]> git.sesse.net Git - ffmpeg/blob - libavfilter/dnn/dnn_backend_native_layer_conv2d.c
avfilter/f_perms: add timeline support
[ffmpeg] / libavfilter / dnn / dnn_backend_native_layer_conv2d.c
1 /*
2  * Copyright (c) 2018 Sergey Lavrushkin
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/avassert.h"
22 #include "libavutil/thread.h"
23 #include "libavutil/cpu.h"
24 #include "dnn_backend_native_layer_conv2d.h"
25
26 #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
27
28 //struct to pass parameters
29 typedef struct thread_common_param{
30     DnnOperand *operands;
31     const int32_t *input_operand_indexes;
32     int32_t output_operand_index;
33     const void *parameters;
34     NativeContext *ctx;
35     float *output_data;
36 } thread_common_param;
37
38 typedef struct thread_param{
39     thread_common_param *thread_common_param;
40     int thread_start, thread_end;
41 } thread_param;
42
43 int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
44 {
45     ConvolutionalParams *conv_params;
46     int kernel_size;
47     int dnn_size = 0;
48     conv_params = av_malloc(sizeof(*conv_params));
49     if (!conv_params)
50         return 0;
51
52     conv_params->dilation = (int32_t)avio_rl32(model_file_context);
53     conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
54     conv_params->activation = (int32_t)avio_rl32(model_file_context);
55     conv_params->input_num = (int32_t)avio_rl32(model_file_context);
56     conv_params->output_num = (int32_t)avio_rl32(model_file_context);
57     conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
58     conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
59     dnn_size += 28;
60
61     kernel_size = conv_params->input_num * conv_params->output_num *
62                       conv_params->kernel_size * conv_params->kernel_size;
63     dnn_size += kernel_size * 4;
64     if (conv_params->has_bias)
65         dnn_size += conv_params->output_num * 4;
66
67     if (dnn_size > file_size || conv_params->input_num <= 0 ||
68         conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
69         av_freep(&conv_params);
70         return 0;
71     }
72
73     conv_params->kernel = av_malloc(kernel_size * sizeof(float));
74     if (!conv_params->kernel) {
75         av_freep(&conv_params);
76         return 0;
77     }
78     for (int i = 0; i < kernel_size; ++i) {
79         conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
80     }
81
82     conv_params->biases = NULL;
83     if (conv_params->has_bias) {
84         conv_params->biases = av_malloc(conv_params->output_num * sizeof(float));
85         if (!conv_params->biases){
86             av_freep(&conv_params->kernel);
87             av_freep(&conv_params);
88             return 0;
89         }
90         for (int i = 0; i < conv_params->output_num; ++i){
91             conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
92         }
93     }
94
95     layer->params = conv_params;
96
97     layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
98     layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
99     dnn_size += 8;
100
101     if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
102         return 0;
103     }
104
105     return dnn_size;
106 }
107
108 static void * dnn_execute_layer_conv2d_thread(void *threadarg)
109 {
110     //pass parameters
111     thread_param *thread_param = (struct thread_param *)threadarg;
112     thread_common_param *thread_common_param = thread_param->thread_common_param;
113     DnnOperand *operands = thread_common_param->operands;
114     int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
115     int height = operands[input_operand_index].dims[1];
116     int width = operands[input_operand_index].dims[2];
117     int channel = operands[input_operand_index].dims[3];
118     const float *input = operands[input_operand_index].data;
119     const ConvolutionalParams *conv_params = (const ConvolutionalParams *)(thread_common_param->parameters);
120
121     int radius = conv_params->kernel_size >> 1;
122     int src_linesize = width * conv_params->input_num;
123     int filter_linesize = conv_params->kernel_size * conv_params->input_num;
124     int filter_size = conv_params->kernel_size * filter_linesize;
125     int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
126
127     float *output = thread_common_param->output_data;
128     output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size);
129
130     av_assert0(channel == conv_params->input_num);
131
132     for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) {
133         for (int x = pad_size; x < width - pad_size; ++x) {
134             for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
135                 if (conv_params->has_bias)
136                     output[n_filter] = conv_params->biases[n_filter];
137                 else
138                     output[n_filter] = 0.f;
139
140                 for (int ch = 0; ch < conv_params->input_num; ++ch) {
141                     for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
142                         for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
143                             float input_pel;
144                             if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
