av_malloc(n * sizeof(uint16_t));
51     flevel_table = av_malloc(n * sizeof(*flevel_table));
52     int_table    = av_malloc(n * sizeof(uint16_t));
53     if (!run_table || !level_table || !flevel_table || !int_table) {
54         av_freep(&run_table);
55         av_freep(&level_table);
56         av_freep(&flevel_table);
57         av_freep(&int_table);
58         return AVERROR(ENOMEM);
59     }
60     i            = 2;
61     level        = 1;
62     k            = 0;
63     while (i < n) {
64         int_table[k] = i;
65         l            = levels_table[k++];
66         for (j = 0; j < l; j++) {
67             run_table[i]    = j;
68             level_table[i]  = level;
69             flevel_table[i] = level;
70             i++;
71         }
72         level++;
73     }
74     *prun_table   = run_table;
75     *plevel_table = flevel_table;
76     *pint_table   = int_table;
77     av_free(level_table);
78
79     return 0;
80 }
81
82 av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
83 {
84     WMACodecContext *s = avctx->priv_data;
85     int i, ret;
86     float bps1, high_freq;
87     volatile float bps;
88     int sample_rate1;
89     int coef_vlc_table;
90
91     if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
92         avctx->channels    <= 0 || avctx->channels    > 2     ||
93         avctx->bit_rate    <= 0)
94         return -1;
95
96     avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
97
98     if (avctx->codec->id == AV_CODEC_ID_WMAV1)
99         s->version = 1;
100     else
101         s->version = 2;
102
103     /* compute MDCT block size */
104     s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
105                                                   s->version, 0);
106     s->next_block_len_bits = s->frame_len_bits;
107     s->prev_block_len_bits = s->frame_len_bits;
108     s->block_len_bits      = s->frame_len_bits;
109
110     s->frame_len = 1 << s->frame_len_bits;
111     if (s->use_variable_block_len) {
112         int nb_max, nb;
113         nb = ((flags2 >> 3) & 3) + 1;
114         if ((avctx->bit_rate / avctx->channels) >= 32000)
115             nb += 2;
116         nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
117         if (nb > nb_max)
118             nb = nb_max;
119         s->nb_block_sizes = nb + 1;
120     } else
121         s->nb_block_sizes = 1;
122
123     /* init rate dependent parameters */
124     s->use_noise_coding = 1;
125     high_freq           = avctx->sample_rate * 0.5;
126
127     /* if version 2, then the rates are normalized */
128     sample_rate1 = avctx->sample_rate;
129     if (s->version == 2) {
130         if (sample_rate1 >= 44100)
131             sample_rate1 = 44100;
132         else if (sample_rate1 >= 22050)
133             sample_rate1 = 22050;
134         else if (sample_rate1 >= 16000)
135             sample_rate1 = 16000;
136         else if (sample_rate1 >= 11025)
137             sample_rate1 = 11025;
138         else if (sample_rate1 >= 8000)
139             sample_rate1 = 8000;
140     }
141
142     bps                 = (float) avctx->bit_rate /
143                           (float) (avctx->channels * avctx->sample_rate);
144     s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
145
146     /* compute high frequency value and choose if noise coding should
147      * be activated */
148     bps1 = bps;
149     if (avctx->channels == 2)
150         bps1 = bps * 1.6;
151     if (sample_rate1 == 44100) {
152         if (bps1 >= 0.61)
153             s->use_noise_coding = 0;
154         else
155             high_freq = high_freq * 0.4;
156     } else if (sample_rate1 == 22050) {
157         if (bps1 >= 1.16)
158             s->use_noise_coding = 0;
159         else if (bps1 >= 0.72)
160             high_freq = high_freq * 0.7;
161         else
162             high_freq = high_freq * 0.6;
163     } else if (sample_rate1 == 16000) {
164         if (bps > 0.5)
165             high_freq = high_freq * 0.5;
166         else
167             high_freq = high_freq * 0.3;
168     } else if (sample_rate1 == 11025)
169         high_freq = high_freq * 0.7;
170     else if (sample_rate1 == 8000) {
171         if (bps <= 0.625)
172             high_freq = high_freq * 0.5;
173         else if (bps > 0.75)
174             s->use_noise_coding = 0;
175         else
176             high_freq = high_freq * 0.65;
177     } else {
178         if (bps >= 0.8)
179             high_freq = high_freq * 0.75;
180         else if (bps >= 0.6)
181             high_freq = high_freq * 0.6;
182         else
183             high_freq = high_freq * 0.5;
184     }
185     ff_dlog(s->avctx, "flags2=0x%x\n", flags2);
186     ff_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
187             s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
188             avctx->block_align);
189     ff_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
190             bps, bps1, high_freq, s->byte_offset_bits);
191     ff_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
192             s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
193
194     /* compute the scale factor band sizes for each MDCT block size */
195     {
196         int a, b, pos, lpos, k, block_len, i, j, n;
