]> git.sesse.net Git - ffmpeg/blob - libavfilter/af_biquads.c
lavfi/histogram: make it C90 compliant
[ffmpeg] / libavfilter / af_biquads.c
1 /*
2  * Copyright (c) 2013 Paul B Mahol
3  * Copyright (c) 2006-2008 Rob Sykes <robs@users.sourceforge.net>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /*
23  * 2-pole filters designed by Robert Bristow-Johnson <rbj@audioimagination.com>
24  *   see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
25  *
26  * 1-pole filters based on code (c) 2000 Chris Bagwell <cbagwell@sprynet.com>
27  *   Algorithms: Recursive single pole low/high pass filter
28  *   Reference: The Scientist and Engineer's Guide to Digital Signal Processing
29  *
30  *   low-pass: output[N] = input[N] * A + output[N-1] * B
31  *     X = exp(-2.0 * pi * Fc)
32  *     A = 1 - X
33  *     B = X
34  *     Fc = cutoff freq / sample rate
35  *
36  *     Mimics an RC low-pass filter:
37  *
38  *     ---/\/\/\/\----------->
39  *                   |
40  *                  --- C
41  *                  ---
42  *                   |
43  *                   |
44  *                   V
45  *
46  *   high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
47  *     X  = exp(-2.0 * pi * Fc)
48  *     A0 = (1 + X) / 2
49  *     A1 = -(1 + X) / 2
50  *     B1 = X
51  *     Fc = cutoff freq / sample rate
52  *
53  *     Mimics an RC high-pass filter:
54  *
55  *         || C
56  *     ----||--------->
57  *         ||    |
58  *               <
59  *               > R
60  *               <
61  *               |
62  *               V
63  */
64
65 #include "libavutil/opt.h"
66 #include "libavutil/avassert.h"
67 #include "audio.h"
68 #include "avfilter.h"
69 #include "internal.h"
70
71 enum FilterType {
72     biquad,
73     equalizer,
74     bass,
75     treble,
76     band,
77     bandpass,
78     bandreject,
79     allpass,
80     highpass,
81     lowpass,
82 };
83
84 enum WidthType {
85     NONE,
86     HZ,
87     OCTAVE,
88     QFACTOR,
89     SLOPE,
90 };
91
92 typedef struct ChanCache {
93     double i1, i2;
94     double o1, o2;
95 } ChanCache;
96
97 typedef struct {
98     const AVClass *class;
99
100     enum FilterType filter_type;
101     enum WidthType width_type;
102     int poles;
103     int csg;
104
105     double gain;
106     double frequency;
107     double width;
108
109     double a0, a1, a2;
110     double b0, b1, b2;
111
112     ChanCache *cache;
113
114     void (*filter)(const void *ibuf, void *obuf, int len,
115                    double *i1, double *i2, double *o1, double *o2,
116                    double b0, double b1, double b2, double a1, double a2);
117 } BiquadsContext;
118
119 static av_cold int init(AVFilterContext *ctx, const char *args)
120 {
121     BiquadsContext *p = ctx->priv;
122     int ret;
123
124     av_opt_set_defaults(p);
125
126     if ((ret = av_set_options_string(p, args, "=", ":")) < 0)
127         return ret;
128
129     if (p->filter_type != biquad) {
130         if (p->frequency <= 0 || p->width <= 0) {
131             av_log(ctx, AV_LOG_ERROR, "Invalid frequency %f and/or width %f <= 0\n",
132                    p->frequency, p->width);
133             return AVERROR(EINVAL);
134         }
135     }
136
137     return 0;
138 }
139
140 static int query_formats(AVFilterContext *ctx)
141 {
142     AVFilterFormats *formats;
143     AVFilterChannelLayouts *layouts;
144     static const enum AVSampleFormat sample_fmts[] = {
145         AV_SAMPLE_FMT_S16P,
146         AV_SAMPLE_FMT_S32P,
147         AV_SAMPLE_FMT_FLTP,
148         AV_SAMPLE_FMT_DBLP,
149         AV_SAMPLE_FMT_NONE
150     };
151
152     layouts = ff_all_channel_layouts();
153     if (!layouts)
154         return AVERROR(ENOMEM);
155     ff_set_common_channel_layouts(ctx, layouts);
156
157     formats = ff_make_format_list(sample_fmts);
158     if (!formats)
159         return AVERROR(ENOMEM);
160     ff_set_common_formats(ctx, formats);
161
162     formats = ff_all_samplerates();
163     if (!formats)
164         return AVERROR(ENOMEM);
165     ff_set_common_samplerates(ctx, formats);
166
167     return 0;
168 }
169
170 #define BIQUAD_FILTER(name, type, min, max)                                   \
171 static void biquad_## name (const void *input, void *output, int len,         \
172                             double *in1, double *in2,                         \
173                             double *out1, double *out2,                       \
174                             double b0, double b1, double b2,                  \
175                             double a1, double a2)                             \
