]> git.sesse.net Git - ffmpeg/blob - libavfilter/af_atempo.c
avfilter: Constify all AVFilters
[ffmpeg] / libavfilter / af_atempo.c
1 /*
2  * Copyright (c) 2012 Pavel Koshevoy <pkoshevoy at gmail dot com>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 /**
22  * @file
23  * tempo scaling audio filter -- an implementation of WSOLA algorithm
24  *
25  * Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h
26  * from Apprentice Video player by Pavel Koshevoy.
27  * https://sourceforge.net/projects/apprenticevideo/
28  *
29  * An explanation of SOLA algorithm is available at
30  * http://www.surina.net/article/time-and-pitch-scaling.html
31  *
32  * WSOLA is very similar to SOLA, only one major difference exists between
33  * these algorithms.  SOLA shifts audio fragments along the output stream,
34  * where as WSOLA shifts audio fragments along the input stream.
35  *
36  * The advantage of WSOLA algorithm is that the overlap region size is
37  * always the same, therefore the blending function is constant and
38  * can be precomputed.
39  */
40
41 #include <float.h>
42 #include "libavcodec/avfft.h"
43 #include "libavutil/avassert.h"
44 #include "libavutil/avstring.h"
45 #include "libavutil/channel_layout.h"
46 #include "libavutil/eval.h"
47 #include "libavutil/opt.h"
48 #include "libavutil/samplefmt.h"
49 #include "avfilter.h"
50 #include "audio.h"
51 #include "internal.h"
52
53 /**
54  * A fragment of audio waveform
55  */
56 typedef struct AudioFragment {
57     // index of the first sample of this fragment in the overall waveform;
58     // 0: input sample position
59     // 1: output sample position
60     int64_t position[2];
61
62     // original packed multi-channel samples:
63     uint8_t *data;
64
65     // number of samples in this fragment:
66     int nsamples;
67
68     // rDFT transform of the down-mixed mono fragment, used for
69     // fast waveform alignment via correlation in frequency domain:
70     FFTSample *xdat;
71 } AudioFragment;
72
73 /**
74  * Filter state machine states
75  */
76 typedef enum {
77     YAE_LOAD_FRAGMENT,
78     YAE_ADJUST_POSITION,
79     YAE_RELOAD_FRAGMENT,
80     YAE_OUTPUT_OVERLAP_ADD,
81     YAE_FLUSH_OUTPUT,
82 } FilterState;
83
84 /**
85  * Filter state machine
86  */
87 typedef struct ATempoContext {
88     const AVClass *class;
89
90     // ring-buffer of input samples, necessary because some times
91     // input fragment position may be adjusted backwards:
92     uint8_t *buffer;
93
94     // ring-buffer maximum capacity, expressed in sample rate time base:
95     int ring;
96
97     // ring-buffer house keeping:
98     int size;
99     int head;
100     int tail;
101
102     // 0: input sample position corresponding to the ring buffer tail
103     // 1: output sample position
104     int64_t position[2];
105
106     // first input timestamp, all other timestamps are offset by this one
107     int64_t start_pts;
108
109     // sample format:
110     enum AVSampleFormat format;
111
112     // number of channels:
113     int channels;
114
115     // row of bytes to skip from one sample to next, across multple channels;
116     // stride = (number-of-channels * bits-per-sample-per-channel) / 8
117     int stride;
118
119     // fragment window size, power-of-two integer:
120     int window;
121
122     // Hann window coefficients, for feathering
123     // (blending) the overlapping fragment region:
124     float *hann;
125
126     // tempo scaling factor:
127     double tempo;
128
129     // a snapshot of previous fragment input and output position values
130     // captured when the tempo scale factor was set most recently:
131     int64_t origin[2];
132
133     // current/previous fragment ring-buffer:
134     AudioFragment frag[2];
135
136     // current fragment index:
137     uint64_t nfrag;
138
139     // current state:
140     FilterState state;
141
142     // for fast correlation calculation in frequency domain:
143     RDFTContext *real_to_complex;
144     RDFTContext *complex_to_real;
145     FFTSample *correlation;
146
147     // for managing AVFilterPad.request_frame and AVFilterPad.filter_frame
148     AVFrame *dst_buffer;
149     uint8_t *dst;
150     uint8_t *dst_end;
151     uint64_t nsamples_in;
152     uint64_t nsamples_out;
153 } ATempoContext;
154
155 #define YAE_ATEMPO_MIN 0.5
156 #define YAE_ATEMPO_MAX 100.0
157
158 #define OFFSET(x) offsetof(ATempoContext, x)
159
160 static const AVOption atempo_options[] = {
161     { "tempo", "set tempo scale factor",
162       OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 },
163       YAE_ATEMPO_MIN,
164       YAE_ATEMPO_MAX,
165       AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM },
166     { NULL }
167 };
168
169 AVFILTER_DEFINE_CLASS(atempo);
170
171 inline static AudioFragment *yae_curr_frag(ATempoContext *atempo)
172 {
173     return &atempo->frag[atempo->nfrag % 2];
174 }
175
176 inline static AudioFragment *yae_prev_frag(ATempoContext *atempo)
177 {
178     return &atempo->frag[(atempo->nfrag + 1) % 2];
179 }
180
181 /**
182  * Reset filter to initial state, do not deallocate existing local buffers.
