]> git.sesse.net Git - ffmpeg/blob - libavfilter/avf_showspectrum.c
c690665bad95c585fa962dc3180a002ea9ce7b76
[ffmpeg] / libavfilter / avf_showspectrum.c
1 /*
2  * Copyright (c) 2012-2013 Clément Bœsch
3  * Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org>
4  * Copyright (c) 2015 Paul B Mahol
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 /**
24  * @file
25  * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode
26  * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini).
27  */
28
29 #include <math.h>
30
31 #include "libavcodec/avfft.h"
32 #include "libavutil/audio_fifo.h"
33 #include "libavutil/avassert.h"
34 #include "libavutil/avstring.h"
35 #include "libavutil/channel_layout.h"
36 #include "libavutil/opt.h"
37 #include "libavutil/parseutils.h"
38 #include "libavutil/xga_font_data.h"
39 #include "audio.h"
40 #include "video.h"
41 #include "avfilter.h"
42 #include "filters.h"
43 #include "internal.h"
44 #include "window_func.h"
45
46 enum DisplayMode  { COMBINED, SEPARATE, NB_MODES };
47 enum DataMode     { D_MAGNITUDE, D_PHASE, NB_DMODES };
48 enum FrequencyScale { F_LINEAR, F_LOG, NB_FSCALES };
49 enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES };
50 enum ColorMode    { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, COOL, MAGMA, GREEN, VIRIDIS, PLASMA, CIVIDIS, TERRAIN, NB_CLMODES };
51 enum SlideMode    { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES };
52 enum Orientation  { VERTICAL, HORIZONTAL, NB_ORIENTATIONS };
53
54 typedef struct ShowSpectrumContext {
55     const AVClass *class;
56     int w, h;
57     char *rate_str;
58     AVRational auto_frame_rate;
59     AVRational frame_rate;
60     AVFrame *outpicref;
61     int nb_display_channels;
62     int orientation;
63     int channel_width;
64     int channel_height;
65     int sliding;                ///< 1 if sliding mode, 0 otherwise
66     int mode;                   ///< channel display mode
67     int color_mode;             ///< display color scheme
68     int scale;
69     int fscale;
70     float saturation;           ///< color saturation multiplier
71     float rotation;             ///< color rotation
72     int start, stop;            ///< zoom mode
73     int data;
74     int xpos;                   ///< x position (current column)
75     FFTContext **fft;           ///< Fast Fourier Transform context
76     FFTContext **ifft;          ///< Inverse Fast Fourier Transform context
77     int fft_bits;               ///< number of bits (FFT window size = 1<<fft_bits)
78     FFTComplex **fft_data;      ///< bins holder for each (displayed) channels
79     FFTComplex **fft_scratch;   ///< scratch buffers
80     float *window_func_lut;     ///< Window function LUT
81     float **magnitudes;
82     float **phases;
83     int win_func;
84     int win_size;
85     int buf_size;
86     double win_scale;
87     float overlap;
88     float gain;
89     int consumed;
90     int hop_size;
91     float *combine_buffer;      ///< color combining buffer (3 * h items)
92     float **color_buffer;       ///< color buffer (3 * h * ch items)
93     AVAudioFifo *fifo;
94     int64_t pts;
95     int64_t old_pts;
96     int old_len;
97     int single_pic;
98     int legend;
99     int start_x, start_y;
100     int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
101 } ShowSpectrumContext;
102
103 #define OFFSET(x) offsetof(ShowSpectrumContext, x)
104 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
105
106 static const AVOption showspectrum_options[] = {
107     { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
108     { "s",    "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
109     { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, "slide" },
110         { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, "slide" },
111         { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, "slide" },
112         { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, "slide" },
113         { "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, "slide" },
114     { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, "mode" },
115         { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
116         { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
117     { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, "color" },
118         { "channel",   "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL},   0, 0, FLAGS, "color" },
119         { "intensity", "intensity based coloring",        0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
120         { "rainbow",   "rainbow based coloring",          0, AV_OPT_TYPE_CONST, {.i64=RAINBOW},   0, 0, FLAGS, "color" },
121         { "moreland",  "moreland based coloring",         0, AV_OPT_TYPE_CONST, {.i64=MORELAND},  0, 0, FLAGS, "color" },
122         { "nebulae",   "nebulae based coloring",          0, AV_OPT_TYPE_CONST, {.i64=NEBULAE},   0, 0, FLAGS, "color" },
123         { "fire",      "fire based coloring",             0, AV_OPT_TYPE_CONST, {.i64=FIRE},      0, 0, FLAGS, "color" },
124         { "fiery",     "fiery based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FIERY},     0, 0, FLAGS, "color" },
125         { "fruit",     "fruit based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FRUIT},     0, 0, FLAGS, "color" },
126         { "cool",      "cool based coloring",             0, AV_OPT_TYPE_CONST, {.i64=COOL},      0, 0, FLAGS, "color" },
127         { "magma",     "magma based coloring",            0, AV_OPT_TYPE_CONST, {.i64=MAGMA},     0, 0, FLAGS, "color" },
128         { "green",     "green based coloring",            0, AV_OPT_TYPE_CONST, {.i64=GREEN},     0, 0, FLAGS, "color" },
129         { "viridis",   "viridis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS},   0, 0, FLAGS, "color" },
130         { "plasma",    "plasma based coloring",           0, AV_OPT_TYPE_CONST, {.i64=PLASMA},    0, 0, FLAGS, "color" },
131         { "cividis",   "cividis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS},   0, 0, FLAGS, "color" },
132         { "terrain",   "terrain based coloring",          0, AV_OPT_TYPE_CONST, {.i64=TERRAIN},   0, 0, FLAGS, "color" },
133     { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, "scale" },
134         { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
135         { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT},   0, 0, FLAGS, "scale" },
136         { "cbrt", "cubic root",  0, AV_OPT_TYPE_CONST, {.i64=CBRT},   0, 0, FLAGS, "scale" },
137         { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG},    0, 0, FLAGS, "scale" },
138         { "4thrt","4th root",    0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
139         { "5thrt","5th root",    0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT},  0, 0, FLAGS, "scale" },
140     { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
141         { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
142         { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG},    0, 0, FLAGS, "fscale" },
143     { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
144     { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
145         { "rect",     "Rectangular",      0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT},     0, 0, FLAGS, "win_func" },
146         { "bartlett", "Bartlett",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
147         { "hann",     "Hann",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
148         { "hanning",  "Hanning",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
149         { "hamming",  "Hamming",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING},  0, 0, FLAGS, "win_func" },
150         { "blackman", "Blackman",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
151         { "welch",    "Welch",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH},    0, 0, FLAGS, "win_func" },
152         { "flattop",  "Flat-top",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP},  0, 0, FLAGS, "win_func" },
153         { "bharris",  "Blackman-Harris",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS},  0, 0, FLAGS, "win_func" },
154         { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
155         { "bhann",    "Bartlett-Hann",    0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN},    0, 0, FLAGS, "win_func" },
156         { "sine",     "Sine",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE},     0, 0, FLAGS, "win_func" },
157         { "nuttall",  "Nuttall",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL},  0, 0, FLAGS, "win_func" },
158         { "lanczos",  "Lanczos",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS},  0, 0, FLAGS, "win_func" },
159         { "gauss",    "Gauss",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS},    0, 0, FLAGS, "win_func" },
160         { "tukey",    "Tukey",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY},    0, 0, FLAGS, "win_func" },
161         { "dolph",    "Dolph-Chebyshev",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH},    0, 0, FLAGS, "win_func" },
