]> git.sesse.net Git - ffmpeg/blob - libavfilter/af_asoftclip.c
avformat/avio: Add Metacube support
[ffmpeg] / libavfilter / af_asoftclip.c
1 /*
2  * Copyright (c) 2019 The FFmpeg Project
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/avassert.h"
22 #include "libavutil/channel_layout.h"
23 #include "libavutil/opt.h"
24 #include "libswresample/swresample.h"
25 #include "avfilter.h"
26 #include "audio.h"
27 #include "formats.h"
28
29 enum ASoftClipTypes {
30     ASC_HARD = -1,
31     ASC_TANH,
32     ASC_ATAN,
33     ASC_CUBIC,
34     ASC_EXP,
35     ASC_ALG,
36     ASC_QUINTIC,
37     ASC_SIN,
38     ASC_ERF,
39     NB_TYPES,
40 };
41
42 typedef struct ASoftClipContext {
43     const AVClass *class;
44
45     int type;
46     int oversample;
47     int64_t delay;
48     double threshold;
49     double output;
50     double param;
51
52     SwrContext *up_ctx;
53     SwrContext *down_ctx;
54
55     AVFrame *frame;
56
57     void (*filter)(struct ASoftClipContext *s, void **dst, const void **src,
58                    int nb_samples, int channels, int start, int end);
59 } ASoftClipContext;
60
61 #define OFFSET(x) offsetof(ASoftClipContext, x)
62 #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
63 #define F AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
64
65 static const AVOption asoftclip_options[] = {
66     { "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT,    {.i64=0},         -1, NB_TYPES-1, A, "types" },
67     { "hard",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_HARD},   0,          0, A, "types" },
68     { "tanh",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_TANH},   0,          0, A, "types" },
69     { "atan",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ATAN},   0,          0, A, "types" },
70     { "cubic",               NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_CUBIC},  0,          0, A, "types" },
71     { "exp",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_EXP},    0,          0, A, "types" },
72     { "alg",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ALG},    0,          0, A, "types" },
73     { "quintic",             NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_QUINTIC},0,          0, A, "types" },
74     { "sin",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_SIN},    0,          0, A, "types" },
75     { "erf",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ERF},    0,          0, A, "types" },
76     { "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A },
77     { "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A },
78     { "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01,        3, A },
79     { "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, 32, F },
80     { NULL }
81 };
82
83 AVFILTER_DEFINE_CLASS(asoftclip);
84
85 static int query_formats(AVFilterContext *ctx)
86 {
87     AVFilterFormats *formats = NULL;
88     AVFilterChannelLayouts *layouts = NULL;
89     static const enum AVSampleFormat sample_fmts[] = {
90         AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
91         AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
92         AV_SAMPLE_FMT_NONE
93     };
94     int ret;
95
96     formats = ff_make_format_list(sample_fmts);
97     if (!formats)
98         return AVERROR(ENOMEM);
99     ret = ff_set_common_formats(ctx, formats);
100     if (ret < 0)
101         return ret;
102
103     layouts = ff_all_channel_counts();
104     if (!layouts)
105         return AVERROR(ENOMEM);
106
107     ret = ff_set_common_channel_layouts(ctx, layouts);
108     if (ret < 0)
109         return ret;
110
111     formats = ff_all_samplerates();
112     return ff_set_common_samplerates(ctx, formats);
113 }
114
115 static void filter_flt(ASoftClipContext *s,
116                        void **dptr, const void **sptr,
117                        int nb_samples, int channels,
118                        int start, int end)
119 {
120     float threshold = s->threshold;
121     float gain = s->output * threshold;
122     float factor = 1.f / threshold;
123     float param = s->param;
124
125     for (int c = start; c < end; c++) {
126         const float *src = sptr[c];