183  */
184 static void yae_clear(ATempoContext *atempo)
185 {
186     atempo->size = 0;
187     atempo->head = 0;
188     atempo->tail = 0;
189
190     atempo->nfrag = 0;
191     atempo->state = YAE_LOAD_FRAGMENT;
192     atempo->start_pts = AV_NOPTS_VALUE;
193
194     atempo->position[0] = 0;
195     atempo->position[1] = 0;
196
197     atempo->origin[0] = 0;
198     atempo->origin[1] = 0;
199
200     atempo->frag[0].position[0] = 0;
201     atempo->frag[0].position[1] = 0;
202     atempo->frag[0].nsamples    = 0;
203
204     atempo->frag[1].position[0] = 0;
205     atempo->frag[1].position[1] = 0;
206     atempo->frag[1].nsamples    = 0;
207
208     // shift left position of 1st fragment by half a window
209     // so that no re-normalization would be required for
210     // the left half of the 1st fragment:
211     atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2);
212     atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2);
213
214     av_frame_free(&atempo->dst_buffer);
215     atempo->dst     = NULL;
216     atempo->dst_end = NULL;
217
218     atempo->nsamples_in       = 0;
219     atempo->nsamples_out      = 0;
220 }
221
222 /**
223  * Reset filter to initial state and deallocate all buffers.
224  */
225 static void yae_release_buffers(ATempoContext *atempo)
226 {
227     yae_clear(atempo);
228
229     av_freep(&atempo->frag[0].data);
230     av_freep(&atempo->frag[1].data);
231     av_freep(&atempo->frag[0].xdat);
232     av_freep(&atempo->frag[1].xdat);
233
234     av_freep(&atempo->buffer);
235     av_freep(&atempo->hann);
236     av_freep(&atempo->correlation);
237
238     av_rdft_end(atempo->real_to_complex);
239     atempo->real_to_complex = NULL;
240
241     av_rdft_end(atempo->complex_to_real);
242     atempo->complex_to_real = NULL;
243 }
244
245 /* av_realloc is not aligned enough; fortunately, the data does not need to
246  * be preserved */
247 #define RE_MALLOC_OR_FAIL(field, field_size)                    \
248     do {                                                        \
249         av_freep(&field);                                       \
250         field = av_malloc(field_size);                          \
251         if (!field) {                                           \
252             yae_release_buffers(atempo);                        \
253             return AVERROR(ENOMEM);                             \
254         }                                                       \
255     } while (0)
256
257 /**
258  * Prepare filter for processing audio data of given format,
259  * sample rate and number of channels.
260  */
261 static int yae_reset(ATempoContext *atempo,
262                      enum AVSampleFormat format,
263                      int sample_rate,
264                      int channels)
265 {
266     const int sample_size = av_get_bytes_per_sample(format);
267     uint32_t nlevels  = 0;
268     uint32_t pot;
269     int i;
270
271     atempo->format   = format;
272     atempo->channels = channels;
273     atempo->stride   = sample_size * channels;
274
275     // pick a segment window size:
276     atempo->window = sample_rate / 24;
277
278     // adjust window size to be a power-of-two integer:
279     nlevels = av_log2(atempo->window);
280     pot = 1 << nlevels;
281     av_assert0(pot <= atempo->window);
282
283     if (pot < atempo->window) {
284         atempo->window = pot * 2;
285         nlevels++;
286     }
287
288     // initialize audio fragment buffers:
289     RE_MALLOC_OR_FAIL(atempo->frag[0].data, atempo->window * atempo->stride);
290     RE_MALLOC_OR_FAIL(atempo->frag[1].data, atempo->window * atempo->stride);
291     RE_MALLOC_OR_FAIL(atempo->frag[0].xdat, atempo->window * sizeof(FFTComplex));
292     RE_MALLOC_OR_FAIL(atempo->frag[1].xdat, atempo->window * sizeof(FFTComplex));
293
294     // initialize rDFT contexts:
295     av_rdft_end(atempo->real_to_complex);
296     atempo->real_to_complex = NULL;
297
298     av_rdft_end(atempo->complex_to_real);
299     atempo->complex_to_real = NULL;
300
301     atempo->real_to_complex = av_rdft_init(nlevels + 1, DFT_R2C);
302     if (!atempo->real_to_complex) {
303         yae_release_buffers(atempo);
304         return AVERROR(ENOMEM);
305     }
306
307     atempo->complex_to_real = av_rdft_init(nlevels + 1, IDFT_C2R);
308     if (!atempo->complex_to_real) {
309         yae_release_buffers(atempo);
310         return AVERROR(ENOMEM);
311     }
312
313     RE_MALLOC_OR_FAIL(atempo->correlation, atempo->window * sizeof(FFTComplex));
314
315     atempo->ring = atempo->window * 3;
316     RE_MALLOC_OR_FAIL(atempo->buffer, atempo->ring * atempo->stride);
317
318     // initialize the Hann window function:
319     RE_MALLOC_OR_FAIL(atempo->hann, atempo->window * sizeof(float));
320
321     for (i = 0; i < atempo->window; i++) {
322         double t = (double)i / (double)(atempo->window - 1);
323         double h = 0.5 * (1.0 - cos(2.0 * M_PI * t));
324         atempo->hann[i] = (float)h;
325     }
326
327     yae_clear(atempo);
328     return 0;
329 }
330
331 static int yae_update(AVFilterContext *ctx)
332 {
333     const AudioFragment *prev;
334     ATempoContext *atempo = ctx->priv;
335
336     prev = yae_prev_frag(atempo);
337     atempo->origin[0] = prev->position[0] + atempo->window / 2;
338     atempo->origin[1] = prev->position[1] + atempo->window / 2;
339     return 0;
340 }
341
342 /**
343  * A helper macro for initializing complex data buffer with scalar data
344  * of a given type.
