]> git.sesse.net Git - ffmpeg/blob - libavutil/softfloat.h
avformat/avio: Add Metacube support
[ffmpeg] / libavutil / softfloat.h
1 /*
2  * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #ifndef AVUTIL_SOFTFLOAT_H
22 #define AVUTIL_SOFTFLOAT_H
23
24 #include <stdint.h>
25 #include "common.h"
26
27 #include "avassert.h"
28 #include "softfloat_tables.h"
29
30 #define MIN_EXP -149
31 #define MAX_EXP  126
32 #define ONE_BITS 29
33
34 typedef struct SoftFloat{
35     int32_t mant;
36     int32_t  exp;
37 }SoftFloat;
38
39 static const SoftFloat FLOAT_0          = {          0,   MIN_EXP};             ///< 0.0
40 static const SoftFloat FLOAT_05         = { 0x20000000,   0};                   ///< 0.5
41 static const SoftFloat FLOAT_1          = { 0x20000000,   1};                   ///< 1.0
42 static const SoftFloat FLOAT_EPSILON    = { 0x29F16B12, -16};                   ///< A small value
43 static const SoftFloat FLOAT_1584893192 = { 0x32B771ED,   1};                   ///< 1.584893192 (10^.2)
44 static const SoftFloat FLOAT_100000     = { 0x30D40000,  17};                   ///< 100000
45 static const SoftFloat FLOAT_0999999    = { 0x3FFFFBCE,   0};                   ///< 0.999999
46 static const SoftFloat FLOAT_MIN        = { 0x20000000,   MIN_EXP};
47
48
49 /**
50  * Convert a SoftFloat to a double precision float.
51  */
52 static inline av_const double av_sf2double(SoftFloat v) {
53     v.exp -= ONE_BITS +1;
54     return ldexp(v.mant, v.exp);
55 }
56
57 static av_const SoftFloat av_normalize_sf(SoftFloat a){
58     if(a.mant){
59 #if 1
60         while((a.mant + 0x1FFFFFFFU)<0x3FFFFFFFU){
61             a.mant += a.mant;
62             a.exp  -= 1;
63         }
64 #else
65         int s=ONE_BITS - av_log2(FFABS(a.mant));
66         a.exp   -= s;
67         a.mant <<= s;
68 #endif
69         if(a.exp < MIN_EXP){
70             a.exp = MIN_EXP;
71             a.mant= 0;
72         }
73     }else{
74         a.exp= MIN_EXP;
75     }
76     return a;
77 }
78
79 static inline av_const SoftFloat av_normalize1_sf(SoftFloat a){
80 #if 1
81     if((int32_t)(a.mant + 0x40000000U) <= 0){
82         a.exp++;
83         a.mant>>=1;
84     }
85     av_assert2(a.mant < 0x40000000 && a.mant > -0x40000000);
86     av_assert2(a.exp <= MAX_EXP);
87     return a;
88 #elif 1
89     int t= a.mant + 0x40000000 < 0;
90     return (SoftFloat){ a.mant>>t, a.exp+t};
91 #else
92     int t= (a.mant + 0x3FFFFFFFU)>>31;
93     return (SoftFloat){a.mant>>t, a.exp+t};
94 #endif
95 }
96
97 /**
98  * @return Will not be more denormalized than a*b. So if either input is
99  *         normalized, then the output will not be worse then the other input.
100  *         If both are normalized, then the output will be normalized.
101  */
102 static inline av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b){
103     a.exp += b.exp;
104     av_assert2((int32_t)((a.mant * (int64_t)b.mant) >> ONE_BITS) == (a.mant * (int64_t)b.mant) >> ONE_BITS);
105     a.mant = (a.mant * (int64_t)b.mant) >> ONE_BITS;
106     a = av_normalize1_sf((SoftFloat){a.mant, a.exp - 1});
107     if (!a.mant || a.exp < MIN_EXP)
108         return FLOAT_0;
109     return a;
110 }
111
112 /**
113  * b has to be normalized and not zero.
114  * @return Will not be more denormalized than a.
115  */
116 static inline av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b){
117     int64_t temp = (int64_t)a.mant * (1<<(ONE_BITS+1));
118     temp /= b.mant;
119     a.exp -= b.exp;
120     a.mant = temp;
121     while (a.mant != temp) {
122         temp /= 2;
123         a.exp--;
124         a.mant = temp;
125     }
126     a = av_normalize1_sf(a);
127     if (!a.mant || a.exp < MIN_EXP)
128         return FLOAT_0;
129     return a;
130 }
131
132 /**
133  * Compares two SoftFloats.
134  * @returns < 0 if the first is less
135  *          > 0 if the first is greater
136  *            0 if they are equal
137  */
138 static inline av_const int av_cmp_sf(SoftFloat a, SoftFloat b){
139     int t= a.exp - b.exp;
140     if      (t <-31) return                  -  b.mant      ;
141     else if (t <  0) return (a.mant >> (-t)) -  b.mant      ;
142     else if (t < 32) return  a.mant          - (b.mant >> t);
143     else             return  a.mant                         ;
144 }
145
146 /**
147  * Compares two SoftFloats.