127         float *dst = dptr[c];
128
129         switch (s->type) {
130         case ASC_HARD:
131             for (int n = 0; n < nb_samples; n++) {
132                 dst[n] = av_clipf(src[n] * factor, -1.f, 1.f);
133                 dst[n] *= gain;
134             }
135             break;
136         case ASC_TANH:
137             for (int n = 0; n < nb_samples; n++) {
138                 dst[n] = tanhf(src[n] * factor * param);
139                 dst[n] *= gain;
140             }
141             break;
142         case ASC_ATAN:
143             for (int n = 0; n < nb_samples; n++) {
144                 dst[n] = 2.f / M_PI * atanf(src[n] * factor * param);
145                 dst[n] *= gain;
146             }
147             break;
148         case ASC_CUBIC:
149             for (int n = 0; n < nb_samples; n++) {
150                 float sample = src[n] * factor;
151
152                 if (FFABS(sample) >= 1.5f)
153                     dst[n] = FFSIGN(sample);
154                 else
155                     dst[n] = sample - 0.1481f * powf(sample, 3.f);
156                 dst[n] *= gain;
157             }
158             break;
159         case ASC_EXP:
160             for (int n = 0; n < nb_samples; n++) {
161                 dst[n] = 2.f / (1.f + expf(-2.f * src[n] * factor)) - 1.;
162                 dst[n] *= gain;
163             }
164             break;
165         case ASC_ALG:
166             for (int n = 0; n < nb_samples; n++) {
167                 float sample = src[n] * factor;
168
169                 dst[n] = sample / (sqrtf(param + sample * sample));
170                 dst[n] *= gain;
171             }
172             break;
173         case ASC_QUINTIC:
174             for (int n = 0; n < nb_samples; n++) {
175                 float sample = src[n] * factor;
176
177                 if (FFABS(sample) >= 1.25)
178                     dst[n] = FFSIGN(sample);
179                 else
180                     dst[n] = sample - 0.08192f * powf(sample, 5.f);
181                 dst[n] *= gain;
182             }
183             break;
184         case ASC_SIN:
185             for (int n = 0; n < nb_samples; n++) {
186                 float sample = src[n] * factor;
187
188                 if (FFABS(sample) >= M_PI_2)
189                     dst[n] = FFSIGN(sample);
190                 else
191                     dst[n] = sinf(sample);
192                 dst[n] *= gain;
193             }
194             break;
195         case ASC_ERF:
196             for (int n = 0; n < nb_samples; n++) {
197                 dst[n] = erff(src[n] * factor);
198                 dst[n] *= gain;
199             }
200             break;
201         default:
202             av_assert0(0);
203         }
204     }
205 }
206
207 static void filter_dbl(ASoftClipContext *s,
208                        void **dptr, const void **sptr,
209                        int nb_samples, int channels,
210                        int start, int end)
211 {
212     double threshold = s->threshold;
213     double gain = s->output * threshold;
214     double factor = 1. / threshold;
215     double param = s->param;
216
217     for (int c = start; c < end; c++) {
218         const double *src = sptr[c];
219         double *dst = dptr[c];
220
221         switch (s->type) {
222         case ASC_HARD:
223             for (int n = 0; n < nb_samples; n++) {
224                 dst[n] = av_clipd(src[n] * factor, -1., 1.);
225                 dst[n] *= gain;
226             }
227             break;
228         case ASC_TANH:
229             for (int n = 0; n < nb_samples; n++) {
230                 dst[n] = tanh(src[n] * factor * param);
231                 dst[n] *= gain;
232             }
233             break;
234         case ASC_ATAN:
235             for (int n = 0; n < nb_samples; n++) {
236                 dst[n] = 2. / M_PI * atan(src[n] * factor * param);
237                 dst[n] *= gain;
238             }
239             break;
240         case ASC_CUBIC:
241             for (int n = 0; n < nb_samples; n++) {
242                 double sample = src[n] * factor;
243
244                 if (FFABS(sample) >= 1.5)
