]> git.sesse.net Git - ffmpeg/blob - libavfilter/ebur128.c
lavu/mem: move the DECLARE_ALIGNED macro family to mem_internal on next+1 bump
[ffmpeg] / libavfilter / ebur128.c
1 /*
2  * Copyright (c) 2011 Jan Kokemüller
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * This file is based on libebur128 which is available at
21  * https://github.com/jiixyj/libebur128/
22  *
23  * Libebur128 has the following copyright:
24  *
25  * Permission is hereby granted, free of charge, to any person obtaining a copy
26  * of this software and associated documentation files (the "Software"), to deal
27  * in the Software without restriction, including without limitation the rights
28  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
29  * copies of the Software, and to permit persons to whom the Software is
30  * furnished to do so, subject to the following conditions:
31  *
32  * The above copyright notice and this permission notice shall be included in
33  * all copies or substantial portions of the Software.
34  *
35  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
36  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
37  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
38  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
39  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
40  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
41  * THE SOFTWARE.
42 */
43
44 #include "ebur128.h"
45
46 #include <float.h>
47 #include <limits.h>
48 #include <math.h>               /* You may have to define _USE_MATH_DEFINES if you use MSVC */
49
50 #include "libavutil/common.h"
51 #include "libavutil/mem.h"
52 #include "libavutil/mem_internal.h"
53 #include "libavutil/thread.h"
54
55 #define CHECK_ERROR(condition, errorcode, goto_point)                          \
56     if ((condition)) {                                                         \
57         errcode = (errorcode);                                                 \
58         goto goto_point;                                                       \
59     }
60
61 #define ALMOST_ZERO 0.000001
62
63 #define RELATIVE_GATE         (-10.0)
64 #define RELATIVE_GATE_FACTOR  pow(10.0, RELATIVE_GATE / 10.0)
65 #define MINUS_20DB            pow(10.0, -20.0 / 10.0)
66
67 struct FFEBUR128StateInternal {
68     /** Filtered audio data (used as ring buffer). */
69     double *audio_data;
70     /** Size of audio_data array. */
71     size_t audio_data_frames;
72     /** Current index for audio_data. */
73     size_t audio_data_index;
74     /** How many frames are needed for a gating block. Will correspond to 400ms
75      *  of audio at initialization, and 100ms after the first block (75% overlap
76      *  as specified in the 2011 revision of BS1770). */
77     unsigned long needed_frames;
78     /** The channel map. Has as many elements as there are channels. */
79     int *channel_map;
80     /** How many samples fit in 100ms (rounded). */
81     unsigned long samples_in_100ms;
82     /** BS.1770 filter coefficients (nominator). */
83     double b[5];
84     /** BS.1770 filter coefficients (denominator). */
85     double a[5];
86     /** BS.1770 filter state. */
87     double v[5][5];
88     /** Histograms, used to calculate LRA. */
89     unsigned long *block_energy_histogram;
90     unsigned long *short_term_block_energy_histogram;
91     /** Keeps track of when a new short term block is needed. */
92     size_t short_term_frame_counter;
93     /** Maximum sample peak, one per channel */
94     double *sample_peak;
95     /** The maximum window duration in ms. */
96     unsigned long window;
97     /** Data pointer array for interleaved data */
98     void **data_ptrs;
99 };
100
101 static AVOnce histogram_init = AV_ONCE_INIT;
102 static DECLARE_ALIGNED(32, double, histogram_energies)[1000];
103 static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001];
104
105 static void ebur128_init_filter(FFEBUR128State * st)
106 {
107     int i, j;
108
109     double f0 = 1681.974450955533;
110     double G = 3.999843853973347;
111     double Q = 0.7071752369554196;
112
113     double K = tan(M_PI * f0 / (double) st->samplerate);
114     double Vh = pow(10.0, G / 20.0);
115     double Vb = pow(Vh, 0.4996667741545416);
116
117     double pb[3] = { 0.0, 0.0, 0.0 };
118     double pa[3] = { 1.0, 0.0, 0.0 };
119     double rb[3] = { 1.0, -2.0, 1.0 };
120     double ra[3] = { 1.0, 0.0, 0.0 };
121
122     double a0 = 1.0 + K / Q + K * K;
123     pb[0] = (Vh + Vb * K / Q + K * K) / a0;
124     pb[1] = 2.0 * (K * K - Vh) / a0;
125     pb[2] = (Vh - Vb * K / Q + K * K) / a0;
126     pa[1] = 2.0 * (K * K - 1.0) / a0;
