]> git.sesse.net Git - ffmpeg/blob - libavutil/tx_template.c
lavc/vp9_raw_reorder_bsf: Fix operator ordering
[ffmpeg] / libavutil / tx_template.c
1 /*
2  * Copyright (c) 2019 Lynne <dev@lynne.ee>
3  * Power of two FFT:
4  * Copyright (c) 2008 Loren Merritt
5  * Copyright (c) 2002 Fabrice Bellard
6  * Partly based on libdjbfft by D. J. Bernstein
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24
25 /* All costabs for a type are defined here */
26 COSTABLE(16);
27 COSTABLE(32);
28 COSTABLE(64);
29 COSTABLE(128);
30 COSTABLE(256);
31 COSTABLE(512);
32 COSTABLE(1024);
33 COSTABLE(2048);
34 COSTABLE(4096);
35 COSTABLE(8192);
36 COSTABLE(16384);
37 COSTABLE(32768);
38 COSTABLE(65536);
39 COSTABLE(131072);
40 DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4];
41
42 static FFTSample * const cos_tabs[18] = {
43     NULL,
44     NULL,
45     NULL,
46     NULL,
47     TX_NAME(ff_cos_16),
48     TX_NAME(ff_cos_32),
49     TX_NAME(ff_cos_64),
50     TX_NAME(ff_cos_128),
51     TX_NAME(ff_cos_256),
52     TX_NAME(ff_cos_512),
53     TX_NAME(ff_cos_1024),
54     TX_NAME(ff_cos_2048),
55     TX_NAME(ff_cos_4096),
56     TX_NAME(ff_cos_8192),
57     TX_NAME(ff_cos_16384),
58     TX_NAME(ff_cos_32768),
59     TX_NAME(ff_cos_65536),
60     TX_NAME(ff_cos_131072),
61 };
62
63 static av_always_inline void init_cos_tabs_idx(int index)
64 {
65     int m = 1 << index;
66     double freq = 2*M_PI/m;
67     FFTSample *tab = cos_tabs[index];
68     for(int i = 0; i <= m/4; i++)
69         tab[i] = cos(i*freq);
70     for(int i = 1; i < m/4; i++)
71         tab[m/2 - i] = tab[i];
72 }
73
74 #define INIT_FF_COS_TABS_FUNC(index, size)                                     \
75 static av_cold void init_cos_tabs_ ## size (void)                              \
76 {                                                                              \
77     init_cos_tabs_idx(index);                                                  \
78 }
79
80 INIT_FF_COS_TABS_FUNC(4, 16)
81 INIT_FF_COS_TABS_FUNC(5, 32)
82 INIT_FF_COS_TABS_FUNC(6, 64)
83 INIT_FF_COS_TABS_FUNC(7, 128)
84 INIT_FF_COS_TABS_FUNC(8, 256)
85 INIT_FF_COS_TABS_FUNC(9, 512)
86 INIT_FF_COS_TABS_FUNC(10, 1024)
87 INIT_FF_COS_TABS_FUNC(11, 2048)
88 INIT_FF_COS_TABS_FUNC(12, 4096)
89 INIT_FF_COS_TABS_FUNC(13, 8192)
90 INIT_FF_COS_TABS_FUNC(14, 16384)
91 INIT_FF_COS_TABS_FUNC(15, 32768)
92 INIT_FF_COS_TABS_FUNC(16, 65536)
93 INIT_FF_COS_TABS_FUNC(17, 131072)
94
95 static av_cold void ff_init_53_tabs(void)
96 {
97     TX_NAME(ff_cos_53)[0] = (FFTComplex){ cos(2 * M_PI / 12), cos(2 * M_PI / 12) };
98     TX_NAME(ff_cos_53)[1] = (FFTComplex){ 0.5, 0.5 };
99     TX_NAME(ff_cos_53)[2] = (FFTComplex){ cos(2 * M_PI /  5), sin(2 * M_PI /  5) };
100     TX_NAME(ff_cos_53)[3] = (FFTComplex){ cos(2 * M_PI / 10), sin(2 * M_PI / 10) };
101 }
102
103 static CosTabsInitOnce cos_tabs_init_once[] = {
104     { ff_init_53_tabs, AV_ONCE_INIT },
105     { NULL },
106     { NULL },
107     { NULL },
108     { init_cos_tabs_16, AV_ONCE_INIT },
109     { init_cos_tabs_32, AV_ONCE_INIT },
110     { init_cos_tabs_64, AV_ONCE_INIT },
111     { init_cos_tabs_128, AV_ONCE_INIT },
112     { init_cos_tabs_256, AV_ONCE_INIT },
113     { init_cos_tabs_512, AV_ONCE_INIT },
114     { init_cos_tabs_1024, AV_ONCE_INIT },
115     { init_cos_tabs_2048, AV_ONCE_INIT },
116     { init_cos_tabs_4096, AV_ONCE_INIT },
117     { init_cos_tabs_8192, AV_ONCE_INIT },
118     { init_cos_tabs_16384, AV_ONCE_INIT },