245                     dst[n] = FFSIGN(sample);
246                 else
247                     dst[n] = sample - 0.1481 * pow(sample, 3.);
248                 dst[n] *= gain;
249             }
250             break;
251         case ASC_EXP:
252             for (int n = 0; n < nb_samples; n++) {
253                 dst[n] = 2. / (1. + exp(-2. * src[n] * factor)) - 1.;
254                 dst[n] *= gain;
255             }
256             break;
257         case ASC_ALG:
258             for (int n = 0; n < nb_samples; n++) {
259                 double sample = src[n] * factor;
260
261                 dst[n] = sample / (sqrt(param + sample * sample));
262                 dst[n] *= gain;
263             }
264             break;
265         case ASC_QUINTIC:
266             for (int n = 0; n < nb_samples; n++) {
267                 double sample = src[n] * factor;
268
269                 if (FFABS(sample) >= 1.25)
270                     dst[n] = FFSIGN(sample);
271                 else
272                     dst[n] = sample - 0.08192 * pow(sample, 5.);
273                 dst[n] *= gain;
274             }
275             break;
276         case ASC_SIN:
277             for (int n = 0; n < nb_samples; n++) {
278                 double sample = src[n] * factor;
279
280                 if (FFABS(sample) >= M_PI_2)
281                     dst[n] = FFSIGN(sample);
282                 else
283                     dst[n] = sin(sample);
284                 dst[n] *= gain;
285             }
286             break;
287         case ASC_ERF:
288             for (int n = 0; n < nb_samples; n++) {
289                 dst[n] = erf(src[n] * factor);
290                 dst[n] *= gain;
291             }
292             break;
293         default:
294             av_assert0(0);
295         }
296     }
297 }
298
299 static int config_input(AVFilterLink *inlink)
300 {
301     AVFilterContext *ctx = inlink->dst;
302     ASoftClipContext *s = ctx->priv;
303     int ret;
304
305     switch (inlink->format) {
306     case AV_SAMPLE_FMT_FLT:
307     case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break;
308     case AV_SAMPLE_FMT_DBL:
309     case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break;
310     default: av_assert0(0);
311     }
312
313     if (s->oversample <= 1)
314         return 0;
315
316     s->up_ctx = swr_alloc();
317     s->down_ctx = swr_alloc();
318     if (!s->up_ctx || !s->down_ctx)
319         return AVERROR(ENOMEM);
320
321     av_opt_set_int(s->up_ctx, "in_channel_layout",    inlink->channel_layout, 0);
322     av_opt_set_int(s->up_ctx, "in_sample_rate",       inlink->sample_rate, 0);
323     av_opt_set_sample_fmt(s->up_ctx, "in_sample_fmt", inlink->format, 0);
324
325     av_opt_set_int(s->up_ctx, "out_channel_layout",    inlink->channel_layout, 0);
326     av_opt_set_int(s->up_ctx, "out_sample_rate",       inlink->sample_rate * s->oversample, 0);
327     av_opt_set_sample_fmt(s->up_ctx, "out_sample_fmt", inlink->format, 0);
328
329     av_opt_set_int(s->down_ctx, "in_channel_layout",    inlink->channel_layout, 0);
330     av_opt_set_int(s->down_ctx, "in_sample_rate",       inlink->sample_rate * s->oversample, 0);
331     av_opt_set_sample_fmt(s->down_ctx, "in_sample_fmt", inlink->format, 0);
332
333     av_opt_set_int(s->down_ctx, "out_channel_layout",    inlink->channel_layout, 0);
334     av_opt_set_int(s->down_ctx, "out_sample_rate",       inlink->sample_rate, 0);
335     av_opt_set_sample_fmt(s->down_ctx, "out_sample_fmt", inlink->format, 0);
336
337     ret = swr_init(s->up_ctx);
338     if (ret < 0)
339         return ret;
340
341     ret = swr_init(s->down_ctx);
342     if (ret < 0)
343         return ret;
344
345     return 0;
346 }
347
348 typedef struct ThreadData {
349     AVFrame *in, *out;
350     int nb_samples;
351     int channels;
352 } ThreadData;
353
354 static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
355 {
356     ASoftClipContext *s = ctx->priv;
357     ThreadData *td = arg;
358     AVFrame *out = td->out;
359     AVFrame *in = td->in;
360     const int channels = td->channels;
361     const int nb_samples = td->nb_samples;