127     pa[2] = (1.0 - K / Q + K * K) / a0;
128
129     f0 = 38.13547087602444;
130     Q = 0.5003270373238773;
131     K = tan(M_PI * f0 / (double) st->samplerate);
132
133     ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
134     ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
135
136     st->d->b[0] = pb[0] * rb[0];
137     st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0];
138     st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0];
139     st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1];
140     st->d->b[4] = pb[2] * rb[2];
141
142     st->d->a[0] = pa[0] * ra[0];
143     st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0];
144     st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0];
145     st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1];
146     st->d->a[4] = pa[2] * ra[2];
147
148     for (i = 0; i < 5; ++i) {
149         for (j = 0; j < 5; ++j) {
150             st->d->v[i][j] = 0.0;
151         }
152     }
153 }
154
155 static int ebur128_init_channel_map(FFEBUR128State * st)
156 {
157     size_t i;
158     st->d->channel_map =
159         (int *) av_malloc_array(st->channels, sizeof(*st->d->channel_map));
160     if (!st->d->channel_map)
161         return AVERROR(ENOMEM);
162     if (st->channels == 4) {
163         st->d->channel_map[0] = FF_EBUR128_LEFT;
164         st->d->channel_map[1] = FF_EBUR128_RIGHT;
165         st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND;
166         st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND;
167     } else if (st->channels == 5) {
168         st->d->channel_map[0] = FF_EBUR128_LEFT;
169         st->d->channel_map[1] = FF_EBUR128_RIGHT;
170         st->d->channel_map[2] = FF_EBUR128_CENTER;
171         st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND;
172         st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND;
173     } else {
174         for (i = 0; i < st->channels; ++i) {
175             switch (i) {
176             case 0:
177                 st->d->channel_map[i] = FF_EBUR128_LEFT;
178                 break;
179             case 1:
180                 st->d->channel_map[i] = FF_EBUR128_RIGHT;
181                 break;
182             case 2:
183                 st->d->channel_map[i] = FF_EBUR128_CENTER;
184                 break;
185             case 3:
186                 st->d->channel_map[i] = FF_EBUR128_UNUSED;
187                 break;
188             case 4:
189                 st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND;
190                 break;
191             case 5:
192                 st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND;
193                 break;
194             default:
195                 st->d->channel_map[i] = FF_EBUR128_UNUSED;
196                 break;
197             }
198         }
199     }
200     return 0;
201 }
202
203 static inline void init_histogram(void)
204 {
205     int i;
206     /* initialize static constants */
207     histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0);
208     for (i = 0; i < 1000; ++i) {
209         histogram_energies[i] =
210             pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0);
211     }
212     for (i = 1; i < 1001; ++i) {
213         histogram_energy_boundaries[i] =
214             pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0);
215     }
216 }
217
218 FFEBUR128State *ff_ebur128_init(unsigned int channels,
219                                 unsigned long samplerate,
220                                 unsigned long window, int mode)
221 {
222     int errcode;
223     FFEBUR128State *st;
224
225     st = (FFEBUR128State *) av_malloc(sizeof(*st));
226     CHECK_ERROR(!st, 0, exit)
227     st->d = (struct FFEBUR128StateInternal *)
228         av_malloc(sizeof(*st->d));
229     CHECK_ERROR(!st->d, 0, free_state)
230     st->channels = channels;
231     errcode = ebur128_init_channel_map(st);
232     CHECK_ERROR(errcode, 0, free_internal)
233
234     st->d->sample_peak =
235         (double *) av_mallocz_array(channels, sizeof(*st->d->sample_peak));
236     CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map)
237
238     st->samplerate = samplerate;
239     st->d->samples_in_100ms = (st->samplerate + 5) / 10;
240     st->mode = mode;
241     if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) {
242         st->d->window = FFMAX(window, 3000);
243     } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) {
244         st->d->window = FFMAX(window, 400);
245     } else {
246         goto free_sample_peak;
247     }