345  */
346 #define yae_init_xdat(scalar_type, scalar_max)                          \
347     do {                                                                \
348         const uint8_t *src_end = src +                                  \
349             frag->nsamples * atempo->channels * sizeof(scalar_type);    \
350                                                                         \
351         FFTSample *xdat = frag->xdat;                                   \
352         scalar_type tmp;                                                \
353                                                                         \
354         if (atempo->channels == 1) {                                    \
355             for (; src < src_end; xdat++) {                             \
356                 tmp = *(const scalar_type *)src;                        \
357                 src += sizeof(scalar_type);                             \
358                                                                         \
359                 *xdat = (FFTSample)tmp;                                 \
360             }                                                           \
361         } else {                                                        \
362             FFTSample s, max, ti, si;                                   \
363             int i;                                                      \
364                                                                         \
365             for (; src < src_end; xdat++) {                             \
366                 tmp = *(const scalar_type *)src;                        \
367                 src += sizeof(scalar_type);                             \
368                                                                         \
369                 max = (FFTSample)tmp;                                   \
370                 s = FFMIN((FFTSample)scalar_max,                        \
371                           (FFTSample)fabsf(max));                       \
372                                                                         \
373                 for (i = 1; i < atempo->channels; i++) {                \
374                     tmp = *(const scalar_type *)src;                    \
375                     src += sizeof(scalar_type);                         \
376                                                                         \
377                     ti = (FFTSample)tmp;                                \
378                     si = FFMIN((FFTSample)scalar_max,                   \
379                                (FFTSample)fabsf(ti));                   \
380                                                                         \
381                     if (s < si) {                                       \
382                         s   = si;                                       \
383                         max = ti;                                       \
384                     }                                                   \
385                 }                                                       \
386                                                                         \
387                 *xdat = max;                                            \
388             }                                                           \
389         }                                                               \
390     } while (0)
391
392 /**
393  * Initialize complex data buffer of a given audio fragment
394  * with down-mixed mono data of appropriate scalar type.
395  */
396 static void yae_downmix(ATempoContext *atempo, AudioFragment *frag)
397 {
398     // shortcuts:
399     const uint8_t *src = frag->data;
400
401     // init complex data buffer used for FFT and Correlation:
402     memset(frag->xdat, 0, sizeof(FFTComplex) * atempo->window);
403
404     if (atempo->format == AV_SAMPLE_FMT_U8) {
405         yae_init_xdat(uint8_t, 127);
406     } else if (atempo->format == AV_SAMPLE_FMT_S16) {
407         yae_init_xdat(int16_t, 32767);
408     } else if (atempo->format == AV_SAMPLE_FMT_S32) {
409         yae_init_xdat(int, 2147483647);
410     } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
411         yae_init_xdat(float, 1);
412     } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
413         yae_init_xdat(double, 1);
414     }
415 }
416
417 /**
418  * Populate the internal data buffer on as-needed basis.
419  *
420  * @return
421  *   0 if requested data was already available or was successfully loaded,
422  *   AVERROR(EAGAIN) if more input data is required.
423  */
424 static int yae_load_data(ATempoContext *atempo,
425                          const uint8_t **src_ref,
426                          const uint8_t *src_end,
427                          int64_t stop_here)
428 {
429     // shortcut:
430     const uint8_t *src = *src_ref;
431     const int read_size = stop_here - atempo->position[0];
432
433     if (stop_here <= atempo->position[0]) {
434         return 0;
435     }
436
437     // samples are not expected to be skipped, unless tempo is greater than 2:
438     av_assert0(read_size <= atempo->ring || atempo->tempo > 2.0);
439
440     while (atempo->position[0] < stop_here && src < src_end) {
441         int src_samples = (src_end - src) / atempo->stride;
442
443         // load data piece-wise, in order to avoid complicating the logic:
444         int nsamples = FFMIN(read_size, src_samples);
445         int na;
446         int nb;
447
448         nsamples = FFMIN(nsamples, atempo->ring);
449         na = FFMIN(nsamples, atempo->ring - atempo->tail);
450         nb = FFMIN(nsamples - na, atempo->ring);
451
452         if (na) {
453             uint8_t *a = atempo->buffer + atempo->tail * atempo->stride;
454             memcpy(a, src, na * atempo->stride);
455
456             src += na * atempo->stride;
457             atempo->position[0] += na;
458
459             atempo->size = FFMIN(atempo->size + na, atempo->ring);
460             atempo->tail = (atempo->tail + na) % atempo->ring;
461             atempo->head =
462                 atempo->size < atempo->ring ?