162         { "cauchy",   "Cauchy",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY},   0, 0, FLAGS, "win_func" },
163         { "parzen",   "Parzen",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN},   0, 0, FLAGS, "win_func" },
164         { "poisson",  "Poisson",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON},  0, 0, FLAGS, "win_func" },
165         { "bohman",   "Bohman",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN},   0, 0, FLAGS, "win_func" },
166     { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
167         { "vertical",   NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL},   0, 0, FLAGS, "orientation" },
168         { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
169     { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS },
170     { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
171     { "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, "data" },
172         { "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, "data" },
173         { "phase",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE},     0, 0, FLAGS, "data" },
174     { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
175     { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
176     { "stop",  "stop frequency",  OFFSET(stop),  AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
177     { "fps",   "set video rate",  OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "auto"}, 0, 0, FLAGS },
178     { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
179     { NULL }
180 };
181
182 AVFILTER_DEFINE_CLASS(showspectrum);
183
184 static const struct ColorTable {
185     float a, y, u, v;
186 } color_table[][8] = {
187     [INTENSITY] = {
188     {    0,                  0,                  0,                   0 },
189     { 0.13, .03587126228984074,  .1573300977624594, -.02548747583751842 },
190     { 0.30, .18572281794568020,  .1772436246393981,  .17475554840414750 },
191     { 0.60, .28184980583656130, -.1593064119945782,  .47132074554608920 },
192     { 0.73, .65830621175547810, -.3716070802232764,  .24352759331252930 },
193     { 0.78, .76318535758242900, -.4307467689263783,  .16866496622310430 },
194     { 0.91, .95336363636363640, -.2045454545454546,  .03313636363636363 },
195     {    1,                  1,                  0,                   0 }},
196     [RAINBOW] = {
197     {    0,                  0,                  0,                   0 },
198     { 0.13,            44/256.,     (189-128)/256.,      (138-128)/256. },
199     { 0.25,            29/256.,     (186-128)/256.,      (119-128)/256. },
200     { 0.38,           119/256.,     (194-128)/256.,       (53-128)/256. },
201     { 0.60,           111/256.,      (73-128)/256.,       (59-128)/256. },
202     { 0.73,           205/256.,      (19-128)/256.,      (149-128)/256. },
203     { 0.86,           135/256.,      (83-128)/256.,      (200-128)/256. },
204     {    1,            73/256.,      (95-128)/256.,      (225-128)/256. }},
205     [MORELAND] = {
206     {    0,            44/256.,     (181-128)/256.,      (112-128)/256. },
207     { 0.13,           126/256.,     (177-128)/256.,      (106-128)/256. },
208     { 0.25,           164/256.,     (163-128)/256.,      (109-128)/256. },
209     { 0.38,           200/256.,     (140-128)/256.,      (120-128)/256. },
210     { 0.60,           201/256.,     (117-128)/256.,      (141-128)/256. },
211     { 0.73,           177/256.,     (103-128)/256.,      (165-128)/256. },
212     { 0.86,           136/256.,     (100-128)/256.,      (183-128)/256. },
213     {    1,            68/256.,     (117-128)/256.,      (203-128)/256. }},
214     [NEBULAE] = {
215     {    0,            10/256.,     (134-128)/256.,      (132-128)/256. },
216     { 0.23,            21/256.,     (137-128)/256.,      (130-128)/256. },
217     { 0.45,            35/256.,     (134-128)/256.,      (134-128)/256. },
218     { 0.57,            51/256.,     (130-128)/256.,      (139-128)/256. },
219     { 0.67,           104/256.,     (116-128)/256.,      (162-128)/256. },
220     { 0.77,           120/256.,     (105-128)/256.,      (188-128)/256. },
221     { 0.87,           140/256.,     (105-128)/256.,      (188-128)/256. },
222     {    1,                  1,                  0,                   0 }},
223     [FIRE] = {
224     {    0,                  0,                  0,                   0 },
225     { 0.23,            44/256.,     (132-128)/256.,      (127-128)/256. },
226     { 0.45,            62/256.,     (116-128)/256.,      (140-128)/256. },
227     { 0.57,            75/256.,     (105-128)/256.,      (152-128)/256. },
228     { 0.67,            95/256.,      (91-128)/256.,      (166-128)/256. },
229     { 0.77,           126/256.,      (74-128)/256.,      (172-128)/256. },
230     { 0.87,           164/256.,      (73-128)/256.,      (162-128)/256. },
231     {    1,                  1,                  0,                   0 }},
232     [FIERY] = {
233     {    0,                  0,                  0,                   0 },
234     { 0.23,            36/256.,     (116-128)/256.,      (163-128)/256. },
235     { 0.45,            52/256.,     (102-128)/256.,      (200-128)/256. },
236     { 0.57,           116/256.,      (84-128)/256.,      (196-128)/256. },
237     { 0.67,           157/256.,      (67-128)/256.,      (181-128)/256. },
238     { 0.77,           193/256.,      (40-128)/256.,      (155-128)/256. },
239     { 0.87,           221/256.,     (101-128)/256.,      (134-128)/256. },
240     {    1,                  1,                  0,                   0 }},
241     [FRUIT] = {
242     {    0,                  0,                  0,                   0 },
243     { 0.20,            29/256.,     (136-128)/256.,      (119-128)/256. },
244     { 0.30,            60/256.,     (119-128)/256.,       (90-128)/256. },
245     { 0.40,            85/256.,      (91-128)/256.,       (85-128)/256. },
246     { 0.50,           116/256.,      (70-128)/256.,      (105-128)/256. },
247     { 0.60,           151/256.,      (50-128)/256.,      (146-128)/256. },
248     { 0.70,           191/256.,      (63-128)/256.,      (178-128)/256. },
249     {    1,            98/256.,      (80-128)/256.,      (221-128)/256. }},
250     [COOL] = {
251     {    0,                  0,                  0,                   0 },
252     {  .15,                  0,                 .5,                 -.5 },
253     {    1,                  1,                -.5,                  .5 }},
254     [MAGMA] = {
255     {    0,                  0,                  0,                   0 },
256     { 0.10,            23/256.,     (175-128)/256.,      (120-128)/256. },
257     { 0.23,            43/256.,     (158-128)/256.,      (144-128)/256. },
258     { 0.35,            85/256.,     (138-128)/256.,      (179-128)/256. },
259     { 0.48,            96/256.,     (128-128)/256.,      (189-128)/256. },
260     { 0.64,           128/256.,     (103-128)/256.,      (214-128)/256. },
261     { 0.92,           205/256.,      (80-128)/256.,      (152-128)/256. },
262     {    1,                  1,                  0,                   0 }},
263     [GREEN] = {
264     {    0,                  0,                  0,                   0 },
265     {  .75,                 .5,                  0,                 -.5 },
266     {    1,                  1,                  0,                   0 }},
267     [VIRIDIS] = {
268     {    0,                  0,                  0,                   0 },
269     { 0.10,          0x39/255.,   (0x9D -128)/255.,    (0x8F -128)/255. },
270     { 0.23,          0x5C/255.,   (0x9A -128)/255.,    (0x68 -128)/255. },
271     { 0.35,          0x69/255.,   (0x93 -128)/255.,    (0x57 -128)/255. },
272     { 0.48,          0x76/255.,   (0x88 -128)/255.,    (0x4B -128)/255. },
273     { 0.64,          0x8A/255.,   (0x72 -128)/255.,    (0x4F -128)/255. },
274     { 0.80,          0xA3/255.,   (0x50 -128)/255.,    (0x66 -128)/255. },
275     {    1,          0xCC/255.,   (0x2F -128)/255.,    (0x87 -128)/255. }},
276     [PLASMA] = {
277     {    0,                  0,                  0,                   0 },
278     { 0.10,          0x27/255.,   (0xC2 -128)/255.,    (0x82 -128)/255. },
279     { 0.58,          0x5B/255.,   (0x9A -128)/255.,    (0xAE -128)/255. },
280     { 0.70,          0x89/255.,   (0x44 -128)/255.,    (0xAB -128)/255. },
281     { 0.80,          0xB4/255.,   (0x2B -128)/255.,    (0x9E -128)/255. },
282     { 0.91,          0xD2/255.,   (0x38 -128)/255.,    (0x92 -128)/255. },
283     {    1,                  1,                  0,                  0. }},
284     [CIVIDIS] = {
285     {    0,                  0,                  0,                   0 },
286     { 0.20,          0x28/255.,   (0x98 -128)/255.,    (0x6F -128)/255. },
287     { 0.50,          0x48/255.,   (0x95 -128)/255.,    (0x74 -128)/255. },
288     { 0.63,          0x69/255.,   (0x84 -128)/255.,    (0x7F -128)/255. },