248     st->d->audio_data_frames = st->samplerate * st->d->window / 1000;
249     if (st->d->audio_data_frames % st->d->samples_in_100ms) {
250         /* round up to multiple of samples_in_100ms */
251         st->d->audio_data_frames = st->d->audio_data_frames
252             + st->d->samples_in_100ms
253             - (st->d->audio_data_frames % st->d->samples_in_100ms);
254     }
255     st->d->audio_data =
256         (double *) av_mallocz_array(st->d->audio_data_frames,
257                                     st->channels * sizeof(*st->d->audio_data));
258     CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak)
259
260     ebur128_init_filter(st);
261
262     st->d->block_energy_histogram =
263         av_mallocz(1000 * sizeof(*st->d->block_energy_histogram));
264     CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data)
265     st->d->short_term_block_energy_histogram =
266         av_mallocz(1000 * sizeof(*st->d->short_term_block_energy_histogram));
267     CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0,
268                 free_block_energy_histogram)
269     st->d->short_term_frame_counter = 0;
270
271     /* the first block needs 400ms of audio data */
272     st->d->needed_frames = st->d->samples_in_100ms * 4;
273     /* start at the beginning of the buffer */
274     st->d->audio_data_index = 0;
275
276     if (ff_thread_once(&histogram_init, &init_histogram) != 0)
277         goto free_short_term_block_energy_histogram;
278
279     st->d->data_ptrs = av_malloc_array(channels, sizeof(*st->d->data_ptrs));
280     CHECK_ERROR(!st->d->data_ptrs, 0,
281                 free_short_term_block_energy_histogram);
282
283     return st;
284
285 free_short_term_block_energy_histogram:
286     av_free(st->d->short_term_block_energy_histogram);
287 free_block_energy_histogram:
288     av_free(st->d->block_energy_histogram);
289 free_audio_data:
290     av_free(st->d->audio_data);
291 free_sample_peak:
292     av_free(st->d->sample_peak);
293 free_channel_map:
294     av_free(st->d->channel_map);
295 free_internal:
296     av_free(st->d);
297 free_state:
298     av_free(st);
299 exit:
300     return NULL;
301 }
302
303 void ff_ebur128_destroy(FFEBUR128State ** st)
304 {
305     av_free((*st)->d->block_energy_histogram);
306     av_free((*st)->d->short_term_block_energy_histogram);
307     av_free((*st)->d->audio_data);
308     av_free((*st)->d->channel_map);
309     av_free((*st)->d->sample_peak);
310     av_free((*st)->d->data_ptrs);
311     av_free((*st)->d);
312     av_free(*st);
313     *st = NULL;
314 }
315
316 #define EBUR128_FILTER(type, scaling_factor)                                       \
317 static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs,           \
318                                   size_t src_index, size_t frames,                 \
319                                   int stride) {                                    \
320     double* audio_data = st->d->audio_data + st->d->audio_data_index;              \
321     size_t i, c;                                                                   \
322                                                                                    \
323     if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
324         for (c = 0; c < st->channels; ++c) {                                       \
325             double max = 0.0;                                                      \
326             for (i = 0; i < frames; ++i) {                                         \
327                 type v = srcs[c][src_index + i * stride];                          \
328                 if (v > max) {                                                     \
329                     max =        v;                                                \
330                 } else if (-v > max) {                                             \
331                     max = -1.0 * v;                                                \
332                 }                                                                  \
333             }                                                                      \
334             max /= scaling_factor;                                                 \
335             if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max;          \
336         }                                                                          \
337     }                                                                              \
338     for (c = 0; c < st->channels; ++c) {                                           \
339         int ci = st->d->channel_map[c] - 1;                                        \