463                 atempo->tail - atempo->size :
464                 atempo->tail;
465         }
466
467         if (nb) {
468             uint8_t *b = atempo->buffer;
469             memcpy(b, src, nb * atempo->stride);
470
471             src += nb * atempo->stride;
472             atempo->position[0] += nb;
473
474             atempo->size = FFMIN(atempo->size + nb, atempo->ring);
475             atempo->tail = (atempo->tail + nb) % atempo->ring;
476             atempo->head =
477                 atempo->size < atempo->ring ?
478                 atempo->tail - atempo->size :
479                 atempo->tail;
480         }
481     }
482
483     // pass back the updated source buffer pointer:
484     *src_ref = src;
485
486     // sanity check:
487     av_assert0(atempo->position[0] <= stop_here);
488
489     return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN);
490 }
491
492 /**
493  * Populate current audio fragment data buffer.
494  *
495  * @return
496  *   0 when the fragment is ready,
497  *   AVERROR(EAGAIN) if more input data is required.
498  */
499 static int yae_load_frag(ATempoContext *atempo,
500                          const uint8_t **src_ref,
501                          const uint8_t *src_end)
502 {
503     // shortcuts:
504     AudioFragment *frag = yae_curr_frag(atempo);
505     uint8_t *dst;
506     int64_t missing, start, zeros;
507     uint32_t nsamples;
508     const uint8_t *a, *b;
509     int i0, i1, n0, n1, na, nb;
510
511     int64_t stop_here = frag->position[0] + atempo->window;
512     if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) {
513         return AVERROR(EAGAIN);
514     }
515
516     // calculate the number of samples we don't have:
517     missing =
518         stop_here > atempo->position[0] ?
519         stop_here - atempo->position[0] : 0;
520
521     nsamples =
522         missing < (int64_t)atempo->window ?
523         (uint32_t)(atempo->window - missing) : 0;
524
525     // setup the output buffer:
526     frag->nsamples = nsamples;
527     dst = frag->data;
528
529     start = atempo->position[0] - atempo->size;
530     zeros = 0;
531
532     if (frag->position[0] < start) {
533         // what we don't have we substitute with zeros:
534         zeros = FFMIN(start - frag->position[0], (int64_t)nsamples);
535         av_assert0(zeros != nsamples);
536
537         memset(dst, 0, zeros * atempo->stride);
538         dst += zeros * atempo->stride;
539     }
540
541     if (zeros == nsamples) {
542         return 0;
543     }
544
545     // get the remaining data from the ring buffer:
546     na = (atempo->head < atempo->tail ?
547           atempo->tail - atempo->head :
548           atempo->ring - atempo->head);
549
550     nb = atempo->head < atempo->tail ? 0 : atempo->tail;
551
552     // sanity check:
553     av_assert0(nsamples <= zeros + na + nb);
554
555     a = atempo->buffer + atempo->head * atempo->stride;
556     b = atempo->buffer;
557
558     i0 = frag->position[0] + zeros - start;
559     i1 = i0 < na ? 0 : i0 - na;
560
561     n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0;
562     n1 = nsamples - zeros - n0;
563
564     if (n0) {
565         memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride);
566         dst += n0 * atempo->stride;
567     }
568
569     if (n1) {
570         memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride);
571     }
572
573     return 0;
574 }
575
576 /**
577  * Prepare for loading next audio fragment.
578  */
579 static void yae_advance_to_next_frag(ATempoContext *atempo)
580 {
581     const double fragment_step = atempo->tempo * (double)(atempo->window / 2);
582
583     const AudioFragment *prev;
584     AudioFragment       *frag;
585
586     atempo->nfrag++;
587     prev = yae_prev_frag(atempo);
588     frag = yae_curr_frag(atempo);
589
590     frag->position[0] = prev->position[0] + (int64_t)fragment_step;
591     frag->position[1] = prev->position[1] + atempo->window / 2;
592     frag->nsamples    = 0;
593 }
594
595 /**
596  * Calculate cross-correlation via rDFT.
597  *
598  * Multiply two vectors of complex numbers (result of real_to_complex rDFT)
599  * and transform back via complex_to_real rDFT.
600  */
601 static void yae_xcorr_via_rdft(FFTSample *xcorr,
602                                RDFTContext *complex_to_real,
603                                const FFTComplex *xa,
604                                const FFTComplex *xb,
605                                const int window)
606 {
607     FFTComplex *xc = (FFTComplex *)xcorr;
608     int i;
609
610     // NOTE: first element requires special care -- Given Y = rDFT(X),
611     // Im(Y[0]) and Im(Y[N/2]) are always zero, therefore av_rdft_calc
612     // stores Re(Y[N/2]) in place of Im(Y[0]).