289     { 0.76,          0x89/255.,   (0x75 -128)/255.,    (0x84 -128)/255. },
290     { 0.90,          0xCE/255.,   (0x35 -128)/255.,    (0x95 -128)/255. },
291     {    1,                  1,                  0,                  0. }},
292     [TERRAIN] = {
293     {    0,                  0,                  0,                   0 },
294     { 0.15,                  0,                 .5,                   0 },
295     { 0.60,                  1,                -.5,                 -.5 },
296     { 0.85,                  1,                -.5,                  .5 },
297     {    1,                  1,                  0,                   0 }},
298 };
299
300 static av_cold void uninit(AVFilterContext *ctx)
301 {
302     ShowSpectrumContext *s = ctx->priv;
303     int i;
304
305     av_freep(&s->combine_buffer);
306     if (s->fft) {
307         for (i = 0; i < s->nb_display_channels; i++)
308             av_fft_end(s->fft[i]);
309     }
310     av_freep(&s->fft);
311     if (s->ifft) {
312         for (i = 0; i < s->nb_display_channels; i++)
313             av_fft_end(s->ifft[i]);
314     }
315     av_freep(&s->ifft);
316     if (s->fft_data) {
317         for (i = 0; i < s->nb_display_channels; i++)
318             av_freep(&s->fft_data[i]);
319     }
320     av_freep(&s->fft_data);
321     if (s->fft_scratch) {
322         for (i = 0; i < s->nb_display_channels; i++)
323             av_freep(&s->fft_scratch[i]);
324     }
325     av_freep(&s->fft_scratch);
326     if (s->color_buffer) {
327         for (i = 0; i < s->nb_display_channels; i++)
328             av_freep(&s->color_buffer[i]);
329     }
330     av_freep(&s->color_buffer);
331     av_freep(&s->window_func_lut);
332     if (s->magnitudes) {
333         for (i = 0; i < s->nb_display_channels; i++)
334             av_freep(&s->magnitudes[i]);
335     }
336     av_freep(&s->magnitudes);
337     av_frame_free(&s->outpicref);
338     av_audio_fifo_free(s->fifo);
339     if (s->phases) {
340         for (i = 0; i < s->nb_display_channels; i++)
341             av_freep(&s->phases[i]);
342     }
343     av_freep(&s->phases);
344 }
345
346 static int query_formats(AVFilterContext *ctx)
347 {
348     AVFilterFormats *formats = NULL;
349     AVFilterChannelLayouts *layouts = NULL;
350     AVFilterLink *inlink = ctx->inputs[0];
351     AVFilterLink *outlink = ctx->outputs[0];
352     static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
353     static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_NONE };
354     int ret;
355
356     /* set input audio formats */
357     formats = ff_make_format_list(sample_fmts);
358     if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0)
359         return ret;
360
361     layouts = ff_all_channel_layouts();
362     if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0)
363         return ret;
364
365     formats = ff_all_samplerates();
366     if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0)
367         return ret;
368
369     /* set output video format */
370     formats = ff_make_format_list(pix_fmts);
371     if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
372         return ret;
373
374     return 0;
375 }
376
377 static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
378 {
379     ShowSpectrumContext *s = ctx->priv;
380     AVFilterLink *inlink = ctx->inputs[0];
381     const float *window_func_lut = s->window_func_lut;
382     AVFrame *fin = arg;
383     const int ch = jobnr;
384     int n;
385
386     /* fill FFT input with the number of samples available */
387     const float *p = (float *)fin->extended_data[ch];
388
389     for (n = 0; n < s->win_size; n++) {
390         s->fft_data[ch][n].re = p[n] * window_func_lut[n];
391         s->fft_data[ch][n].im = 0;
392     }
393
394     if (s->stop) {
395         float theta, phi, psi, a, b, S, c;
396         FFTComplex *g = s->fft_data[ch];
397         FFTComplex *h = s->fft_scratch[ch];
398         int L = s->buf_size;
399         int N = s->win_size;
400         int M = s->win_size / 2;
401
402         phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1);
403         theta = 2.f * M_PI * s->start / (float)inlink->sample_rate;
404
405         for (int n = 0; n < M; n++) {
406             h[n].re = cosf(n * n / 2.f * phi);
407             h[n].im = sinf(n * n / 2.f * phi);
408         }
409
410         for (int n = M; n < L; n++) {
411             h[n].re = 0.f;
412             h[n].im = 0.f;
413         }
414
415         for (int n = L - N; n < L; n++) {
416             h[n].re = cosf((L - n) * (L - n) / 2.f * phi);
417             h[n].im = sinf((L - n) * (L - n) / 2.f * phi);
418         }
419
420         for (int n = 0; n < N; n++) {
421             g[n].re = s->fft_data[ch][n].re;
422             g[n].im = s->fft_data[ch][n].im;
423         }
424
425         for (int n = N; n < L; n++) {
426             g[n].re = 0.f;
427             g[n].im = 0.f;
428         }
429
430         for (int n = 0; n < N; n++) {
431             psi = n * theta + n * n / 2.f * phi;
432             c =  cosf(psi);
433             S = -sinf(psi);
434             a = c * g[n].re - S * g[n].im;
435             b = S * g[n].re + c * g[n].im;
436             g[n].re = a;
437             g[n].im = b;
438         }
439
440         av_fft_permute(s->fft[ch], h);
441         av_fft_calc(s->fft[ch], h);
442
443         av_fft_permute(s->fft[ch], g);
444         av_fft_calc(s->fft[ch], g);
445
446         for (int n = 0; n < L; n++) {
447             c = g[n].re;
448             S = g[n].im;
449             a = c * h[n].re - S * h[n].im;
450             b = S * h[n].re + c * h[n].im;
451
452             g[n].re = a / L;
453             g[n].im = b / L;
454         }
455
456         av_fft_permute(s->ifft[ch], g);
457         av_fft_calc(s->ifft[ch], g);
458
459         for (int k = 0; k < M; k++) {
460             psi = k * k / 2.f * phi;
461             c =  cosf(psi);
462             S = -sinf(psi);
463             a = c * g[k].re - S * g[k].im;
464             b = S * g[k].re + c * g[k].im;
465             s->fft_data[ch][k].re = a;
466             s->fft_data[ch][k].im = b;
467         }
468     } else {
469         /* run FFT on each samples set */
470         av_fft_permute(s->fft[ch], s->fft_data[ch]);
471         av_fft_calc(s->fft[ch], s->fft_data[ch]);
472     }
473
474     return 0;
475 }
476
477 static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
478 {
479     const uint8_t *font;
480     int font_height;
481     int i;
482
483     font = avpriv_cga_font,   font_height =  8;
484
485     for (i = 0; txt[i]; i++) {
486         int char_y, mask;
487
488         if (o) {
489             for (char_y = font_height - 1; char_y >= 0; char_y--) {
490                 uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x;
491                 for (mask = 0x80; mask; mask >>= 1) {
492                     if (font[txt[i] * font_height + font_height - 1 - char_y] & mask)
493                         p[char_y] = ~p[char_y];
494                     p += pic->linesize[0];
495                 }
496             }
497         } else {
498             uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8);
499             for (char_y = 0; char_y < font_height; char_y++) {
500                 for (mask = 0x80; mask; mask >>= 1) {
501                     if (font[txt[i] * font_height + char_y] & mask)
502                         *p = ~(*p);
503                     p++;
504                 }
505                 p += pic->linesize[0] - 8;
506             }
507         }
508     }
509 }
510
511 static void color_range(ShowSpectrumContext *s, int ch,
512                         float *yf, float *uf, float *vf)
513 {
514     switch (s->mode) {
515     case COMBINED:
516         // reduce range by channel count
517         *yf = 256.0f / s->nb_display_channels;
518         switch (s->color_mode) {
519         case RAINBOW:
520         case MORELAND:
521         case NEBULAE:
522         case FIRE:
523         case FIERY:
524         case FRUIT:
525         case COOL:
526         case GREEN:
527         case VIRIDIS:
528         case PLASMA:
529         case CIVIDIS:
530         case TERRAIN:
531         case MAGMA:
532         case INTENSITY:
533             *uf = *yf;
534             *vf = *yf;
535             break;
536         case CHANNEL:
537             /* adjust saturation for mixed UV coloring */
538             /* this factor is correct for infinite channels, an approximation otherwise */
539             *uf = *yf * M_PI;
540             *vf = *yf * M_PI;
541             break;
542         default:
543             av_assert0(0);
544         }
545         break;
546     case SEPARATE:
547         // full range
548         *yf = 256.0f;
549         *uf = 256.0f;
550         *vf = 256.0f;
551         break;
552     default:
553         av_assert0(0);
554     }
555
556     if (s->color_mode == CHANNEL) {
557         if (s->nb_display_channels > 1) {
558             *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