340         if (ci < 0) continue;                                                      \
341         else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */            \
342         for (i = 0; i < frames; ++i) {                                             \
343             st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
344                          - st->d->a[1] * st->d->v[ci][1]                           \
345                          - st->d->a[2] * st->d->v[ci][2]                           \
346                          - st->d->a[3] * st->d->v[ci][3]                           \
347                          - st->d->a[4] * st->d->v[ci][4];                          \
348             audio_data[i * st->channels + c] =                                     \
349                            st->d->b[0] * st->d->v[ci][0]                           \
350                          + st->d->b[1] * st->d->v[ci][1]                           \
351                          + st->d->b[2] * st->d->v[ci][2]                           \
352                          + st->d->b[3] * st->d->v[ci][3]                           \
353                          + st->d->b[4] * st->d->v[ci][4];                          \
354             st->d->v[ci][4] = st->d->v[ci][3];                                     \
355             st->d->v[ci][3] = st->d->v[ci][2];                                     \
356             st->d->v[ci][2] = st->d->v[ci][1];                                     \
357             st->d->v[ci][1] = st->d->v[ci][0];                                     \
358         }                                                                          \
359         st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
360         st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
361         st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
362         st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
363     }                                                                              \
364 }
365 EBUR128_FILTER(short, -((double)SHRT_MIN))
366 EBUR128_FILTER(int, -((double)INT_MIN))
367 EBUR128_FILTER(float,  1.0)
368 EBUR128_FILTER(double, 1.0)
369
370 static double ebur128_energy_to_loudness(double energy)
371 {
372     return 10 * log10(energy) - 0.691;
373 }
374
375 static size_t find_histogram_index(double energy)
376 {
377     size_t index_min = 0;
378     size_t index_max = 1000;
379     size_t index_mid;
380
381     do {
382         index_mid = (index_min + index_max) / 2;
383         if (energy >= histogram_energy_boundaries[index_mid]) {
384             index_min = index_mid;
385         } else {
386             index_max = index_mid;
387         }
388     } while (index_max - index_min != 1);
389
390     return index_min;
391 }
392
393 static void ebur128_calc_gating_block(FFEBUR128State * st,
394                                       size_t frames_per_block,
395                                       double *optional_output)
396 {
397     size_t i, c;
398     double sum = 0.0;
399     double channel_sum;
400     for (c = 0; c < st->channels; ++c) {
401         if (st->d->channel_map[c] == FF_EBUR128_UNUSED)
402             continue;
403         channel_sum = 0.0;
404         if (st->d->audio_data_index < frames_per_block * st->channels) {
405             for (i = 0; i < st->d->audio_data_index / st->channels; ++i) {
406                 channel_sum += st->d->audio_data[i * st->channels + c] *
407                     st->d->audio_data[i * st->channels + c];
408             }
409             for (i = st->d->audio_data_frames -
410                  (frames_per_block -
411                   st->d->audio_data_index / st->channels);
412                  i < st->d->audio_data_frames; ++i) {
413                 channel_sum += st->d->audio_data[i * st->channels + c] *
414                     st->d->audio_data[i * st->channels + c];
415             }
416         } else {
417             for (i =
418                  st->d->audio_data_index / st->channels - frames_per_block;
419                  i < st->d->audio_data_index / st->channels; ++i) {
420                 channel_sum +=
421                     st->d->audio_data[i * st->channels +
422                                       c] * st->d->audio_data[i *
423                                                              st->channels +
424                                                              c];
425             }
426         }
427         if (st->d->channel_map[c] == FF_EBUR128_Mp110 ||
428             st->d->channel_map[c] == FF_EBUR128_Mm110 ||