613
614     xc->re = xa->re * xb->re;
615     xc->im = xa->im * xb->im;
616     xa++;
617     xb++;
618     xc++;
619
620     for (i = 1; i < window; i++, xa++, xb++, xc++) {
621         xc->re = (xa->re * xb->re + xa->im * xb->im);
622         xc->im = (xa->im * xb->re - xa->re * xb->im);
623     }
624
625     // apply inverse rDFT:
626     av_rdft_calc(complex_to_real, xcorr);
627 }
628
629 /**
630  * Calculate alignment offset for given fragment
631  * relative to the previous fragment.
632  *
633  * @return alignment offset of current fragment relative to previous.
634  */
635 static int yae_align(AudioFragment *frag,
636                      const AudioFragment *prev,
637                      const int window,
638                      const int delta_max,
639                      const int drift,
640                      FFTSample *correlation,
641                      RDFTContext *complex_to_real)
642 {
643     int       best_offset = -drift;
644     FFTSample best_metric = -FLT_MAX;
645     FFTSample *xcorr;
646
647     int i0;
648     int i1;
649     int i;
650
651     yae_xcorr_via_rdft(correlation,
652                        complex_to_real,
653                        (const FFTComplex *)prev->xdat,
654                        (const FFTComplex *)frag->xdat,
655                        window);
656
657     // identify search window boundaries:
658     i0 = FFMAX(window / 2 - delta_max - drift, 0);
659     i0 = FFMIN(i0, window);
660
661     i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16);
662     i1 = FFMAX(i1, 0);
663
664     // identify cross-correlation peaks within search window:
665     xcorr = correlation + i0;
666
667     for (i = i0; i < i1; i++, xcorr++) {
668         FFTSample metric = *xcorr;
669
670         // normalize:
671         FFTSample drifti = (FFTSample)(drift + i);
672         metric *= drifti * (FFTSample)(i - i0) * (FFTSample)(i1 - i);
673
674         if (metric > best_metric) {
675             best_metric = metric;
676             best_offset = i - window / 2;
677         }
678     }
679
680     return best_offset;
681 }
682
683 /**
684  * Adjust current fragment position for better alignment
685  * with previous fragment.
686  *
687  * @return alignment correction.
688  */
689 static int yae_adjust_position(ATempoContext *atempo)
690 {
691     const AudioFragment *prev = yae_prev_frag(atempo);
692     AudioFragment       *frag = yae_curr_frag(atempo);
693
694     const double prev_output_position =
695         (double)(prev->position[1] - atempo->origin[1] + atempo->window / 2) *
696         atempo->tempo;
697
698     const double ideal_output_position =
699         (double)(prev->position[0] - atempo->origin[0] + atempo->window / 2);
700
701     const int drift = (int)(prev_output_position - ideal_output_position);
702
703     const int delta_max  = atempo->window / 2;
704     const int correction = yae_align(frag,
705                                      prev,
706                                      atempo->window,
707                                      delta_max,
708                                      drift,
709                                      atempo->correlation,
710                                      atempo->complex_to_real);
711
712     if (correction) {
713         // adjust fragment position:
714         frag->position[0] -= correction;
715
716         // clear so that the fragment can be reloaded:
717         frag->nsamples = 0;
718     }
719
720     return correction;
721 }
722
723 /**
724  * A helper macro for blending the overlap region of previous
725  * and current audio fragment.
726  */
727 #define yae_blend(scalar_type)                                          \
728     do {                                                                \
729         const scalar_type *aaa = (const scalar_type *)a;                \
730         const scalar_type *bbb = (const scalar_type *)b;                \
731                                                                         \
732         scalar_type *out     = (scalar_type *)dst;                      \
733         scalar_type *out_end = (scalar_type *)dst_end;                  \
734         int64_t i;                                                      \
735                                                                         \
736         for (i = 0; i < overlap && out < out_end;                       \
737              i++, atempo->position[1]++, wa++, wb++) {                  \
738             float w0 = *wa;                                             \
739             float w1 = *wb;                                             \
740             int j;                                                      \
741                                                                         \
742             for (j = 0; j < atempo->channels;                           \
743                  j++, aaa++, bbb++, out++) {                            \
744                 float t0 = (float)*aaa;                                 \
745                 float t1 = (float)*bbb;                                 \
746                                                                         \
747                 *out =                                                  \
748                     frag->position[0] + i < 0 ?                         \
749                     *aaa :                                              \
750                     (scalar_type)(t0 * w0 + t1 * w1);                   \
751             }                                                           \
752         }                                                               \
753         dst = (uint8_t *)out;                                           \
754     } while (0)
755
756 /**
757  * Blend the overlap region of previous and current audio fragment
758  * and output the results to the given destination buffer.