559             *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
560         } else {
561             *uf *= 0.5f * sinf(M_PI * s->rotation);
562             *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2);
563         }
564     } else {
565         *uf += *uf * sinf(M_PI * s->rotation);
566         *vf += *vf * cosf(M_PI * s->rotation + M_PI_2);
567     }
568
569     *uf *= s->saturation;
570     *vf *= s->saturation;
571 }
572
573 static void pick_color(ShowSpectrumContext *s,
574                        float yf, float uf, float vf,
575                        float a, float *out)
576 {
577     if (s->color_mode > CHANNEL) {
578         const int cm = s->color_mode;
579         float y, u, v;
580         int i;
581
582         for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++)
583             if (color_table[cm][i].a >= a)
584                 break;
585         // i now is the first item >= the color
586         // now we know to interpolate between item i - 1 and i
587         if (a <= color_table[cm][i - 1].a) {
588             y = color_table[cm][i - 1].y;
589             u = color_table[cm][i - 1].u;
590             v = color_table[cm][i - 1].v;
591         } else if (a >= color_table[cm][i].a) {
592             y = color_table[cm][i].y;
593             u = color_table[cm][i].u;
594             v = color_table[cm][i].v;
595         } else {
596             float start = color_table[cm][i - 1].a;
597             float end = color_table[cm][i].a;
598             float lerpfrac = (a - start) / (end - start);
599             y = color_table[cm][i - 1].y * (1.0f - lerpfrac)
600               + color_table[cm][i].y * lerpfrac;
601             u = color_table[cm][i - 1].u * (1.0f - lerpfrac)
602               + color_table[cm][i].u * lerpfrac;
603             v = color_table[cm][i - 1].v * (1.0f - lerpfrac)
604               + color_table[cm][i].v * lerpfrac;
605         }
606
607         out[0] = y * yf;
608         out[1] = u * uf;
609         out[2] = v * vf;
610     } else {
611         out[0] = a * yf;
612         out[1] = a * uf;
613         out[2] = a * vf;
614     }
615 }
616
617 static char *get_time(AVFilterContext *ctx, float seconds, int x)
618 {
619     char *units;
620
621     if (x == 0)
622         units = av_asprintf("0");
623     else if (log10(seconds) > 6)
624         units = av_asprintf("%.2fh", seconds / (60 * 60));
625     else if (log10(seconds) > 3)
626         units = av_asprintf("%.2fm", seconds / 60);
627     else
628         units = av_asprintf("%.2fs", seconds);
629     return units;
630 }
631
632 static float log_scale(const float value, const float min, const float max)
633 {
634     if (value < min)
635         return min;
636     if (value > max)
637         return max;
638
639     {
640         const float b = logf(max / min) / (max - min);
641         const float a = max / expf(max * b);
642
643         return expf(value * b) * a;
644     }
645 }
646
647 static float get_log_hz(const int bin, const int num_bins, const float sample_rate)
648 {
649     const float max_freq = sample_rate / 2;
650     const float hz_per_bin = max_freq / num_bins;
651     const float freq = hz_per_bin * bin;
652     const float scaled_freq = log_scale(freq + 1, 21, max_freq) - 1;
653
654     return num_bins * scaled_freq / max_freq;
655 }
656
657 static float inv_log_scale(const float value, const float min, const float max)
658 {
659     if (value < min)
660         return min;
661     if (value > max)
662         return max;
663
664     {
665         const float b = logf(max / min) / (max - min);
666         const float a = max / expf(max * b);
667
668         return logf(value / a) / b;
669     }
670 }
671
672 static float bin_pos(const int bin, const int num_bins, const float sample_rate)
673 {
674     const float max_freq = sample_rate / 2;
675     const float hz_per_bin = max_freq / num_bins;
676     const float freq = hz_per_bin * bin;
677     const float scaled_freq = inv_log_scale(freq + 1, 21, max_freq) - 1;
678
679     return num_bins * scaled_freq / max_freq;
680 }
681
682 static int draw_legend(AVFilterContext *ctx, int samples)
683 {
684     ShowSpectrumContext *s = ctx->priv;
685     AVFilterLink *inlink = ctx->inputs[0];
686     AVFilterLink *outlink = ctx->outputs[0];
687     int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
688     int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL);
689     float spp = samples / (float)sz;
690     char *text;
691     uint8_t *dst;
692     char chlayout_str[128];
693
694     av_get_channel_layout_string(chlayout_str, sizeof(chlayout_str), inlink->channels,
695                                  inlink->channel_layout);
696
697     text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str);
698     if (!text)
699         return AVERROR(ENOMEM);
700
701     drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0);
702     drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0);
703     av_freep(&text);
704     if (s->stop) {
705         text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop);
706         if (!text)
707             return AVERROR(ENOMEM);
708         drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0);
709         av_freep(&text);
710     }
711
712     dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1;
713     for (x = 0; x < s->w + 1; x++)
714         dst[x] = 200;
715     dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1;
716     for (x = 0; x < s->w + 1; x++)
717         dst[x] = 200;
718     for (y = 0; y < s->h + 2; y++) {
719         dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0];
720         dst[s->start_x - 1] = 200;
721         dst[s->start_x + s->w] = 200;
722     }
723     if (s->orientation == VERTICAL) {
724         int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h;
725         int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1;
726         for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
727             for (y = 0; y < h; y += 20) {
728                 dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
729                 dst[s->start_x - 2] = 200;
730                 dst[s->start_x + s->w + 1] = 200;
731             }
732             for (y = 0; y < h; y += 40) {
733                 dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
734                 dst[s->start_x - 3] = 200;
735                 dst[s->start_x + s->w + 2] = 200;
736             }
737             dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x;
738             for (x = 0; x < s->w; x+=40)
739                 dst[x] = 200;
740             dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x;
741             for (x = 0; x < s->w; x+=80)
742                 dst[x] = 200;
743             dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x;
744             for (x = 0; x < s->w; x+=40) {
745                 dst[x] = 200;
746             }
747             dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x;
748             for (x = 0; x < s->w; x+=80) {
749                 dst[x] = 200;
750             }
751             for (y = 0; y < h; y += 40) {
752                 float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
753                 float bin = s->fscale == F_LINEAR ? y : get_log_hz(y, h, inlink->sample_rate);
754                 float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(h)));
755                 char *units;
756
757                 if (hertz == 0)
758                     units = av_asprintf("DC");
759                 else
760                     units = av_asprintf("%.2f", hertz);
761                 if (!units)
762                     return AVERROR(ENOMEM);
763
764                 drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0);
765                 av_free(units);
766             }
767         }
768
769         for (x = 0; x < s->w && s->single_pic; x+=80) {
770             float seconds = x * spp / inlink->sample_rate;
771             char *units = get_time(ctx, seconds, x);
772             if (!units)
773                 return AVERROR(ENOMEM);
774
775             drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0);
776             drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0);
777             av_free(units);
778         }
779
780         drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0);
781         drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1);
782     } else {
783         int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w;
784         for (y = 0; y < s->h; y += 20) {
785             dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
786             dst[s->start_x - 2] = 200;
787             dst[s->start_x + s->w + 1] = 200;
788         }
789         for (y = 0; y < s->h; y += 40) {
790             dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
791             dst[s->start_x - 3] = 200;
792             dst[s->start_x + s->w + 2] = 200;
793         }
794         for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