176 {                                                                             \
177     const type *ibuf = input;                                                 \
178     type *obuf = output;                                                      \
179     double i1 = *in1;                                                         \
180     double i2 = *in2;                                                         \
181     double o1 = *out1;                                                        \
182     double o2 = *out2;                                                        \
183     int i;                                                                    \
184     a1 = -a1;                                                                 \
185     a2 = -a2;                                                                 \
186                                                                               \
187     for (i = 0; i+1 < len; i++) {                                             \
188         o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1;            \
189         i2 = ibuf[i];                                                         \
190         if (o2 < min) {                                                       \
191             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
192             obuf[i] = min;                                                    \
193         } else if (o2 > max) {                                                \
194             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
195             obuf[i] = max;                                                    \
196         } else {                                                              \
197             obuf[i] = o2;                                                     \
198         }                                                                     \
199         i++;                                                                  \
200         o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1;            \
201         i1 = ibuf[i];                                                         \
202         if (o1 < min) {                                                       \
203             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
204             obuf[i] = min;                                                    \
205         } else if (o1 > max) {                                                \
206             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
207             obuf[i] = max;                                                    \
208         } else {                                                              \
209             obuf[i] = o1;                                                     \
210         }                                                                     \
211     }                                                                         \
212     if (i < len) {                                                            \
213         double o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2;     \
214         i2 = i1;                                                              \
215         i1 = ibuf[i];                                                         \
216         o2 = o1;                                                              \
217         o1 = o0;                                                              \
218         if (o0 < min) {                                                       \
219             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
220             obuf[i] = min;                                                    \
221         } else if (o0 > max) {                                                \
222             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
223             obuf[i] = max;                                                    \
224         } else {                                                              \
225             obuf[i] = o0;                                                     \
226         }                                                                     \
227     }                                                                         \
228     *in1  = i1;                                                               \
229     *in2  = i2;                                                               \
230     *out1 = o1;                                                               \
231     *out2 = o2;                                                               \