119     { init_cos_tabs_32768, AV_ONCE_INIT },
120     { init_cos_tabs_65536, AV_ONCE_INIT },
121     { init_cos_tabs_131072, AV_ONCE_INIT },
122 };
123
124 static av_cold void init_cos_tabs(int index)
125 {
126     ff_thread_once(&cos_tabs_init_once[index].control,
127                     cos_tabs_init_once[index].func);
128 }
129
130 static av_always_inline void fft3(FFTComplex *out, FFTComplex *in,
131                                   ptrdiff_t stride)
132 {
133     FFTComplex tmp[2];
134
135     tmp[0].re = in[1].im - in[2].im;
136     tmp[0].im = in[1].re - in[2].re;
137     tmp[1].re = in[1].re + in[2].re;
138     tmp[1].im = in[1].im + in[2].im;
139
140     out[0*stride].re = in[0].re + tmp[1].re;
141     out[0*stride].im = in[0].im + tmp[1].im;
142
143     tmp[0].re *= TX_NAME(ff_cos_53)[0].re;
144     tmp[0].im *= TX_NAME(ff_cos_53)[0].im;
145     tmp[1].re *= TX_NAME(ff_cos_53)[1].re;
146     tmp[1].im *= TX_NAME(ff_cos_53)[1].re;
147
148     out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re;
149     out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im;
150     out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re;
151     out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im;
152 }
153
154 #define DECL_FFT5(NAME, D0, D1, D2, D3, D4)                                    \
155 static av_always_inline void NAME(FFTComplex *out, FFTComplex *in,             \
156                                   ptrdiff_t stride)                            \
157 {                                                                              \
158     FFTComplex z0[4], t[6];                                                    \
159                                                                                \
160     t[0].re = in[1].re + in[4].re;                                             \
161     t[0].im = in[1].im + in[4].im;                                             \
162     t[1].im = in[1].re - in[4].re;                                             \
163     t[1].re = in[1].im - in[4].im;                                             \
164     t[2].re = in[2].re + in[3].re;                                             \
165     t[2].im = in[2].im + in[3].im;                                             \
166     t[3].im = in[2].re - in[3].re;                                             \
167     t[3].re = in[2].im - in[3].im;                                             \
168                                                                                \
169     out[D0*stride].re = in[0].re + in[1].re + in[2].re +                       \
170                         in[3].re + in[4].re;                                   \
171     out[D0*stride].im = in[0].im + in[1].im + in[2].im +                       \
172                         in[3].im + in[4].im;                                   \
173                                                                                \
174     t[4].re  = TX_NAME(ff_cos_53)[2].re * t[2].re;                             \
175     t[4].im  = TX_NAME(ff_cos_53)[2].re * t[2].im;                             \
176     t[4].re -= TX_NAME(ff_cos_53)[3].re * t[0].re;                             \
177     t[4].im -= TX_NAME(ff_cos_53)[3].re * t[0].im;                             \
178     t[0].re  = TX_NAME(ff_cos_53)[2].re * t[0].re;                             \
179     t[0].im  = TX_NAME(ff_cos_53)[2].re * t[0].im;                             \