759  *
760  * @return
761  *   0 if the overlap region was completely stored in the dst buffer,
762  *   AVERROR(EAGAIN) if more destination buffer space is required.
763  */
764 static int yae_overlap_add(ATempoContext *atempo,
765                            uint8_t **dst_ref,
766                            uint8_t *dst_end)
767 {
768     // shortcuts:
769     const AudioFragment *prev = yae_prev_frag(atempo);
770     const AudioFragment *frag = yae_curr_frag(atempo);
771
772     const int64_t start_here = FFMAX(atempo->position[1],
773                                      frag->position[1]);
774
775     const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples,
776                                     frag->position[1] + frag->nsamples);
777
778     const int64_t overlap = stop_here - start_here;
779
780     const int64_t ia = start_here - prev->position[1];
781     const int64_t ib = start_here - frag->position[1];
782
783     const float *wa = atempo->hann + ia;
784     const float *wb = atempo->hann + ib;
785
786     const uint8_t *a = prev->data + ia * atempo->stride;
787     const uint8_t *b = frag->data + ib * atempo->stride;
788
789     uint8_t *dst = *dst_ref;
790
791     av_assert0(start_here <= stop_here &&
792                frag->position[1] <= start_here &&
793                overlap <= frag->nsamples);
794
795     if (atempo->format == AV_SAMPLE_FMT_U8) {
796         yae_blend(uint8_t);
797     } else if (atempo->format == AV_SAMPLE_FMT_S16) {
798         yae_blend(int16_t);
799     } else if (atempo->format == AV_SAMPLE_FMT_S32) {
800         yae_blend(int);
801     } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
802         yae_blend(float);
803     } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
804         yae_blend(double);
805     }
806
807     // pass-back the updated destination buffer pointer:
808     *dst_ref = dst;
809
810     return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
811 }
812
813 /**
814  * Feed as much data to the filter as it is able to consume
815  * and receive as much processed data in the destination buffer
816  * as it is able to produce or store.
817  */
818 static void
819 yae_apply(ATempoContext *atempo,
820           const uint8_t **src_ref,
821           const uint8_t *src_end,
822           uint8_t **dst_ref,
823           uint8_t *dst_end)
824 {
825     while (1) {
826         if (atempo->state == YAE_LOAD_FRAGMENT) {
827             // load additional data for the current fragment:
828             if (yae_load_frag(atempo, src_ref, src_end) != 0) {
829                 break;
830             }
831
832             // down-mix to mono:
833             yae_downmix(atempo, yae_curr_frag(atempo));
834
835             // apply rDFT:
836             av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
837
838             // must load the second fragment before alignment can start:
839             if (!atempo->nfrag) {
840                 yae_advance_to_next_frag(atempo);
841                 continue;
842             }
843
844             atempo->state = YAE_ADJUST_POSITION;
845         }
846
847         if (atempo->state == YAE_ADJUST_POSITION) {
848             // adjust position for better alignment:
849             if (yae_adjust_position(atempo)) {
850                 // reload the fragment at the corrected position, so that the
851                 // Hann window blending would not require normalization:
852                 atempo->state = YAE_RELOAD_FRAGMENT;
853             } else {
854                 atempo->state = YAE_OUTPUT_OVERLAP_ADD;
855             }
856         }
857
858         if (atempo->state == YAE_RELOAD_FRAGMENT) {
859             // load additional data if necessary due to position adjustment:
860             if (yae_load_frag(atempo, src_ref, src_end) != 0) {
861                 break;
862             }
863
864             // down-mix to mono:
865             yae_downmix(atempo, yae_curr_frag(atempo));
866
867             // apply rDFT:
868             av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
869
870             atempo->state = YAE_OUTPUT_OVERLAP_ADD;
871         }
872
873         if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) {
874             // overlap-add and output the result:
875             if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
876                 break;
877             }
878
879             // advance to the next fragment, repeat:
880             yae_advance_to_next_frag(atempo);
881             atempo->state = YAE_LOAD_FRAGMENT;
882         }
883     }
884 }
885
886 /**
887  * Flush any buffered data from the filter.
888  *
889  * @return
890  *   0 if all data was completely stored in the dst buffer,
891  *   AVERROR(EAGAIN) if more destination buffer space is required.