232 }
233
234 BIQUAD_FILTER(s16, int16_t, INT16_MIN, INT16_MAX)
235 BIQUAD_FILTER(s32, int32_t, INT32_MIN, INT32_MAX)
236 BIQUAD_FILTER(flt, float,   -1., 1.)
237 BIQUAD_FILTER(dbl, double,  -1., 1.)
238
239 static int config_output(AVFilterLink *outlink)
240 {
241     AVFilterContext *ctx    = outlink->src;
242     BiquadsContext *p       = ctx->priv;
243     AVFilterLink *inlink    = ctx->inputs[0];
244     double A = exp(p->gain / 40 * log(10.));
245     double w0 = 2 * M_PI * p->frequency / inlink->sample_rate;
246     double alpha;
247
248     if (w0 > M_PI) {
249         av_log(ctx, AV_LOG_ERROR,
250                "Invalid frequency %f. Frequency must be less than half the sample-rate %d.\n",
251                p->frequency, inlink->sample_rate);
252         return AVERROR(EINVAL);
253     }
254
255     switch (p->width_type) {
256     case NONE:
257         alpha = 0.0;
258         break;
259     case HZ:
260         alpha = sin(w0) / (2 * p->frequency / p->width);
261         break;
262     case OCTAVE:
263         alpha = sin(w0) * sinh(log(2.) / 2 * p->width * w0 / sin(w0));
264         break;
265     case QFACTOR:
266         alpha = sin(w0) / (2 * p->width);
267         break;
268     case SLOPE:
269         alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / p->width - 1) + 2);
270         break;
271     default:
272         av_assert0(0);
273     }
274
275     switch (p->filter_type) {
276     case biquad:
277         break;
278     case equalizer:
279         p->a0 =   1 + alpha / A;
280         p->a1 =  -2 * cos(w0);
281         p->a2 =   1 - alpha / A;
282         p->b0 =   1 + alpha * A;
283         p->b1 =  -2 * cos(w0);
284         p->b2 =   1 - alpha * A;
285         break;
286     case bass:
287         p->a0 =          (A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
288         p->a1 =    -2 * ((A - 1) + (A + 1) * cos(w0));
289         p->a2 =          (A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
290         p->b0 =     A * ((A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
291         p->b1 = 2 * A * ((A - 1) - (A + 1) * cos(w0));
292         p->b2 =     A * ((A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
293         break;
294     case treble:
295         p->a0 =          (A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
296         p->a1 =     2 * ((A - 1) - (A + 1) * cos(w0));
297         p->a2 =          (A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
298         p->b0 =     A * ((A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
299         p->b1 =-2 * A * ((A - 1) + (A + 1) * cos(w0));
300         p->b2 =     A * ((A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
301         break;
302     case bandpass:
303         if (p->csg) {
304             p->a0 =  1 + alpha;
305             p->a1 = -2 * cos(w0);
306             p->a2 =  1 - alpha;
307             p->b0 =  sin(w0) / 2;
308             p->b1 =  0;
309             p->b2 = -sin(w0) / 2;
310         } else {
311             p->a0 =  1 + alpha;
312             p->a1 = -2 * cos(w0);
313             p->a2 =  1 - alpha;
314             p->b0 =  alpha;
315             p->b1 =  0;
316             p->b2 = -alpha;
317         }
318         break;
319     case bandreject:
320         p->a0 =  1 + alpha;
321         p->a1 = -2 * cos(w0);
322         p->a2 =  1 - alpha;
323         p->b0 =  1;
324         p->b1 = -2 * cos(w0);
325         p->b2 =  1;
326         break;
327     case lowpass:
328         if (p->poles == 1) {
329             p->a0 = 1;
330             p->a1 = -exp(-w0);
331             p->a2 = 0;
332             p->b0 = 1 + p->a1;
333             p->b1 = 0;
334             p->b2 = 0;
335         } else {
336             p->a0 =  1 + alpha;
337             p->a1 = -2 * cos(w0);
338             p->a2 =  1 - alpha;
339             p->b0 = (1 - cos(w0)) / 2;
340             p->b1 =  1 - cos(w0);
341             p->b2 = (1 - cos(w0)) / 2;
342         }
343         break;
344     case highpass:
345         if (p->poles == 1) {
346             p->a0 = 1;
347             p->a1 = -exp(-w0);
348             p->a2 = 0;
349             p->b0 = (1 - p->a1) / 2;
350             p->b1 = -p->b0;
351             p->b2 = 0;
352         } else {
353             p->a0 =   1 + alpha;
354             p->a1 =  -2 * cos(w0);
355             p->a2 =   1 - alpha;
356             p->b0 =  (1 + cos(w0)) / 2;
357             p->b1 = -(1 + cos(w0));
358             p->b2 =  (1 + cos(w0)) / 2;
359         }
360         break;
361     case allpass:
362         p->a0 =  1 + alpha;
363         p->a1 = -2 * cos(w0);
364         p->a2 =  1 - alpha;
365         p->b0 =  1 - alpha;
366         p->b1 = -2 * cos(w0);
367         p->b2 =  1 + alpha;
368         break;
369     default:
370         av_assert0(0);
371     }
372
373     p->a1 /= p->a0;
374     p->a2 /= p->a0;
375     p->b0 /= p->a0;
376     p->b1 /= p->a0;
377     p->b2 /= p->a0;
378
379     p->cache = av_realloc_f(p->cache, sizeof(ChanCache), inlink->channels);
380     if (!p->cache)
381         return AVERROR(ENOMEM);
382
383     switch (inlink->format) {
384     case AV_SAMPLE_FMT_S16P: p->filter = biquad_s16; break;
385     case AV_SAMPLE_FMT_S32P: p->filter = biquad_s32; break;
386     case AV_SAMPLE_FMT_FLTP: p->filter = biquad_flt; break;
387     case AV_SAMPLE_FMT_DBLP: p->filter = biquad_dbl; break;
388     default: av_assert0(0);
389     }
390
391     return 0;
392 }
393
394 static int filter_frame(AVFilterLink *inlink, AVFilterBufferRef *buf)
395 {
396     BiquadsContext *p       = inlink->dst->priv;