429             st->d->channel_map[c] == FF_EBUR128_Mp060 ||
430             st->d->channel_map[c] == FF_EBUR128_Mm060 ||
431             st->d->channel_map[c] == FF_EBUR128_Mp090 ||
432             st->d->channel_map[c] == FF_EBUR128_Mm090) {
433             channel_sum *= 1.41;
434         } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) {
435             channel_sum *= 2.0;
436         }
437         sum += channel_sum;
438     }
439     sum /= (double) frames_per_block;
440     if (optional_output) {
441         *optional_output = sum;
442     } else if (sum >= histogram_energy_boundaries[0]) {
443         ++st->d->block_energy_histogram[find_histogram_index(sum)];
444     }
445 }
446
447 int ff_ebur128_set_channel(FFEBUR128State * st,
448                            unsigned int channel_number, int value)
449 {
450     if (channel_number >= st->channels) {
451         return 1;
452     }
453     if (value == FF_EBUR128_DUAL_MONO &&
454         (st->channels != 1 || channel_number != 0)) {
455         return 1;
456     }
457     st->d->channel_map[channel_number] = value;
458     return 0;
459 }
460
461 static int ebur128_energy_shortterm(FFEBUR128State * st, double *out);
462 #define FF_EBUR128_ADD_FRAMES_PLANAR(type)                                             \
463 void ff_ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs,        \
464                                  size_t frames, int stride) {                          \
465     size_t src_index = 0;                                                              \
466     while (frames > 0) {                                                               \
467         if (frames >= st->d->needed_frames) {                                          \
468             ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride);  \
469             src_index += st->d->needed_frames * stride;                                \
470             frames -= st->d->needed_frames;                                            \
471             st->d->audio_data_index += st->d->needed_frames * st->channels;            \
472             /* calculate the new gating block */                                       \
473             if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) {                 \
474                 ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL);      \
475             }                                                                          \
476             if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
477                 st->d->short_term_frame_counter += st->d->needed_frames;               \
478                 if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
479                     double st_energy;                                                  \
480                     ebur128_energy_shortterm(st, &st_energy);                          \
481                     if (st_energy >= histogram_energy_boundaries[0]) {                 \
482                         ++st->d->short_term_block_energy_histogram[                    \
483                                                     find_histogram_index(st_energy)];  \
484                     }                                                                  \
485                     st->d->short_term_frame_counter = st->d->samples_in_100ms * 20;    \
486                 }                                                                      \
487             }                                                                          \
488             /* 100ms are needed for all blocks besides the first one */                \
489             st->d->needed_frames = st->d->samples_in_100ms;                            \
490             /* reset audio_data_index when buffer full */                              \
491             if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) {  \
492                 st->d->audio_data_index = 0;                                           \
493             }                                                                          \
494         } else {                                                                       \
495             ebur128_filter_##type(st, srcs, src_index, frames, stride);                \
496             st->d->audio_data_index += frames * st->channels;                          \
497             if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
498                 st->d->short_term_frame_counter += frames;                             \
499             }                                                                          \