795             dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
796             for (x = 0; x < w; x+=40)
797                 dst[x] = 200;
798             dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch;
799             for (x = 0; x < w; x+=80)
800                 dst[x] = 200;
801             dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch;
802             for (x = 0; x < w; x+=40) {
803                 dst[x] = 200;
804             }
805             dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
806             for (x = 0; x < w; x+=80) {
807                 dst[x] = 200;
808             }
809             for (x = 0; x < w - 79; x += 80) {
810                 float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
811                 float bin = s->fscale == F_LINEAR ? x : get_log_hz(x, w, inlink->sample_rate);
812                 float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(w)));
813                 char *units;
814
815                 if (hertz == 0)
816                     units = av_asprintf("DC");
817                 else
818                     units = av_asprintf("%.2f", hertz);
819                 if (!units)
820                     return AVERROR(ENOMEM);
821
822                 drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0);
823                 drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0);
824                 av_free(units);
825             }
826         }
827         for (y = 0; y < s->h && s->single_pic; y+=40) {
828             float seconds = y * spp / inlink->sample_rate;
829             char *units = get_time(ctx, seconds, x);
830             if (!units)
831                 return AVERROR(ENOMEM);
832
833             drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0);
834             av_free(units);
835         }
836         drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1);
837         drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0);
838     }
839
840     for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) {
841         int h = multi ? s->h / s->nb_display_channels : s->h;
842
843         for (y = 0; y < h; y++) {
844             float out[3] = { 0., 127.5, 127.5};
845             int chn;
846
847             for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) {
848                 float yf, uf, vf;
849                 int channel = (multi) ? s->nb_display_channels - ch - 1 : chn;
850                 float lout[3];
851
852                 color_range(s, channel, &yf, &uf, &vf);
853                 pick_color(s, yf, uf, vf, y / (float)h, lout);
854                 out[0] += lout[0];
855                 out[1] += lout[1];
856                 out[2] += lout[2];
857             }
858             memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10);
859             memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10);
860             memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10);
861         }
862
863         for (y = 0; ch == 0 && y < h; y += h / 10) {
864             float value = 120.f * log10f(1.f - y / (float)h);
865             char *text;
866
867             if (value < -120)
868                 break;
869             text = av_asprintf("%.0f dB", value);
870             if (!text)
871                 continue;
872             drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 5, text, 0);
873             av_free(text);
874         }
875     }
876
877     return 0;
878 }
879
880 static float get_value(AVFilterContext *ctx, int ch, int y)
881 {
882     ShowSpectrumContext *s = ctx->priv;
883     float *magnitudes = s->magnitudes[ch];
884     float *phases = s->phases[ch];
885     float a;
886
887     switch (s->data) {
888     case D_MAGNITUDE:
889         /* get magnitude */
890         a = magnitudes[y];
891         break;
892     case D_PHASE:
893         /* get phase */
894         a = phases[y];
895         break;
896     default:
897         av_assert0(0);
898     }
899
900     /* apply scale */
901     switch (s->scale) {
902     case LINEAR:
903         a = av_clipf(a, 0, 1);
904         break;
905     case SQRT:
906         a = av_clipf(sqrtf(a), 0, 1);
907         break;
908     case CBRT:
909         a = av_clipf(cbrtf(a), 0, 1);
910         break;
911     case FOURTHRT:
912         a = av_clipf(sqrtf(sqrtf(a)), 0, 1);
913         break;
914     case FIFTHRT:
915         a = av_clipf(powf(a, 0.20), 0, 1);
916         break;
917     case LOG:
918         a = 1.f + log10f(av_clipf(a, 1e-6, 1)) / 6.f; // zero = -120dBFS
919         break;
920     default:
921         av_assert0(0);
922     }
923
924     return a;
925 }
926
927 static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
928 {
929     ShowSpectrumContext *s = ctx->priv;
930     const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
931     const int ch = jobnr;
932     float yf, uf, vf;
933     int y;
934
935     /* decide color range */
936     color_range(s, ch, &yf, &uf, &vf);
937
938     /* draw the channel */
939     for (y = 0; y < h; y++) {
940         int row = (s->mode == COMBINED) ? y : ch * h + y;
941         float *out = &s->color_buffer[ch][3 * row];
942         float a = get_value(ctx, ch, y);
943
944         pick_color(s, yf, uf, vf, a, out);
945     }
946
947     return 0;
948 }
949
950 static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
951 {
952     ShowSpectrumContext *s = ctx->priv;
953     AVFilterLink *inlink = ctx->inputs[0];
954     const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
955     const int ch = jobnr;
956     float y, yf, uf, vf;
957     int yy = 0;
958
959     /* decide color range */
960     color_range(s, ch, &yf, &uf, &vf);
961
962     /* draw the channel */
963     for (y = 0; y < h && yy < h; yy++) {
964         float pos0 = bin_pos(yy+0, h, inlink->sample_rate);
965         float pos1 = bin_pos(yy+1, h, inlink->sample_rate);
966         float delta = pos1 - pos0;
967         float a0, a1;
968
969         a0 = get_value(ctx, ch, yy+0);
970         a1 = get_value(ctx, ch, FFMIN(yy+1, h-1));
971         for (float j = pos0; j < pos1 && y + j - pos0 < h; j++) {
972             float row = (s->mode == COMBINED) ? y + j - pos0 : ch * h + y + j - pos0;
973             float *out = &s->color_buffer[ch][3 * FFMIN(lrintf(row), h-1)];
974             float lerpfrac = (j - pos0) / delta;
975
976             pick_color(s, yf, uf, vf, lerpfrac * a1 + (1.f-lerpfrac) * a0, out);
977         }
978         y += delta;
979     }
980
981     return 0;
982 }
983
984 static int config_output(AVFilterLink *outlink)
985 {
986     AVFilterContext *ctx = outlink->src;
987     AVFilterLink *inlink = ctx->inputs[0];
988     ShowSpectrumContext *s = ctx->priv;
989     int i, fft_bits, h, w;
990     float overlap;
991
992     switch (s->fscale) {
993     case F_LINEAR: s->plot_channel = plot_channel_lin; break;
994     case F_LOG:    s->plot_channel = plot_channel_log; break;
995     default: return AVERROR_BUG;
996     }
997
998     s->stop = FFMIN(s->stop, inlink->sample_rate / 2);
999     if (s->stop && s->stop <= s->start) {
1000         av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n");
1001         return AVERROR(EINVAL);
1002     }
1003
1004     if (!strcmp(ctx->filter->name, "showspectrumpic"))
1005         s->single_pic = 1;
1006
1007     outlink->w = s->w;
1008     outlink->h = s->h;
1009     outlink->sample_aspect_ratio = (AVRational){1,1};
1010
1011     if (s->legend) {
1012         s->start_x = (log10(inlink->sample_rate) + 1) * 25;
1013         s->start_y = 64;
1014         outlink->w += s->start_x * 2;
1015         outlink->h += s->start_y * 2;
1016     }
1017
1018     h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->channels;
1019     w = (s->mode == COMBINED || s->orientation == VERTICAL)   ? s->w : s->w / inlink->channels;
1020     s->channel_height = h;
1021     s->channel_width  = w;
1022
1023     if (s->orientation == VERTICAL) {
1024         /* FFT window size (precision) according to the requested output frame height */
1025         for (fft_bits = 1; 1 << fft_bits < 2 * h; fft_bits++);
1026     } else {
1027         /* FFT window size (precision) according to the requested output frame width */
1028         for (fft_bits = 1; 1 << fft_bits < 2 * w; fft_bits++);
1029     }
1030
1031     s->win_size = 1 << fft_bits;
1032     s->buf_size = s->win_size << !!s->stop;
1033
1034     if (!s->fft) {
1035         s->fft = av_calloc(inlink->channels, sizeof(*s->fft));
1036         if (!s->fft)
1037             return AVERROR(ENOMEM);
1038     }
1039
1040     if (s->stop) {
1041         if (!s->ifft) {
1042             s->ifft = av_calloc(inlink->channels, sizeof(*s->ifft));
1043             if (!s->ifft)
1044                 return AVERROR(ENOMEM);
1045         }
1046     }
1047
1048     /* (re-)configuration if the video output changed (or first init) */
1049     if (fft_bits != s->fft_bits) {
1050         AVFrame *outpicref;
1051
1052         s->fft_bits = fft_bits;
1053
1054         /* FFT buffers: x2 for each (display) channel buffer.