180     t[0].re -= TX_NAME(ff_cos_53)[3].re * t[2].re;                             \
181     t[0].im -= TX_NAME(ff_cos_53)[3].re * t[2].im;                             \
182     t[5].re  = TX_NAME(ff_cos_53)[2].im * t[3].re;                             \
183     t[5].im  = TX_NAME(ff_cos_53)[2].im * t[3].im;                             \
184     t[5].re -= TX_NAME(ff_cos_53)[3].im * t[1].re;                             \
185     t[5].im -= TX_NAME(ff_cos_53)[3].im * t[1].im;                             \
186     t[1].re  = TX_NAME(ff_cos_53)[2].im * t[1].re;                             \
187     t[1].im  = TX_NAME(ff_cos_53)[2].im * t[1].im;                             \
188     t[1].re += TX_NAME(ff_cos_53)[3].im * t[3].re;                             \
189     t[1].im += TX_NAME(ff_cos_53)[3].im * t[3].im;                             \
190                                                                                \
191     z0[0].re = t[0].re - t[1].re;                                              \
192     z0[0].im = t[0].im - t[1].im;                                              \
193     z0[1].re = t[4].re + t[5].re;                                              \
194     z0[1].im = t[4].im + t[5].im;                                              \
195                                                                                \
196     z0[2].re = t[4].re - t[5].re;                                              \
197     z0[2].im = t[4].im - t[5].im;                                              \
198     z0[3].re = t[0].re + t[1].re;                                              \
199     z0[3].im = t[0].im + t[1].im;                                              \
200                                                                                \
201     out[D1*stride].re = in[0].re + z0[3].re;                                   \
202     out[D1*stride].im = in[0].im + z0[0].im;                                   \
203     out[D2*stride].re = in[0].re + z0[2].re;                                   \
204     out[D2*stride].im = in[0].im + z0[1].im;                                   \
205     out[D3*stride].re = in[0].re + z0[1].re;                                   \
206     out[D3*stride].im = in[0].im + z0[2].im;                                   \
207     out[D4*stride].re = in[0].re + z0[0].re;                                   \
208     out[D4*stride].im = in[0].im + z0[3].im;                                   \
209 }
210
211 DECL_FFT5(fft5,     0,  1,  2,  3,  4)
212 DECL_FFT5(fft5_m1,  0,  6, 12,  3,  9)
213 DECL_FFT5(fft5_m2, 10,  1,  7, 13,  4)
214 DECL_FFT5(fft5_m3,  5, 11,  2,  8, 14)
215
216 static av_always_inline void fft15(FFTComplex *out, FFTComplex *in,
217                                    ptrdiff_t stride)
218 {
219     FFTComplex tmp[15];
220
221     for (int i = 0; i < 5; i++)
222         fft3(tmp + i, in + i*3, 5);
223
224     fft5_m1(out, tmp +  0, stride);
225     fft5_m2(out, tmp +  5, stride);
226     fft5_m3(out, tmp + 10, stride);
227 }
228
229 #define BUTTERFLIES(a0,a1,a2,a3) {\
230     BF(t3, t5, t5, t1);\
231     BF(a2.re, a0.re, a0.re, t5);\
232     BF(a3.im, a1.im, a1.im, t3);\
233     BF(t4, t6, t2, t6);\
234     BF(a3.re, a1.re, a1.re, t4);\
235     BF(a2.im, a0.im, a0.im, t6);\
236 }
237
238 // force loading all the inputs before storing any.
239 // this is slightly slower for small data, but avoids store->load aliasing
240 // for addresses separated by large powers of 2.