362     const int start = (channels * jobnr) / nb_jobs;
363     const int end = (channels * (jobnr+1)) / nb_jobs;
364
365     s->filter(s, (void **)out->extended_data, (const void **)in->extended_data,
366               nb_samples, channels, start, end);
367
368     return 0;
369 }
370
371 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
372 {
373     AVFilterContext *ctx = inlink->dst;
374     ASoftClipContext *s = ctx->priv;
375     AVFilterLink *outlink = ctx->outputs[0];
376     int ret, nb_samples, channels;
377     ThreadData td;
378     AVFrame *out;
379
380     if (av_frame_is_writable(in)) {
381         out = in;
382     } else {
383         out = ff_get_audio_buffer(outlink, in->nb_samples);
384         if (!out) {
385             av_frame_free(&in);
386             return AVERROR(ENOMEM);
387         }
388         av_frame_copy_props(out, in);
389     }
390
391     if (av_sample_fmt_is_planar(in->format)) {
392         nb_samples = in->nb_samples;
393         channels = in->channels;
394     } else {
395         nb_samples = in->channels * in->nb_samples;
396         channels = 1;
397     }
398
399     if (s->oversample > 1) {
400         s->frame = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample);
401         if (!s->frame) {
402             ret = AVERROR(ENOMEM);
403             goto fail;
404         }
405
406         ret = swr_convert(s->up_ctx, (uint8_t**)s->frame->extended_data, in->nb_samples * s->oversample,
407                           (const uint8_t **)in->extended_data, in->nb_samples);
408         if (ret < 0)
409             goto fail;
410
411         td.in = s->frame;
412         td.out = s->frame;
413         td.nb_samples = av_sample_fmt_is_planar(in->format) ? ret : ret * in->channels;
414         td.channels = channels;
415         ctx->internal->execute(ctx, filter_channels, &td, NULL, FFMIN(channels,
416                                                                 ff_filter_get_nb_threads(ctx)));
417
418         ret = swr_convert(s->down_ctx, (uint8_t**)out->extended_data, out->nb_samples,
419                           (const uint8_t **)s->frame->extended_data, ret);
420         if (ret < 0)
421             goto fail;
422
423         if (out->pts)
424             out->pts -= s->delay;
425         s->delay += in->nb_samples - ret;
426         out->nb_samples = ret;
427
428         av_frame_free(&s->frame);
429     } else {
430         td.in = in;
431         td.out = out;
432         td.nb_samples = nb_samples;
433         td.channels = channels;
434         ctx->internal->execute(ctx, filter_channels, &td, NULL, FFMIN(channels,
435                                                                 ff_filter_get_nb_threads(ctx)));
436     }
437
438     if (out != in)
439         av_frame_free(&in);
440
441     return ff_filter_frame(outlink, out);
442 fail:
443     if (out != in)
444         av_frame_free(&out);
445     av_frame_free(&in);
446     av_frame_free(&s->frame);
447
448     return ret;
449 }
450
451 static av_cold void uninit(AVFilterContext *ctx)
452 {
453     ASoftClipContext *s = ctx->priv;
454
455     swr_free(&s->up_ctx);
456     swr_free(&s->down_ctx);
457 }
458
459 static const AVFilterPad inputs[] = {
460     {
461         .name         = "default",
462         .type         = AVMEDIA_TYPE_AUDIO,
463         .filter_frame = filter_frame,
464         .config_props = config_input,
465     },
466     { NULL }
467 };
468
469 static const AVFilterPad outputs[] = {
470     {
471         .name = "default",
472         .type = AVMEDIA_TYPE_AUDIO,
473     },
474     { NULL }
475 };
476
477 const AVFilter ff_af_asoftclip = {
478     .name           = "asoftclip",
479     .description    = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."),
480     .query_formats  = query_formats,
481     .priv_size      = sizeof(ASoftClipContext),
482     .priv_class     = &asoftclip_class,
483     .inputs         = inputs,
484     .outputs        = outputs,
485     .uninit         = uninit,
486     .process_command = ff_filter_process_command,
487     .flags          = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
488                       AVFILTER_FLAG_SLICE_THREADS,
489 };