1055          * Note: we use free and malloc instead of a realloc-like function to
1056          * make sure the buffer is aligned in memory for the FFT functions. */
1057         for (i = 0; i < s->nb_display_channels; i++) {
1058             if (s->stop) {
1059                 av_fft_end(s->ifft[i]);
1060                 av_freep(&s->fft_scratch[i]);
1061             }
1062             av_fft_end(s->fft[i]);
1063             av_freep(&s->fft_data[i]);
1064         }
1065         av_freep(&s->fft_data);
1066
1067         s->nb_display_channels = inlink->channels;
1068         for (i = 0; i < s->nb_display_channels; i++) {
1069             s->fft[i] = av_fft_init(fft_bits + !!s->stop, 0);
1070             if (s->stop) {
1071                 s->ifft[i] = av_fft_init(fft_bits + !!s->stop, 1);
1072                 if (!s->ifft[i]) {
1073                     av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. "
1074                            "The window size might be too high.\n");
1075                     return AVERROR(EINVAL);
1076                 }
1077             }
1078             if (!s->fft[i]) {
1079                 av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
1080                        "The window size might be too high.\n");
1081                 return AVERROR(EINVAL);
1082             }
1083         }
1084
1085         s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes));
1086         if (!s->magnitudes)
1087             return AVERROR(ENOMEM);
1088         for (i = 0; i < s->nb_display_channels; i++) {
1089             s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes));
1090             if (!s->magnitudes[i])
1091                 return AVERROR(ENOMEM);
1092         }
1093
1094         s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases));
1095         if (!s->phases)
1096             return AVERROR(ENOMEM);
1097         for (i = 0; i < s->nb_display_channels; i++) {
1098             s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases));
1099             if (!s->phases[i])
1100                 return AVERROR(ENOMEM);
1101         }
1102
1103         av_freep(&s->color_buffer);
1104         s->color_buffer = av_calloc(s->nb_display_channels, sizeof(*s->color_buffer));
1105         if (!s->color_buffer)
1106             return AVERROR(ENOMEM);
1107         for (i = 0; i < s->nb_display_channels; i++) {
1108             s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 3 : s->w * 3, sizeof(**s->color_buffer));
1109             if (!s->color_buffer[i])
1110                 return AVERROR(ENOMEM);
1111         }
1112
1113         s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data));
1114         if (!s->fft_data)
1115             return AVERROR(ENOMEM);
1116         s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch));
1117         if (!s->fft_scratch)
1118             return AVERROR(ENOMEM);
1119         for (i = 0; i < s->nb_display_channels; i++) {
1120             s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data));
1121             if (!s->fft_data[i])
1122                 return AVERROR(ENOMEM);
1123
1124             s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch));
1125             if (!s->fft_scratch[i])
1126                 return AVERROR(ENOMEM);
1127         }
1128
1129         /* pre-calc windowing function */
1130         s->window_func_lut =
1131             av_realloc_f(s->window_func_lut, s->win_size,
1132                          sizeof(*s->window_func_lut));
1133         if (!s->window_func_lut)
1134             return AVERROR(ENOMEM);
1135         generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
1136         if (s->overlap == 1)
1137             s->overlap = overlap;
1138         s->hop_size = (1.f - s->overlap) * s->win_size;
1139         if (s->hop_size < 1) {
1140             av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
1141             return AVERROR(EINVAL);
1142         }
1143
1144         for (s->win_scale = 0, i = 0; i < s->win_size; i++) {
1145             s->win_scale += s->window_func_lut[i] * s->window_func_lut[i];
1146         }
1147         s->win_scale = 1.f / sqrtf(s->win_scale);
1148
1149         /* prepare the initial picref buffer (black frame) */
1150         av_frame_free(&s->outpicref);
1151         s->outpicref = outpicref =
1152             ff_get_video_buffer(outlink, outlink->w, outlink->h);
1153         if (!outpicref)
1154             return AVERROR(ENOMEM);
1155         outpicref->sample_aspect_ratio = (AVRational){1,1};
1156         for (i = 0; i < outlink->h; i++) {
1157             memset(outpicref->data[0] + i * outpicref->linesize[0],   0, outlink->w);
1158             memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w);
1159             memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w);
1160         }
1161         outpicref->color_range = AVCOL_RANGE_JPEG;
1162
1163         if (!s->single_pic && s->legend)
1164             draw_legend(ctx, 0);
1165     }
1166
1167     if ((s->orientation == VERTICAL   && s->xpos >= s->w) ||
1168         (s->orientation == HORIZONTAL && s->xpos >= s->h))
1169         s->xpos = 0;
1170
1171     s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
1172     if (s->orientation == VERTICAL && s->sliding == FULLFRAME)
1173         s->auto_frame_rate.den *= s->w;
1174     if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME)
1175         s->auto_frame_rate.den *= s->h;
1176     if (!s->single_pic && strcmp(s->rate_str, "auto")) {
1177         int ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
1178         if (ret < 0)
1179             return ret;
1180     } else {
1181         s->frame_rate = s->auto_frame_rate;
1182     }
1183     outlink->frame_rate = s->frame_rate;
1184     outlink->time_base = av_inv_q(outlink->frame_rate);
1185
1186     if (s->orientation == VERTICAL) {
1187         s->combine_buffer =
1188             av_realloc_f(s->combine_buffer, s->h * 3,
1189                          sizeof(*s->combine_buffer));
1190     } else {
1191         s->combine_buffer =
1192             av_realloc_f(s->combine_buffer, s->w * 3,
1193                          sizeof(*s->combine_buffer));
1194     }
1195
1196     av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n",
1197            s->w, s->h, s->win_size);
1198
1199     av_audio_fifo_free(s->fifo);
1200     s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size);
1201     if (!s->fifo)
1202         return AVERROR(ENOMEM);
1203     return 0;
1204 }
1205
1206 #define RE(y, ch) s->fft_data[ch][y].re
1207 #define IM(y, ch) s->fft_data[ch][y].im
1208 #define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch))
1209 #define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch))
1210
1211 static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1212 {
1213     ShowSpectrumContext *s = ctx->priv;
1214     const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1215     int y, h = s->orientation == VERTICAL ? s->h : s->w;
1216     const float f = s->gain * w;
1217     const int ch = jobnr;
1218     float *magnitudes = s->magnitudes[ch];
1219
1220     for (y = 0; y < h; y++)
1221         magnitudes[y] = MAGNITUDE(y, ch) * f;
1222
1223     return 0;
1224 }
1225
1226 static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1227 {
1228     ShowSpectrumContext *s = ctx->priv;
1229     const int h = s->orientation == VERTICAL ? s->h : s->w;
1230     const int ch = jobnr;
1231     float *phases = s->phases[ch];
1232     int y;
1233
1234     for (y = 0; y < h; y++)
1235         phases[y] = (PHASE(y, ch) / M_PI + 1) / 2;
1236
1237     return 0;
1238 }
1239
1240 static void acalc_magnitudes(ShowSpectrumContext *s)
1241 {
1242     const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1243     int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1244     const float f = s->gain * w;
1245
1246     for (ch = 0; ch < s->nb_display_channels; ch++) {
1247         float *magnitudes = s->magnitudes[ch];
1248
1249         for (y = 0; y < h; y++)
1250             magnitudes[y] += MAGNITUDE(y, ch) * f;
1251     }
1252 }
1253
1254 static void scale_magnitudes(ShowSpectrumContext *s, float scale)
1255 {
1256     int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1257
1258     for (ch = 0; ch < s->nb_display_channels; ch++) {
1259         float *magnitudes = s->magnitudes[ch];
1260
1261         for (y = 0; y < h; y++)
1262             magnitudes[y] *= scale;
1263     }
1264 }
1265
1266 static void clear_combine_buffer(ShowSpectrumContext *s, int size)
1267 {
1268     int y;
1269
1270     for (y = 0; y < size; y++) {
1271         s->combine_buffer[3 * y    ] = 0;
1272         s->combine_buffer[3 * y + 1] = 127.5;
1273         s->combine_buffer[3 * y + 2] = 127.5;
1274     }
1275 }
1276
1277 static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
1278 {
1279     AVFilterContext *ctx = inlink->dst;
1280     AVFilterLink *outlink = ctx->outputs[0];
1281     ShowSpectrumContext *s = ctx->priv;
1282     AVFrame *outpicref = s->outpicref;
1283     int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w;
1284
1285     /* fill a new spectrum column */
1286     /* initialize buffer for combining to black */
1287     clear_combine_buffer(s, z);
1288
1289     ctx->internal->execute(ctx, s->plot_channel, NULL, NULL, s->nb_display_channels);
1290
1291     for (y = 0; y < z * 3; y++) {
1292         for (x = 0; x < s->nb_display_channels; x++) {
1293             s->combine_buffer[y] += s->color_buffer[x][y];
1294         }
1295     }
1296
1297     av_frame_make_writable(s->outpicref);
1298     /* copy to output */
1299     if (s->orientation == VERTICAL) {
1300         if (s->sliding == SCROLL) {
1301             for (plane = 0; plane < 3; plane++) {
1302                 for (y = 0; y < s->h; y++) {
1303                     uint8_t *p = outpicref->data[plane] + s->start_x +
1304                                  (y + s->start_y) * outpicref->linesize[plane];
1305                     memmove(p, p + 1, s->w - 1);