148  * @returns 1 if a is greater than b, 0 otherwise
149  */
150 static inline av_const int av_gt_sf(SoftFloat a, SoftFloat b)
151 {
152     int t= a.exp - b.exp;
153     if      (t <-31) return 0                >  b.mant      ;
154     else if (t <  0) return (a.mant >> (-t)) >  b.mant      ;
155     else if (t < 32) return  a.mant          > (b.mant >> t);
156     else             return  a.mant          >  0           ;
157 }
158
159 /**
160  * @returns the sum of 2 SoftFloats.
161  */
162 static inline av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b){
163     int t= a.exp - b.exp;
164     if      (t <-31) return b;
165     else if (t <  0) return av_normalize_sf(av_normalize1_sf((SoftFloat){ b.mant + (a.mant >> (-t)), b.exp}));
166     else if (t < 32) return av_normalize_sf(av_normalize1_sf((SoftFloat){ a.mant + (b.mant >>   t ), a.exp}));
167     else             return a;
168 }
169
170 /**
171  * @returns the difference of 2 SoftFloats.
172  */
173 static inline av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b){
174     return av_add_sf(a, (SoftFloat){ -b.mant, b.exp});
175 }
176
177 //FIXME log, exp, pow
178
179 /**
180  * Converts a mantisse and exponent to a SoftFloat.
181  * This converts a fixed point value v with frac_bits fractional bits to a
182  * SoftFloat.
183  * @returns a SoftFloat with value v * 2^-frac_bits
184  */
185 static inline av_const SoftFloat av_int2sf(int v, int frac_bits){
186     int exp_offset = 0;
187     if(v <= INT_MIN + 1){
188         exp_offset = 1;
189         v>>=1;
190     }
191     return av_normalize_sf(av_normalize1_sf((SoftFloat){v, ONE_BITS + 1 - frac_bits + exp_offset}));
192 }
193
194 /**
195  * Converts a SoftFloat to an integer.
196  * Rounding is to -inf.
197  */
198 static inline av_const int av_sf2int(SoftFloat v, int frac_bits){
199     v.exp += frac_bits - (ONE_BITS + 1);
200     if(v.exp >= 0) return v.mant <<  v.exp ;
201     else           return v.mant >>(-v.exp);
202 }
203
204 /**
205  * Rounding-to-nearest used.
206  */
207 static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
208 {
209     int tabIndex, rem;
210
211     if (val.mant == 0)
212         val.exp = MIN_EXP;
213     else if (val.mant < 0)
214         abort();
215     else
216     {
217         tabIndex = (val.mant - 0x20000000) >> 20;
218
219         rem = val.mant & 0xFFFFF;
220         val.mant  = (int)(((int64_t)av_sqrttbl_sf[tabIndex] * (0x100000 - rem) +
221                            (int64_t)av_sqrttbl_sf[tabIndex + 1] * rem +
222                            0x80000) >> 20);
223         val.mant = (int)(((int64_t)av_sqr_exp_multbl_sf[val.exp & 1] * val.mant +
224                           0x10000000) >> 29);
225
226         if (val.mant < 0x40000000)
227             val.exp -= 2;
228         else
229             val.mant >>= 1;
230
231         val.exp = (val.exp >> 1) + 1;
232     }
233
234     return val;
235 }
236
237 /**
238  * Rounding-to-nearest used.
239  */
240 static av_unused void av_sincos_sf(int a, int *s, int *c)
241 {
242     int idx, sign;
243     int sv, cv;
244     int st, ct;
245
246     idx = a >> 26;
247     sign = (int32_t)((unsigned)idx << 27) >> 31;
248     cv = av_costbl_1_sf[idx & 0xf];
249     cv = (cv ^ sign) - sign;
250
251     idx -= 8;
252     sign = (int32_t)((unsigned)idx << 27) >> 31;
253     sv = av_costbl_1_sf[idx & 0xf];
254     sv = (sv ^ sign) - sign;
255
256     idx = a >> 21;
257     ct = av_costbl_2_sf[idx & 0x1f];
258     st = av_sintbl_2_sf[idx & 0x1f];
259
260     idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
261
262     sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
263
264     cv = idx;
265
266     idx = a >> 16;
267     ct = av_costbl_3_sf[idx & 0x1f];
268     st = av_sintbl_3_sf[idx & 0x1f];
269
270     idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
271
272     sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
273     cv = idx;
274
275     idx = a >> 11;
276
277     ct = (int)(((int64_t)av_costbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
278                 (int64_t)av_costbl_4_sf[(idx & 0x1f)+1]*(a & 0x7ff) +
279                 0x400) >> 11);
280     st = (int)(((int64_t)av_sintbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
281                 (int64_t)av_sintbl_4_sf[(idx & 0x1f) + 1] * (a & 0x7ff) +
282                 0x400) >> 11);
283
284     *c = (int)(((int64_t)cv * ct + (int64_t)sv * st + 0x20000000) >> 30);
285
286     *s = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
287 }
288
289 #endif /* AVUTIL_SOFTFLOAT_H */