500             st->d->needed_frames -= frames;                                            \
501             frames = 0;                                                                \
502         }                                                                              \
503     }                                                                                  \
504 }
505 FF_EBUR128_ADD_FRAMES_PLANAR(short)
506 FF_EBUR128_ADD_FRAMES_PLANAR(int)
507 FF_EBUR128_ADD_FRAMES_PLANAR(float)
508 FF_EBUR128_ADD_FRAMES_PLANAR(double)
509 #define FF_EBUR128_ADD_FRAMES(type)                                            \
510 void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src,         \
511                                     size_t frames) {                           \
512   int i;                                                                       \
513   const type **buf = (const type**)st->d->data_ptrs;                           \
514   for (i = 0; i < st->channels; i++)                                           \
515     buf[i] = src + i;                                                          \
516   ff_ebur128_add_frames_planar_##type(st, buf, frames, st->channels);          \
517 }
518 FF_EBUR128_ADD_FRAMES(short)
519 FF_EBUR128_ADD_FRAMES(int)
520 FF_EBUR128_ADD_FRAMES(float)
521 FF_EBUR128_ADD_FRAMES(double)
522
523 static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size,
524                                            double *relative_threshold)
525 {
526     size_t i, j;
527     int above_thresh_counter = 0;
528     *relative_threshold = 0.0;
529
530     for (i = 0; i < size; i++) {
531         unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram;
532         for (j = 0; j < 1000; ++j) {
533             *relative_threshold += block_energy_histogram[j] * histogram_energies[j];
534             above_thresh_counter += block_energy_histogram[j];
535         }
536     }
537
538     if (above_thresh_counter != 0) {
539         *relative_threshold /= (double)above_thresh_counter;
540         *relative_threshold *= RELATIVE_GATE_FACTOR;
541     }
542
543     return above_thresh_counter;
544 }
545
546 static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size,
547                                   double *out)
548 {
549     double gated_loudness = 0.0;
550     double relative_threshold;
551     size_t above_thresh_counter;
552     size_t i, j, start_index;
553
554     for (i = 0; i < size; i++)
555         if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
556             return AVERROR(EINVAL);
557
558     if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) {
559         *out = -HUGE_VAL;
560         return 0;
561     }
562
563     above_thresh_counter = 0;
564     if (relative_threshold < histogram_energy_boundaries[0]) {
565         start_index = 0;
566     } else {
567         start_index = find_histogram_index(relative_threshold);
568         if (relative_threshold > histogram_energies[start_index]) {
569             ++start_index;
570         }
571     }
572     for (i = 0; i < size; i++) {
573         for (j = start_index; j < 1000; ++j) {
574             gated_loudness += sts[i]->d->block_energy_histogram[j] *
575                 histogram_energies[j];
576             above_thresh_counter += sts[i]->d->block_energy_histogram[j];
577         }
578     }
579     if (!above_thresh_counter) {
580         *out = -HUGE_VAL;
581         return 0;
582     }
583     gated_loudness /= (double) above_thresh_counter;
584     *out = ebur128_energy_to_loudness(gated_loudness);
585     return 0;
586 }
587
588 int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out)
589 {
590     double relative_threshold;
591
592     if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
593         return AVERROR(EINVAL);
594
595     if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) {
596         *out = -70.0;
597         return 0;
598     }
599
600     *out = ebur128_energy_to_loudness(relative_threshold);
601     return 0;
602 }
603
604 int ff_ebur128_loudness_global(FFEBUR128State * st, double *out)
605 {
606     return ebur128_gated_loudness(&st, 1, out);
607 }
608
609 int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, size_t size,
610                                         double *out)
611 {
612     return ebur128_gated_loudness(sts, size, out);
613 }
614
615 static int ebur128_energy_in_interval(FFEBUR128State * st,
616                                       size_t interval_frames, double *out)
617 {
618     if (interval_frames > st->d->audio_data_frames) {
619         return AVERROR(EINVAL);
620     }