1306                 }
1307             }
1308             s->xpos = s->w - 1;
1309         } else if (s->sliding == RSCROLL) {
1310             for (plane = 0; plane < 3; plane++) {
1311                 for (y = 0; y < s->h; y++) {
1312                     uint8_t *p = outpicref->data[plane] + s->start_x +
1313                                  (y + s->start_y) * outpicref->linesize[plane];
1314                     memmove(p + 1, p, s->w - 1);
1315                 }
1316             }
1317             s->xpos = 0;
1318         }
1319         for (plane = 0; plane < 3; plane++) {
1320             uint8_t *p = outpicref->data[plane] + s->start_x +
1321                          (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] +
1322                          s->xpos;
1323             for (y = 0; y < s->h; y++) {
1324                 *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255));
1325                 p -= outpicref->linesize[plane];
1326             }
1327         }
1328     } else {
1329         if (s->sliding == SCROLL) {
1330             for (plane = 0; plane < 3; plane++) {
1331                 for (y = 1; y < s->h; y++) {
1332                     memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1333                             outpicref->data[plane] + (y   + s->start_y) * outpicref->linesize[plane] + s->start_x,
1334                             s->w);
1335                 }
1336             }
1337             s->xpos = s->h - 1;
1338         } else if (s->sliding == RSCROLL) {
1339             for (plane = 0; plane < 3; plane++) {
1340                 for (y = s->h - 1; y >= 1; y--) {
1341                     memmove(outpicref->data[plane] + (y   + s->start_y) * outpicref->linesize[plane] + s->start_x,
1342                             outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1343                             s->w);
1344                 }
1345             }
1346             s->xpos = 0;
1347         }
1348         for (plane = 0; plane < 3; plane++) {
1349             uint8_t *p = outpicref->data[plane] + s->start_x +
1350                          (s->xpos + s->start_y) * outpicref->linesize[plane];
1351             for (x = 0; x < s->w; x++) {
1352                 *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255));
1353                 p++;
1354             }
1355         }
1356     }
1357
1358     if (s->sliding != FULLFRAME || s->xpos == 0)
1359         outpicref->pts = av_rescale_q(insamples->pts, inlink->time_base, outlink->time_base);
1360
1361     s->xpos++;
1362     if (s->orientation == VERTICAL && s->xpos >= s->w)
1363         s->xpos = 0;
1364     if (s->orientation == HORIZONTAL && s->xpos >= s->h)
1365         s->xpos = 0;
1366     if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) {
1367         if (s->old_pts < outpicref->pts) {
1368             AVFrame *clone;
1369
1370             if (s->legend) {
1371                 char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x);
1372                 if (!units)
1373                     return AVERROR(ENOMEM);
1374
1375                 if (s->orientation == VERTICAL) {
1376                     for (y = 0; y < 10; y++) {
1377                         memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len +
1378                                (outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len);
1379                     }
1380                     drawtext(s->outpicref,
1381                              outlink->w / 2 - 4 * strlen(units),
1382                              outlink->h - s->start_y / 2 - 20,
1383                              units, 0);
1384                 } else  {
1385                     for (y = 0; y < 10 * s->old_len; y++) {
1386                         memset(s->outpicref->data[0] + s->start_x / 7 + 20 +
1387                                (outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10);
1388                     }
1389                     drawtext(s->outpicref,
1390                              s->start_x / 7 + 20,
1391                              outlink->h / 2 - 4 * strlen(units),
1392                              units, 1);
1393                 }
1394                 s->old_len = strlen(units);
1395                 av_free(units);
1396             }
1397             s->old_pts = outpicref->pts;
1398             clone = av_frame_clone(s->outpicref);
1399             if (!clone)
1400                 return AVERROR(ENOMEM);
1401             ret = ff_filter_frame(outlink, clone);
1402             if (ret < 0)
1403                 return ret;
1404             return 0;
1405         }
1406     }
1407
1408     return 1;
1409 }
1410
1411 #if CONFIG_SHOWSPECTRUM_FILTER
1412
1413 static int activate(AVFilterContext *ctx)
1414 {
1415     AVFilterLink *inlink = ctx->inputs[0];
1416     AVFilterLink *outlink = ctx->outputs[0];
1417     ShowSpectrumContext *s = ctx->priv;
1418     int ret;
1419
1420     FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
1421
1422     if (av_audio_fifo_size(s->fifo) < s->win_size) {
1423         AVFrame *frame = NULL;
1424
1425         ret = ff_inlink_consume_frame(inlink, &frame);
1426         if (ret < 0)
1427             return ret;
1428         if (ret > 0) {
1429             s->pts = frame->pts;
1430             s->consumed = 0;
1431
1432             av_audio_fifo_write(s->fifo, (void **)frame->extended_data, frame->nb_samples);
1433             av_frame_free(&frame);
1434         }
1435     }
1436
1437     if (s->outpicref && (av_audio_fifo_size(s->fifo) >= s->win_size ||
1438         ff_outlink_get_status(inlink))) {
1439         AVFrame *fin = ff_get_audio_buffer(inlink, s->win_size);
1440         if (!fin)
1441             return AVERROR(ENOMEM);
1442
1443         fin->pts = s->pts + s->consumed;
1444         s->consumed += s->hop_size;
1445         ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data,
1446                                  FFMIN(s->win_size, av_audio_fifo_size(s->fifo)));
1447         if (ret < 0) {
1448             av_frame_free(&fin);
1449             return ret;
1450         }
1451
1452         av_assert0(fin->nb_samples == s->win_size);
1453
1454         ctx->internal->execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels);
1455
1456         if (s->data == D_MAGNITUDE)
1457             ctx->internal->execute(ctx, calc_channel_magnitudes, NULL, NULL, s->nb_display_channels);
1458
1459         if (s->data == D_PHASE)
1460             ctx->internal->execute(ctx, calc_channel_phases, NULL, NULL, s->nb_display_channels);
1461
1462         ret = plot_spectrum_column(inlink, fin);
1463
1464         av_frame_free(&fin);
1465         av_audio_fifo_drain(s->fifo, s->hop_size);
1466         if (ret <= 0 && !ff_outlink_get_status(inlink))
1467             return ret;
1468     }
1469
1470     if (ff_outlink_get_status(inlink) == AVERROR_EOF &&
1471         s->sliding == FULLFRAME &&
1472         s->xpos > 0 && s->outpicref) {
1473         int64_t pts;
1474
1475         if (s->orientation == VERTICAL) {
1476             for (int i = 0; i < outlink->h; i++) {
1477                 memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos,   0, outlink->w - s->xpos);
1478                 memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos);
1479                 memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos);
1480             }
1481         } else {
1482             for (int i = s->xpos; i < outlink->h; i++) {
1483                 memset(s->outpicref->data[0] + i * s->outpicref->linesize[0],   0, outlink->w);
1484                 memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w);
1485                 memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w);
1486             }
1487         }
1488         s->outpicref->pts += s->consumed;
1489         pts = s->outpicref->pts;
1490         ret = ff_filter_frame(outlink, s->outpicref);
1491         s->outpicref = NULL;
1492         ff_outlink_set_status(outlink, AVERROR_EOF, pts);
1493         return 0;
1494     }
1495
1496     FF_FILTER_FORWARD_STATUS(inlink, outlink);
1497     if (av_audio_fifo_size(s->fifo) >= s->win_size ||
1498         ff_outlink_get_status(inlink) == AVERROR_EOF) {
1499         ff_filter_set_ready(ctx, 10);
1500         return 0;
1501     }
1502
1503     if (ff_outlink_frame_wanted(outlink) && av_audio_fifo_size(s->fifo) < s->win_size &&
1504         ff_outlink_get_status(inlink) != AVERROR_EOF) {
1505         ff_inlink_request_frame(inlink);
1506         return 0;
1507     }
1508
1509     return FFERROR_NOT_READY;
1510 }
1511
1512 static const AVFilterPad showspectrum_inputs[] = {
1513     {
1514         .name         = "default",
1515         .type         = AVMEDIA_TYPE_AUDIO,
1516     },
1517     { NULL }
1518 };
1519
1520 static const AVFilterPad showspectrum_outputs[] = {
1521     {
1522         .name          = "default",
1523         .type          = AVMEDIA_TYPE_VIDEO,
1524         .config_props  = config_output,
1525     },
1526     { NULL }
1527 };
1528
1529 AVFilter ff_avf_showspectrum = {
1530     .name          = "showspectrum",
1531     .description   = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."),
1532     .uninit        = uninit,
1533     .query_formats = query_formats,
1534     .priv_size     = sizeof(ShowSpectrumContext),
1535     .inputs        = showspectrum_inputs,
1536     .outputs       = showspectrum_outputs,
1537     .activate      = activate,
1538     .priv_class    = &showspectrum_class,
1539     .flags         = AVFILTER_FLAG_SLICE_THREADS,
1540 };
1541 #endif // CONFIG_SHOWSPECTRUM_FILTER
1542
1543 #if CONFIG_SHOWSPECTRUMPIC_FILTER
1544
1545 static const AVOption showspectrumpic_options[] = {
1546     { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1547     { "s",    "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1548     { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" },
1549         { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
1550         { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