145                                 int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
146                                 int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
147                                 input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
148                             } else {
149                                 int y_pos = y + (kernel_y - radius) * conv_params->dilation;
150                                 int x_pos = x + (kernel_x - radius) * conv_params->dilation;
151                                 input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
152                                                    input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
153                             }
154
155
156                             output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
157                                                                                 kernel_x * conv_params->input_num + ch];
158                         }
159                     }
160                 }
161                 switch (conv_params->activation){
162                 case RELU:
163                     output[n_filter] = FFMAX(output[n_filter], 0.0);
164                     break;
165                 case TANH:
166                     output[n_filter] = 2.0f  / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
167                     break;
168                 case SIGMOID:
169                     output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
170                     break;
171                 case NONE:
172                     break;
173                 case LEAKY_RELU:
174                     output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
175                 }
176             }
177             output += conv_params->output_num;
178         }
179     }
180     return (void *)DNN_SUCCESS;
181 }
182
183
184 int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
185                              int32_t output_operand_index, const void *parameters, NativeContext *ctx)
186 {
187     int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
188         ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
189 #if HAVE_PTHREAD_CANCEL
190     pthread_t *thread_id = av_malloc(thread_num * sizeof(pthread_t));
191     int thread_stride;
192 #endif
193     thread_param **thread_param = av_malloc(thread_num * sizeof(*thread_param));
194     thread_common_param thread_common_param;
195     const ConvolutionalParams *conv_params = (const ConvolutionalParams *)(parameters);
196     int height = operands[input_operand_indexes[0]].dims[1];
197     int width = operands[input_operand_indexes[0]].dims[2];
198     int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
199     DnnOperand *output_operand = &operands[output_operand_index];
200
201     output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0];
202     output_operand->dims[1] = height - pad_size * 2;
203     output_operand->dims[2] = width - pad_size * 2;
204     output_operand->dims[3] = conv_params->output_num;
205     output_operand->data_type = operands[input_operand_indexes[0]].data_type;
206     output_operand->length = calculate_operand_data_length(output_operand);
207     if (output_operand->length <= 0) {
208         av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
209         return DNN_ERROR;
210     }
211     output_operand->data = av_realloc(output_operand->data, output_operand->length);
212     if (!output_operand->data) {
213         av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
214         return DNN_ERROR;
215     }
216     thread_common_param.output_data = output_operand->data;
217     thread_common_param.operands = operands;
218     thread_common_param.input_operand_indexes = input_operand_indexes;
219     thread_common_param.output_operand_index = output_operand_index;
220     thread_common_param.parameters = parameters;
221     thread_common_param.ctx = ctx;
222
223 #if HAVE_PTHREAD_CANCEL
224     thread_stride = (height - pad_size * 2) / thread_num;
225     //create threads
226     for (int i = 0; i < thread_num; i++){
227         thread_param[i] = av_malloc(sizeof(**thread_param));
228         thread_param[i]->thread_common_param = &thread_common_param;
229         thread_param[i]->thread_start = thread_stride * i + pad_size;
230         thread_param[i]->thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i]->thread_start + thread_stride);
231         pthread_create(&thread_id[i], NULL, dnn_execute_layer_conv2d_thread, (void *)thread_param[i]);
232     }
233
234     //join threads, res gets function return
235     for (int i = 0; i < thread_num; i++){
236         pthread_join(thread_id[i], NULL);
237     }
238
239     //release memory
240     av_free(thread_id);
241
242     for (int i = 0; i < thread_num; i++){
243         av_free(thread_param[i]);
244     }
245 #else
246     thread_param[0] = av_malloc(sizeof(**thread_param));
247     thread_param[0]->thread_common_param = &thread_common_param;
248     thread_param[0]->thread_start = pad_size;
249     thread_param[0]->thread_end = height - pad_size;
250     dnn_execute_layer_conv2d_thread((void *)thread_param[0]);
251     av_free(thread_param[0]);
252 #endif
253
254     av_free(thread_param);
255     return DNN_SUCCESS;
256 }