397     AVFilterLink *outlink   = inlink->dst->outputs[0];
398     AVFilterBufferRef *out_buf;
399     int nb_samples = buf->audio->nb_samples;
400     int ch;
401
402     if (buf->perms & AV_PERM_WRITE) {
403         out_buf = buf;
404     } else {
405         out_buf = ff_get_audio_buffer(inlink, AV_PERM_WRITE, nb_samples);
406         if (!out_buf)
407             return AVERROR(ENOMEM);
408         out_buf->pts = buf->pts;
409     }
410
411     for (ch = 0; ch < buf->audio->channels; ch++)
412         p->filter(buf->extended_data[ch],
413                   out_buf->extended_data[ch], nb_samples,
414                   &p->cache[ch].i1, &p->cache[ch].i2,
415                   &p->cache[ch].o1, &p->cache[ch].o2,
416                   p->b0, p->b1, p->b2, p->a1, p->a2);
417
418     if (buf != out_buf)
419         avfilter_unref_buffer(buf);
420
421     return ff_filter_frame(outlink, out_buf);
422 }
423
424 static av_cold void uninit(AVFilterContext *ctx)
425 {
426     BiquadsContext *p = ctx->priv;
427
428     av_freep(&p->cache);
429     av_opt_free(p);
430 }
431
432 static const AVFilterPad inputs[] = {
433     {
434         .name         = "default",
435         .type         = AVMEDIA_TYPE_AUDIO,
436         .filter_frame = filter_frame,
437     },
438     { NULL }
439 };
440
441 static const AVFilterPad outputs[] = {
442     {
443         .name         = "default",
444         .type         = AVMEDIA_TYPE_AUDIO,
445         .config_props = config_output,
446     },
447     { NULL }
448 };
449
450 #define OFFSET(x) offsetof(BiquadsContext, x)
451 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
452
453 #define DEFINE_BIQUAD_FILTER(name_, description_)                       \
454 AVFILTER_DEFINE_CLASS(name_);                                           \
455 static av_cold int name_##_init(AVFilterContext *ctx, const char *args) \
456 {                                                                       \
457     BiquadsContext *p = ctx->priv;                                      \
458     p->class = &name_##_class;                                          \
459     p->filter_type = name_;                                             \
460     return init(ctx, args);                                             \
461 }                                                                       \
462                                                          \
463 AVFilter avfilter_af_##name_ = {                         \
464     .name          = #name_,                             \
465     .description   = NULL_IF_CONFIG_SMALL(description_), \
466     .priv_size     = sizeof(BiquadsContext),             \
467     .init          = name_##_init,                       \
468     .uninit        = uninit,                             \
469     .query_formats = query_formats,                      \
470     .inputs        = inputs,                             \
471     .outputs       = outputs,                            \
472     .priv_class    = &name_##_class,                     \
473 }
474
475 #if CONFIG_EQUALIZER_FILTER
476 static const AVOption equalizer_options[] = {
477     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
478     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
479     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HZ, SLOPE, FLAGS, "width_type"},
480     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
481     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
482     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
483     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
484     {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
485     {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
486     {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
487     {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
488     {NULL},
489 };
490
491 DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter.");
492 #endif  /* CONFIG_EQUALIZER_FILTER */
493 #if CONFIG_BASS_FILTER
494 static const AVOption bass_options[] = {
495     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
496     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
497     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HZ, SLOPE, FLAGS, "width_type"},
498     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
499     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
500     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
501     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
502     {"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
503     {"w",     "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
504     {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
505     {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
506     {NULL},
507 };
508
509 DEFINE_BIQUAD_FILTER(bass, "Boost or cut lower frequencies.");
510 #endif  /* CONFIG_BASS_FILTER */
511 #if CONFIG_TREBLE_FILTER
512 static const AVOption treble_options[] = {
513     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
514     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
515     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HZ, SLOPE, FLAGS, "width_type"},
516     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
517     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
518     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
519     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
520     {"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
521     {"w",     "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