1551     { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" },
1552         { "channel",   "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL},   0, 0, FLAGS, "color" },
1553         { "intensity", "intensity based coloring",        0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
1554         { "rainbow",   "rainbow based coloring",          0, AV_OPT_TYPE_CONST, {.i64=RAINBOW},   0, 0, FLAGS, "color" },
1555         { "moreland",  "moreland based coloring",         0, AV_OPT_TYPE_CONST, {.i64=MORELAND},  0, 0, FLAGS, "color" },
1556         { "nebulae",   "nebulae based coloring",          0, AV_OPT_TYPE_CONST, {.i64=NEBULAE},   0, 0, FLAGS, "color" },
1557         { "fire",      "fire based coloring",             0, AV_OPT_TYPE_CONST, {.i64=FIRE},      0, 0, FLAGS, "color" },
1558         { "fiery",     "fiery based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FIERY},     0, 0, FLAGS, "color" },
1559         { "fruit",     "fruit based coloring",            0, AV_OPT_TYPE_CONST, {.i64=FRUIT},     0, 0, FLAGS, "color" },
1560         { "cool",      "cool based coloring",             0, AV_OPT_TYPE_CONST, {.i64=COOL},      0, 0, FLAGS, "color" },
1561         { "magma",     "magma based coloring",            0, AV_OPT_TYPE_CONST, {.i64=MAGMA},     0, 0, FLAGS, "color" },
1562         { "green",     "green based coloring",            0, AV_OPT_TYPE_CONST, {.i64=GREEN},     0, 0, FLAGS, "color" },
1563         { "viridis",   "viridis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS},   0, 0, FLAGS, "color" },
1564         { "plasma",    "plasma based coloring",           0, AV_OPT_TYPE_CONST, {.i64=PLASMA},    0, 0, FLAGS, "color" },
1565         { "cividis",   "cividis based coloring",          0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS},   0, 0, FLAGS, "color" },
1566         { "terrain",   "terrain based coloring",          0, AV_OPT_TYPE_CONST, {.i64=TERRAIN},   0, 0, FLAGS, "color" },
1567     { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" },
1568         { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
1569         { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT},   0, 0, FLAGS, "scale" },
1570         { "cbrt", "cubic root",  0, AV_OPT_TYPE_CONST, {.i64=CBRT},   0, 0, FLAGS, "scale" },
1571         { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG},    0, 0, FLAGS, "scale" },
1572         { "4thrt","4th root",    0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
1573         { "5thrt","5th root",    0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT},  0, 0, FLAGS, "scale" },
1574     { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
1575         { "lin",  "linear",      0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
1576         { "log",  "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG},    0, 0, FLAGS, "fscale" },
1577     { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
1578     { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
1579         { "rect",     "Rectangular",      0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT},     0, 0, FLAGS, "win_func" },
1580         { "bartlett", "Bartlett",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
1581         { "hann",     "Hann",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
1582         { "hanning",  "Hanning",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, FLAGS, "win_func" },
1583         { "hamming",  "Hamming",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING},  0, 0, FLAGS, "win_func" },
1584         { "blackman", "Blackman",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
1585         { "welch",    "Welch",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH},    0, 0, FLAGS, "win_func" },
1586         { "flattop",  "Flat-top",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP},  0, 0, FLAGS, "win_func" },
1587         { "bharris",  "Blackman-Harris",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS},  0, 0, FLAGS, "win_func" },
1588         { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
1589         { "bhann",    "Bartlett-Hann",    0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN},    0, 0, FLAGS, "win_func" },
1590         { "sine",     "Sine",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE},     0, 0, FLAGS, "win_func" },
1591         { "nuttall",  "Nuttall",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL},  0, 0, FLAGS, "win_func" },
1592         { "lanczos",  "Lanczos",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS},  0, 0, FLAGS, "win_func" },
1593         { "gauss",    "Gauss",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS},    0, 0, FLAGS, "win_func" },
1594         { "tukey",    "Tukey",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY},    0, 0, FLAGS, "win_func" },
1595         { "dolph",    "Dolph-Chebyshev",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH},    0, 0, FLAGS, "win_func" },
1596         { "cauchy",   "Cauchy",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY},   0, 0, FLAGS, "win_func" },
1597         { "parzen",   "Parzen",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN},   0, 0, FLAGS, "win_func" },
1598         { "poisson",  "Poisson",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON},  0, 0, FLAGS, "win_func" },
1599         { "bohman",   "Bohman",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN},   0, 0, FLAGS, "win_func" },
1600     { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
1601         { "vertical",   NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL},   0, 0, FLAGS, "orientation" },
1602         { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
1603     { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
1604     { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
1605     { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
1606     { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1607     { "stop",  "stop frequency",  OFFSET(stop),  AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1608     { NULL }
1609 };
1610
1611 AVFILTER_DEFINE_CLASS(showspectrumpic);
1612
1613 static int showspectrumpic_request_frame(AVFilterLink *outlink)
1614 {
1615     AVFilterContext *ctx = outlink->src;
1616     ShowSpectrumContext *s = ctx->priv;
1617     AVFilterLink *inlink = ctx->inputs[0];
1618     int ret, samples;
1619
1620     ret = ff_request_frame(inlink);
1621     samples = av_audio_fifo_size(s->fifo);
1622     if (ret == AVERROR_EOF && s->outpicref && samples > 0) {
1623         int consumed = 0;
1624         int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
1625         int ch, spf, spb;
1626         AVFrame *fin;
1627
1628         spf = s->win_size * (samples / ((s->win_size * sz) * ceil(samples / (float)(s->win_size * sz))));
1629         spf = FFMAX(1, spf);
1630
1631         spb = (samples / (spf * sz)) * spf;
1632
1633         fin = ff_get_audio_buffer(inlink, s->win_size);
1634         if (!fin)
1635             return AVERROR(ENOMEM);
1636
1637         while (x < sz) {
1638             ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
1639             if (ret < 0) {
1640                 av_frame_free(&fin);
1641                 return ret;
1642             }
1643
1644             av_audio_fifo_drain(s->fifo, spf);
1645
1646             if (ret < s->win_size) {
1647                 for (ch = 0; ch < s->nb_display_channels; ch++) {
1648                     memset(fin->extended_data[ch] + ret * sizeof(float), 0,
1649                            (s->win_size - ret) * sizeof(float));
1650                 }
1651             }
1652
1653             ctx->internal->execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels);
1654             acalc_magnitudes(s);
1655
1656             consumed += spf;
1657             if (consumed >= spb) {
1658                 int h = s->orientation == VERTICAL ? s->h : s->w;
1659
1660                 scale_magnitudes(s, 1.f / (consumed / spf));
1661                 plot_spectrum_column(inlink, fin);
1662                 consumed = 0;
1663                 x++;
1664                 for (ch = 0; ch < s->nb_display_channels; ch++)
1665                     memset(s->magnitudes[ch], 0, h * sizeof(float));
1666             }
1667         }
1668
1669         av_frame_free(&fin);
1670         s->outpicref->pts = 0;
1671
1672         if (s->legend)
1673             draw_legend(ctx, samples);
1674
1675         ret = ff_filter_frame(outlink, s->outpicref);
1676         s->outpicref = NULL;
1677     }
1678
1679     return ret;
1680 }
1681
1682 static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples)
1683 {
1684     AVFilterContext *ctx = inlink->dst;
1685     ShowSpectrumContext *s = ctx->priv;
1686     int ret;
1687
1688     ret = av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples);
1689     av_frame_free(&insamples);
1690     return ret;
1691 }
1692
1693 static const AVFilterPad showspectrumpic_inputs[] = {
1694     {
1695         .name         = "default",
1696         .type         = AVMEDIA_TYPE_AUDIO,
1697         .filter_frame = showspectrumpic_filter_frame,
1698     },
1699     { NULL }
1700 };
1701
1702 static const AVFilterPad showspectrumpic_outputs[] = {
1703     {
1704         .name          = "default",
1705         .type          = AVMEDIA_TYPE_VIDEO,
1706         .config_props  = config_output,
1707         .request_frame = showspectrumpic_request_frame,
1708     },
1709     { NULL }
1710 };
1711
1712 AVFilter ff_avf_showspectrumpic = {
1713     .name          = "showspectrumpic",
1714     .description   = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."),
1715     .uninit        = uninit,
1716     .query_formats = query_formats,
1717     .priv_size     = sizeof(ShowSpectrumContext),
1718     .inputs        = showspectrumpic_inputs,
1719     .outputs       = showspectrumpic_outputs,
1720     .priv_class    = &showspectrumpic_class,
1721     .flags         = AVFILTER_FLAG_SLICE_THREADS,
1722 };
1723
1724 #endif // CONFIG_SHOWSPECTRUMPIC_FILTER