197         const uint8_t *table;
198
199         if (s->version == 1)
200             s->coefs_start = 3;
201         else
202             s->coefs_start = 0;
203         for (k = 0; k < s->nb_block_sizes; k++) {
204             block_len = s->frame_len >> k;
205
206             if (s->version == 1) {
207                 lpos = 0;
208                 for (i = 0; i < 25; i++) {
209                     a   = ff_wma_critical_freqs[i];
210                     b   = avctx->sample_rate;
211                     pos = ((block_len * 2 * a) + (b >> 1)) / b;
212                     if (pos > block_len)
213                         pos = block_len;
214                     s->exponent_bands[0][i] = pos - lpos;
215                     if (pos >= block_len) {
216                         i++;
217                         break;
218                     }
219                     lpos = pos;
220                 }
221                 s->exponent_sizes[0] = i;
222             } else {
223                 /* hardcoded tables */
224                 table = NULL;
225                 a     = s->frame_len_bits - BLOCK_MIN_BITS - k;
226                 if (a < 3) {
227                     if (avctx->sample_rate >= 44100)
228                         table = exponent_band_44100[a];
229                     else if (avctx->sample_rate >= 32000)
230                         table = exponent_band_32000[a];
231                     else if (avctx->sample_rate >= 22050)
232                         table = exponent_band_22050[a];
233                 }
234                 if (table) {
235                     n = *table++;
236                     for (i = 0; i < n; i++)
237                         s->exponent_bands[k][i] = table[i];
238                     s->exponent_sizes[k] = n;
239                 } else {
240                     j    = 0;
241                     lpos = 0;
242                     for (i = 0; i < 25; i++) {
243                         a     = ff_wma_critical_freqs[i];
244                         b     = avctx->sample_rate;
245                         pos   = ((block_len * 2 * a) + (b << 1)) / (4 * b);
246                         pos <<= 2;
247                         if (pos > block_len)
248                             pos = block_len;
249                         if (pos > lpos)
250                             s->exponent_bands[k][j++] = pos - lpos;
251                         if (pos >= block_len)
252                             break;
253                         lpos = pos;
254                     }
255                     s->exponent_sizes[k] = j;
256                 }
257             }
258
259             /* max number of coefs */
260             s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
261             /* high freq computation */
262             s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
263                                            avctx->sample_rate + 0.5);
264             n   = s->exponent_sizes[k];
265             j   = 0;
266             pos = 0;
267             for (i = 0; i < n; i++) {
268                 int start, end;
269                 start = pos;
270                 pos  += s->exponent_bands[k][i];
271                 end   = pos;
272                 if (start < s->high_band_start[k])
273                     start = s->high_band_start[k];
274                 if (end > s->coefs_end[k])
275                     end = s->coefs_end[k];
276                 if (end > start)
277                     s->exponent_high_bands[k][j++] = end - start;
278             }
279             s->exponent_high_sizes[k] = j;
280         }
281     }
282
283 #ifdef TRACE
284     {
285         int i, j;
286         for (i = 0; i < s->nb_block_sizes; i++) {
287             ff_tlog(s->avctx, "%5d: n=%2d:",
288                     s->frame_len >> i,
289                     s->exponent_sizes[i]);
290             for (j = 0; j < s->exponent_sizes[i]; j++)
291                 ff_tlog(s->avctx, " %d", s->exponent_bands[i][j]);
292             ff_tlog(s->avctx, "\n");
293         }
294     }
295 #endif /* TRACE */
296
297     /* init MDCT windows : simple sine window */
298     for (i = 0; i < s->nb_block_sizes; i++) {
299         ff_init_ff_sine_windows(s->frame_len_bits - i);
300         s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
301     }
302
303     s->reset_block_lengths = 1;
304
305     if (s->use_noise_coding) {
306         /* init the noise generator */
307         if (s->use_exp_vlc)
308             s->noise_mult = 0.02;
309         else
310             s->noise_mult = 0.04;
311
312 #ifdef TRACE
313         for (i = 0; i < NOISE_TAB_SIZE; i++)
314             s->noise_table[i] = 1.0 * s->noise_mult;
315 #else
316         {
317             unsigned int seed;
318             float norm;
319             seed = 1;
320             norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
321             for (i = 0; i < NOISE_TAB_SIZE; i++) {
322                 seed              = seed * 314159 + 1;
323                 s->noise_table[i] = (float) ((int) seed) * norm;
324             }
325         }
326 #endif /* TRACE */
327     }
328
329     /* choose the VLC tables for the coefficients */
330     coef_vlc_table = 2;
331     if (avctx->sample_rate >= 32000) {