892  */
893 static int yae_flush(ATempoContext *atempo,
894                      uint8_t **dst_ref,
895                      uint8_t *dst_end)
896 {
897     AudioFragment *frag = yae_curr_frag(atempo);
898     int64_t overlap_end;
899     int64_t start_here;
900     int64_t stop_here;
901     int64_t offset;
902
903     const uint8_t *src;
904     uint8_t *dst;
905
906     int src_size;
907     int dst_size;
908     int nbytes;
909
910     atempo->state = YAE_FLUSH_OUTPUT;
911
912     if (!atempo->nfrag) {
913         // there is nothing to flush:
914         return 0;
915     }
916
917     if (atempo->position[0] == frag->position[0] + frag->nsamples &&
918         atempo->position[1] == frag->position[1] + frag->nsamples) {
919         // the current fragment is already flushed:
920         return 0;
921     }
922
923     if (frag->position[0] + frag->nsamples < atempo->position[0]) {
924         // finish loading the current (possibly partial) fragment:
925         yae_load_frag(atempo, NULL, NULL);
926
927         if (atempo->nfrag) {
928             // down-mix to mono:
929             yae_downmix(atempo, frag);
930
931             // apply rDFT:
932             av_rdft_calc(atempo->real_to_complex, frag->xdat);
933
934             // align current fragment to previous fragment:
935             if (yae_adjust_position(atempo)) {
936                 // reload the current fragment due to adjusted position:
937                 yae_load_frag(atempo, NULL, NULL);
938             }
939         }
940     }
941
942     // flush the overlap region:
943     overlap_end = frag->position[1] + FFMIN(atempo->window / 2,
944                                             frag->nsamples);
945
946     while (atempo->position[1] < overlap_end) {
947         if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
948             return AVERROR(EAGAIN);
949         }
950     }
951
952     // check whether all of the input samples have been consumed:
953     if (frag->position[0] + frag->nsamples < atempo->position[0]) {
954         yae_advance_to_next_frag(atempo);
955         return AVERROR(EAGAIN);
956     }
957
958     // flush the remainder of the current fragment:
959     start_here = FFMAX(atempo->position[1], overlap_end);
960     stop_here  = frag->position[1] + frag->nsamples;
961     offset     = start_here - frag->position[1];
962     av_assert0(start_here <= stop_here && frag->position[1] <= start_here);
963
964     src = frag->data + offset * atempo->stride;
965     dst = (uint8_t *)*dst_ref;
966
967     src_size = (int)(stop_here - start_here) * atempo->stride;
968     dst_size = dst_end - dst;
969     nbytes = FFMIN(src_size, dst_size);
970
971     memcpy(dst, src, nbytes);
972     dst += nbytes;
973
974     atempo->position[1] += (nbytes / atempo->stride);
975
976     // pass-back the updated destination buffer pointer:
977     *dst_ref = (uint8_t *)dst;
978
979     return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
980 }
981
982 static av_cold int init(AVFilterContext *ctx)
983 {
984     ATempoContext *atempo = ctx->priv;
985     atempo->format = AV_SAMPLE_FMT_NONE;
986     atempo->state  = YAE_LOAD_FRAGMENT;
987     return 0;
988 }
989
990 static av_cold void uninit(AVFilterContext *ctx)
991 {
992     ATempoContext *atempo = ctx->priv;
993     yae_release_buffers(atempo);
994 }
995
996 static int query_formats(AVFilterContext *ctx)
997 {
998     AVFilterChannelLayouts *layouts = NULL;
999     AVFilterFormats        *formats = NULL;
1000
1001     // WSOLA necessitates an internal sliding window ring buffer
1002     // for incoming audio stream.
1003     //
1004     // Planar sample formats are too cumbersome to store in a ring buffer,
1005     // therefore planar sample formats are not supported.
1006     //
1007     static const enum AVSampleFormat sample_fmts[] = {
1008         AV_SAMPLE_FMT_U8,
1009         AV_SAMPLE_FMT_S16,
1010         AV_SAMPLE_FMT_S32,
1011         AV_SAMPLE_FMT_FLT,
1012         AV_SAMPLE_FMT_DBL,
1013         AV_SAMPLE_FMT_NONE
1014     };
1015     int ret;
1016
1017     layouts = ff_all_channel_counts();
1018     if (!layouts) {
1019         return AVERROR(ENOMEM);
1020     }
1021     ret = ff_set_common_channel_layouts(ctx, layouts);
1022     if (ret < 0)
1023         return ret;
1024
1025     formats = ff_make_format_list(sample_fmts);
1026     if (!formats) {
1027         return AVERROR(ENOMEM);
1028     }
1029     ret = ff_set_common_formats(ctx, formats);
1030     if (ret < 0)
1031         return ret;
1032
1033     formats = ff_all_samplerates();
1034     if (!formats) {
1035         return AVERROR(ENOMEM);
1036     }
1037     return ff_set_common_samplerates(ctx, formats);
1038 }
1039
1040 static int config_props(AVFilterLink *inlink)
1041 {
1042     AVFilterContext  *ctx = inlink->dst;
1043     ATempoContext *atempo = ctx->priv;
1044
1045     enum AVSampleFormat format = inlink->format;
1046     int sample_rate = (int)inlink->sample_rate;
1047
1048     return yae_reset(atempo, format, sample_rate, inlink->channels);
1049 }
1050
1051 static int push_samples(ATempoContext *atempo,
1052                         AVFilterLink *outlink,
1053                         int n_out)
1054 {
1055     int ret;
1056
1057     atempo->dst_buffer->sample_rate = outlink->sample_rate;
