2 * principal component analysis (PCA)
3 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * principal component analysis (PCA)
38 PCA *ff_pca_init(int n){
43 pca= av_mallocz(sizeof(*pca));
48 pca->z = av_malloc_array(n, sizeof(*pca->z));
50 pca->covariance= av_calloc(n*n, sizeof(double));
51 pca->mean= av_calloc(n, sizeof(double));
53 if (!pca->z || !pca->covariance || !pca->mean) {
61 void ff_pca_free(PCA *pca){
62 av_freep(&pca->covariance);
68 void ff_pca_add(PCA *pca, const double *v){
75 pca->covariance[j + i*n] += v[i]*v[j];
80 int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
86 memset(eigenvector, 0, sizeof(double)*n*n);
89 pca->mean[j] /= pca->count;
90 eigenvector[j + j*n] = 1.0;
92 pca->covariance[j + i*n] /= pca->count;
93 pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
94 pca->covariance[i + j*n] = pca->covariance[j + i*n];
96 eigenvalue[j]= pca->covariance[j + j*n];
100 for(pass=0; pass < 50; pass++){
105 sum += fabs(pca->covariance[j + i*n]);
111 if(eigenvalue[j] > maxvalue){
112 maxvalue= eigenvalue[j];
116 eigenvalue[k]= eigenvalue[i];
117 eigenvalue[i]= maxvalue;
119 double tmp= eigenvector[k + j*n];
120 eigenvector[k + j*n]= eigenvector[i + j*n];
121 eigenvector[i + j*n]= tmp;
128 for(j=i+1; j<n; j++){
129 double covar= pca->covariance[j + i*n];
130 double t,c,s,tau,theta, h;
132 if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
134 if(fabs(covar) == 0.0) //FIXME should not be needed
136 if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
137 pca->covariance[j + i*n]=0.0;
141 h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
143 t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
144 if(theta < 0.0) t = -t;
152 #define ROTATE(a,i,j,k,l) {\
153 double g=a[j + i*n];\
154 double h=a[l + k*n];\
155 a[j + i*n]=g-s*(h+g*tau);\
156 a[l + k*n]=h+s*(g-h*tau); }
159 ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
161 ROTATE(eigenvector,k,i,k,j)
163 pca->covariance[j + i*n]=0.0;
166 for (i=0; i<n; i++) {
167 eigenvalue[i] += z[i];