332         if (bps1 < 0.72)
333             coef_vlc_table = 0;
334         else if (bps1 < 1.16)
335             coef_vlc_table = 1;
336     }
337     s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
338     s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
339     ret = init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
340                         &s->int_table[0], s->coef_vlcs[0]);
341     if (ret < 0)
342         return ret;
343
344     return init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
345                          &s->int_table[1], s->coef_vlcs[1]);
346 }
347
348 int ff_wma_total_gain_to_bits(int total_gain)
349 {
350     if (total_gain < 15)
351         return 13;
352     else if (total_gain < 32)
353         return 12;
354     else if (total_gain < 40)
355         return 11;
356     else if (total_gain < 45)
357         return 10;
358     else
359         return  9;
360 }
361
362 int ff_wma_end(AVCodecContext *avctx)
363 {
364     WMACodecContext *s = avctx->priv_data;
365     int i;
366
367     for (i = 0; i < s->nb_block_sizes; i++)
368         ff_mdct_end(&s->mdct_ctx[i]);
369
370     if (s->use_exp_vlc)
371         ff_free_vlc(&s->exp_vlc);
372     if (s->use_noise_coding)
373         ff_free_vlc(&s->hgain_vlc);
374     for (i = 0; i < 2; i++) {
375         ff_free_vlc(&s->coef_vlc[i]);
376         av_free(s->run_table[i]);
377         av_free(s->level_table[i]);
378         av_free(s->int_table[i]);
379     }
380
381     return 0;
382 }
383
384 /**
385  * Decode an uncompressed coefficient.
386  * @param bc BitstreamContext
387  * @return the decoded coefficient
388  */
389 unsigned int ff_wma_get_large_val(BitstreamContext *bc)
390 {
391     /** consumes up to 34 bits */
392     int n_bits = 8;
393     /** decode length */
394     if (bitstream_read_bit(bc)) {
395         n_bits += 8;
396         if (bitstream_read_bit(bc)) {
397             n_bits += 8;
398             if (bitstream_read_bit(bc))
399                 n_bits += 7;
400         }
401     }
402     return bitstream_read(bc, n_bits);
403 }
404
405 /**
406  * Decode run level compressed coefficients.
407  * @param avctx codec context
408  * @param bc bitstream reader context
409  * @param vlc VLC table for bitstream_read_vlc
410  * @param level_table level codes
411  * @param run_table run codes
412  * @param version 0 for wma1,2 1 for wmapro
413  * @param ptr output buffer
414  * @param offset offset in the output buffer
415  * @param num_coefs number of input coefficients
416  * @param block_len input buffer length (2^n)
417  * @param frame_len_bits number of bits for escaped run codes
418  * @param coef_nb_bits number of bits for escaped level codes
419  * @return 0 on success, -1 otherwise
420  */
421 int ff_wma_run_level_decode(AVCodecContext *avctx, BitstreamContext *bc,
422                             VLC *vlc, const float *level_table,
423                             const uint16_t *run_table, int version,
424                             WMACoef *ptr, int offset, int num_coefs,
425                             int block_len, int frame_len_bits,
426                             int coef_nb_bits)
427 {
428     int code, level, sign;
429     const uint32_t *ilvl = (const uint32_t *) level_table;
430     uint32_t *iptr = (uint32_t *) ptr;
431     const unsigned int coef_mask = block_len - 1;
432     for (; offset < num_coefs; offset++) {
433         code = bitstream_read_vlc(bc, vlc->table, VLCBITS, VLCMAX);
434         if (code > 1) {
435             /** normal code */
436             offset                  += run_table[code];
437             sign                     = bitstream_read_bit(bc) - 1;
438             iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
439         } else if (code == 1) {
440             /** EOB */
441             break;
442         } else {
443             /** escape */
444             if (!version) {
445                 level = bitstream_read(bc, coef_nb_bits);
446                 /** NOTE: this is rather suboptimal. reading
447                  *  block_len_bits would be better */
448                 offset += bitstream_read(bc, frame_len_bits);
449             } else {
450                 level = ff_wma_get_large_val(bc);
451                 /** escape decode */
452                 if (bitstream_read_bit(bc)) {
453                     if (bitstream_read_bit(bc)) {
454                         if (bitstream_read_bit(bc)) {
455                             av_log(avctx, AV_LOG_ERROR,
456                                    "broken escape sequence\n");
457                             return -1;
458                         } else
459                             offset += bitstream_read(bc, frame_len_bits) + 4;
460                     } else
461                         offset += bitstream_read(bc, 2) + 1;
462                 }
463             }
464             sign                    = bitstream_read_bit(bc) - 1;
465             ptr[offset & coef_mask] = (level ^ sign) - sign;
466         }
467     }
468     /** NOTE: EOB can be omitted */
469     if (offset > num_coefs) {
470         av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
471         return -1;
472     }
473
474     return 0;
475 }