1058     atempo->dst_buffer->nb_samples  = n_out;
1059
1060     // adjust the PTS:
1061     atempo->dst_buffer->pts = atempo->start_pts +
1062         av_rescale_q(atempo->nsamples_out,
1063                      (AVRational){ 1, outlink->sample_rate },
1064                      outlink->time_base);
1065
1066     ret = ff_filter_frame(outlink, atempo->dst_buffer);
1067     atempo->dst_buffer = NULL;
1068     atempo->dst        = NULL;
1069     atempo->dst_end    = NULL;
1070     if (ret < 0)
1071         return ret;
1072
1073     atempo->nsamples_out += n_out;
1074     return 0;
1075 }
1076
1077 static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer)
1078 {
1079     AVFilterContext  *ctx = inlink->dst;
1080     ATempoContext *atempo = ctx->priv;
1081     AVFilterLink *outlink = ctx->outputs[0];
1082
1083     int ret = 0;
1084     int n_in = src_buffer->nb_samples;
1085     int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo);
1086
1087     const uint8_t *src = src_buffer->data[0];
1088     const uint8_t *src_end = src + n_in * atempo->stride;
1089
1090     if (atempo->start_pts == AV_NOPTS_VALUE)
1091         atempo->start_pts = av_rescale_q(src_buffer->pts,
1092                                          inlink->time_base,
1093                                          outlink->time_base);
1094
1095     while (src < src_end) {
1096         if (!atempo->dst_buffer) {
1097             atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out);
1098             if (!atempo->dst_buffer) {
1099                 av_frame_free(&src_buffer);
1100                 return AVERROR(ENOMEM);
1101             }
1102             av_frame_copy_props(atempo->dst_buffer, src_buffer);
1103
1104             atempo->dst = atempo->dst_buffer->data[0];
1105             atempo->dst_end = atempo->dst + n_out * atempo->stride;
1106         }
1107
1108         yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end);
1109
1110         if (atempo->dst == atempo->dst_end) {
1111             int n_samples = ((atempo->dst - atempo->dst_buffer->data[0]) /
1112                              atempo->stride);
1113             ret = push_samples(atempo, outlink, n_samples);
1114             if (ret < 0)
1115                 goto end;
1116         }
1117     }
1118
1119     atempo->nsamples_in += n_in;
1120 end:
1121     av_frame_free(&src_buffer);
1122     return ret;
1123 }
1124
1125 static int request_frame(AVFilterLink *outlink)
1126 {
1127     AVFilterContext  *ctx = outlink->src;
1128     ATempoContext *atempo = ctx->priv;
1129     int ret;
1130
1131     ret = ff_request_frame(ctx->inputs[0]);
1132
1133     if (ret == AVERROR_EOF) {
1134         // flush the filter:
1135         int n_max = atempo->ring;
1136         int n_out;
1137         int err = AVERROR(EAGAIN);
1138
1139         while (err == AVERROR(EAGAIN)) {
1140             if (!atempo->dst_buffer) {
1141                 atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max);
1142                 if (!atempo->dst_buffer)
1143                     return AVERROR(ENOMEM);
1144
1145                 atempo->dst = atempo->dst_buffer->data[0];
1146                 atempo->dst_end = atempo->dst + n_max * atempo->stride;
1147             }
1148
1149             err = yae_flush(atempo, &atempo->dst, atempo->dst_end);
1150
1151             n_out = ((atempo->dst - atempo->dst_buffer->data[0]) /
1152                      atempo->stride);
1153
1154             if (n_out) {
1155                 ret = push_samples(atempo, outlink, n_out);
1156                 if (ret < 0)
1157                     return ret;
1158             }
1159         }
1160
1161         av_frame_free(&atempo->dst_buffer);
1162         atempo->dst     = NULL;
1163         atempo->dst_end = NULL;
1164
1165         return AVERROR_EOF;
1166     }
1167
1168     return ret;
1169 }
1170
1171 static int process_command(AVFilterContext *ctx,
1172                            const char *cmd,
1173                            const char *arg,
1174                            char *res,
1175                            int res_len,
1176                            int flags)
1177 {
1178     int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
1179
1180     if (ret < 0)
1181         return ret;
1182
1183     return yae_update(ctx);
1184 }
1185
1186 static const AVFilterPad atempo_inputs[] = {
1187     {
1188         .name         = "default",
1189         .type         = AVMEDIA_TYPE_AUDIO,
1190         .filter_frame = filter_frame,
1191         .config_props = config_props,
1192     },
1193     { NULL }
1194 };
1195
1196 static const AVFilterPad atempo_outputs[] = {
1197     {
1198         .name          = "default",
1199         .request_frame = request_frame,
1200         .type          = AVMEDIA_TYPE_AUDIO,
1201     },
1202     { NULL }
1203 };
1204
1205 const AVFilter ff_af_atempo = {
1206     .name            = "atempo",
1207     .description     = NULL_IF_CONFIG_SMALL("Adjust audio tempo."),
1208     .init            = init,
1209     .uninit          = uninit,
1210     .query_formats   = query_formats,
1211     .process_command = process_command,
1212     .priv_size       = sizeof(ATempoContext),
1213     .priv_class      = &atempo_class,
1214     .inputs          = atempo_inputs,
1215     .outputs         = atempo_outputs,
1216 };