522     {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
523     {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
524     {NULL},
525 };
526
527 DEFINE_BIQUAD_FILTER(treble, "Boost or cut upper frequencies.");
528 #endif  /* CONFIG_TREBLE_FILTER */
529 #if CONFIG_BANDPASS_FILTER
530 static const AVOption bandpass_options[] = {
531     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
532     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
533     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HZ, SLOPE, FLAGS, "width_type"},
534     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
535     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
536     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
537     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
538     {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
539     {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
540     {"csg",   "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS},
541     {NULL},
542 };
543
544 DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter.");
545 #endif  /* CONFIG_BANDPASS_FILTER */
546 #if CONFIG_BANDREJECT_FILTER
547 static const AVOption bandreject_options[] = {
548     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
549     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
550     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HZ, SLOPE, FLAGS, "width_type"},
551     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
552     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
553     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
554     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
555     {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
556     {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
557     {NULL},
558 };
559
560 DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter.");
561 #endif  /* CONFIG_BANDREJECT_FILTER */
562 #if CONFIG_LOWPASS_FILTER
563 static const AVOption lowpass_options[] = {
564     {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
565     {"f",         "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
566     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HZ, SLOPE, FLAGS, "width_type"},
567     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
568     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
569     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
570     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
571     {"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
572     {"w",     "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
573     {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
574     {"p",     "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
575     {NULL},
576 };
577
578 DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency.");
579 #endif  /* CONFIG_LOWPASS_FILTER */
580 #if CONFIG_HIGHPASS_FILTER
581 static const AVOption highpass_options[] = {
582     {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
583     {"f",         "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
584     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HZ, SLOPE, FLAGS, "width_type"},
585     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
586     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
587     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
588     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
589     {"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
590     {"w",     "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
591     {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
592     {"p",     "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
593     {NULL},
594 };
595
596 DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency.");
597 #endif  /* CONFIG_HIGHPASS_FILTER */
598 #if CONFIG_ALLPASS_FILTER
599 static const AVOption allpass_options[] = {
600     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
601     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
602     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=HZ}, HZ, SLOPE, FLAGS, "width_type"},
603     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HZ}, 0, 0, FLAGS, "width_type"},
604     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
605     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
606     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
607     {"width", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
608     {"w",     "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
609     {NULL},
610 };
611
612 DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter.");
613 #endif  /* CONFIG_ALLPASS_FILTER */
614 #if CONFIG_BIQUAD_FILTER
615 static const AVOption biquad_options[] = {
616     {"a0", NULL, OFFSET(a0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MAX, INT16_MAX, FLAGS},
617     {"a1", NULL, OFFSET(a1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MAX, INT16_MAX, FLAGS},
618     {"a2", NULL, OFFSET(a2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MAX, INT16_MAX, FLAGS},
619     {"b0", NULL, OFFSET(b0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MAX, INT16_MAX, FLAGS},
620     {"b1", NULL, OFFSET(b1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MAX, INT16_MAX, FLAGS},
621     {"b2", NULL, OFFSET(b2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MAX, INT16_MAX, FLAGS},
622     {NULL},
623 };
624
625 DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients.");
626 #endif  /* CONFIG_BIQUAD_FILTER */