621     ebur128_calc_gating_block(st, interval_frames, out);
622     return 0;
623 }
624
625 static int ebur128_energy_shortterm(FFEBUR128State * st, double *out)
626 {
627     return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30,
628                                       out);
629 }
630
631 int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out)
632 {
633     double energy;
634     int error = ebur128_energy_in_interval(st, st->d->samples_in_100ms * 4,
635                                            &energy);
636     if (error) {
637         return error;
638     } else if (energy <= 0.0) {
639         *out = -HUGE_VAL;
640         return 0;
641     }
642     *out = ebur128_energy_to_loudness(energy);
643     return 0;
644 }
645
646 int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out)
647 {
648     double energy;
649     int error = ebur128_energy_shortterm(st, &energy);
650     if (error) {
651         return error;
652     } else if (energy <= 0.0) {
653         *out = -HUGE_VAL;
654         return 0;
655     }
656     *out = ebur128_energy_to_loudness(energy);
657     return 0;
658 }
659
660 int ff_ebur128_loudness_window(FFEBUR128State * st,
661                                unsigned long window, double *out)
662 {
663     double energy;
664     size_t interval_frames = st->samplerate * window / 1000;
665     int error = ebur128_energy_in_interval(st, interval_frames, &energy);
666     if (error) {
667         return error;
668     } else if (energy <= 0.0) {
669         *out = -HUGE_VAL;
670         return 0;
671     }
672     *out = ebur128_energy_to_loudness(energy);
673     return 0;
674 }
675
676 /* EBU - TECH 3342 */
677 int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size,
678                                        double *out)
679 {
680     size_t i, j;
681     size_t stl_size;
682     double stl_power, stl_integrated;
683     /* High and low percentile energy */
684     double h_en, l_en;
685     unsigned long hist[1000] = { 0 };
686     size_t percentile_low, percentile_high;
687     size_t index;
688
689     for (i = 0; i < size; ++i) {
690         if (sts[i]) {
691             if ((sts[i]->mode & FF_EBUR128_MODE_LRA) !=
692                 FF_EBUR128_MODE_LRA) {
693                 return AVERROR(EINVAL);
694             }
695         }
696     }
697
698     stl_size = 0;
699     stl_power = 0.0;
700     for (i = 0; i < size; ++i) {
701         if (!sts[i])
702             continue;
703         for (j = 0; j < 1000; ++j) {
704             hist[j] += sts[i]->d->short_term_block_energy_histogram[j];
705             stl_size += sts[i]->d->short_term_block_energy_histogram[j];
706             stl_power += sts[i]->d->short_term_block_energy_histogram[j]
707                 * histogram_energies[j];
708         }
709     }
710     if (!stl_size) {
711         *out = 0.0;
712         return 0;
713     }
714
715     stl_power /= stl_size;
716     stl_integrated = MINUS_20DB * stl_power;
717
718     if (stl_integrated < histogram_energy_boundaries[0]) {
719         index = 0;
720     } else {
721         index = find_histogram_index(stl_integrated);
722         if (stl_integrated > histogram_energies[index]) {
723             ++index;
724         }
725     }
726     stl_size = 0;
727     for (j = index; j < 1000; ++j) {
728         stl_size += hist[j];
729     }
730     if (!stl_size) {
731         *out = 0.0;
732         return 0;
733     }
734
735     percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5);
736     percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5);
737
738     stl_size = 0;
739     j = index;
740     while (stl_size <= percentile_low) {
741         stl_size += hist[j++];
742     }
743     l_en = histogram_energies[j - 1];
744     while (stl_size <= percentile_high) {
745         stl_size += hist[j++];
746     }
747     h_en = histogram_energies[j - 1];
748     *out =
749         ebur128_energy_to_loudness(h_en) -
750         ebur128_energy_to_loudness(l_en);
751     return 0;
752 }
753
754 int ff_ebur128_loudness_range(FFEBUR128State * st, double *out)
755 {
756     return ff_ebur128_loudness_range_multiple(&st, 1, out);
757 }
758
759 int ff_ebur128_sample_peak(FFEBUR128State * st,
760                            unsigned int channel_number, double *out)
761 {
762     if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) !=
763         FF_EBUR128_MODE_SAMPLE_PEAK) {
764         return AVERROR(EINVAL);
765     } else if (channel_number >= st->channels) {
766         return AVERROR(EINVAL);
767     }
768     *out = st->d->sample_peak[channel_number];
769     return 0;
770 }