241 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
242     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
243     BF(t3, t5, t5, t1);\
244     BF(a2.re, a0.re, r0, t5);\
245     BF(a3.im, a1.im, i1, t3);\
246     BF(t4, t6, t2, t6);\
247     BF(a3.re, a1.re, r1, t4);\
248     BF(a2.im, a0.im, i0, t6);\
249 }
250
251 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
252     CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
253     CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
254     BUTTERFLIES(a0,a1,a2,a3)\
255 }
256
257 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
258     t1 = a2.re;\
259     t2 = a2.im;\
260     t5 = a3.re;\
261     t6 = a3.im;\
262     BUTTERFLIES(a0,a1,a2,a3)\
263 }
264
265 /* z[0...8n-1], w[1...2n-1] */
266 #define PASS(name)\
267 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
268 {\
269     FFTSample t1, t2, t3, t4, t5, t6;\
270     int o1 = 2*n;\
271     int o2 = 4*n;\
272     int o3 = 6*n;\
273     const FFTSample *wim = wre+o1;\
274     n--;\
275 \
276     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
277     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
278     do {\
279         z += 2;\
280         wre += 2;\
281         wim -= 2;\
282         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
283         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
284     } while(--n);\
285 }
286
287 PASS(pass)
288 #undef BUTTERFLIES
289 #define BUTTERFLIES BUTTERFLIES_BIG
290 PASS(pass_big)
291
292 #define DECL_FFT(n,n2,n4)\
293 static void fft##n(FFTComplex *z)\
294 {\
295     fft##n2(z);\
296     fft##n4(z+n4*2);\
297     fft##n4(z+n4*3);\
298     pass(z,TX_NAME(ff_cos_##n),n4/2);\
299 }
300
301 static void fft4(FFTComplex *z)
302 {
303     FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
304
305     BF(t3, t1, z[0].re, z[1].re);
306     BF(t8, t6, z[3].re, z[2].re);
307     BF(z[2].re, z[0].re, t1, t6);
308     BF(t4, t2, z[0].im, z[1].im);
309     BF(t7, t5, z[2].im, z[3].im);
310     BF(z[3].im, z[1].im, t4, t8);
311     BF(z[3].re, z[1].re, t3, t7);
312     BF(z[2].im, z[0].im, t2, t5);
313 }
314
315 static void fft8(FFTComplex *z)
316 {
317     FFTSample t1, t2, t3, t4, t5, t6;
318
319     fft4(z);
320
321     BF(t1, z[5].re, z[4].re, -z[5].re);
322     BF(t2, z[5].im, z[4].im, -z[5].im);
323     BF(t5, z[7].re, z[6].re, -z[7].re);
324     BF(t6, z[7].im, z[6].im, -z[7].im);
325
326     BUTTERFLIES(z[0],z[2],z[4],z[6]);
327     TRANSFORM(z[1],z[3],z[5],z[7],M_SQRT1_2,M_SQRT1_2);
328 }
329
330 static void fft16(FFTComplex *z)
331 {
332     FFTSample t1, t2, t3, t4, t5, t6;
333     FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1];
334     FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3];
335
336     fft8(z);
337     fft4(z+8);
338     fft4(z+12);
339
340     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
341     TRANSFORM(z[2],z[6],z[10],z[14],M_SQRT1_2,M_SQRT1_2);
342     TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
343     TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
344 }
345
346 DECL_FFT(32,16,8)
347 DECL_FFT(64,32,16)
348 DECL_FFT(128,64,32)
349 DECL_FFT(256,128,64)
350 DECL_FFT(512,256,128)
351 #define pass pass_big
352 DECL_FFT(1024,512,256)
353 DECL_FFT(2048,1024,512)
354 DECL_FFT(4096,2048,1024)
355 DECL_FFT(8192,4096,2048)
356 DECL_FFT(16384,8192,4096)
357 DECL_FFT(32768,16384,8192)
358 DECL_FFT(65536,32768,16384)
359 DECL_FFT(131072,65536,32768)
360
361 static void (* const fft_dispatch[])(FFTComplex*) = {
362     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
363     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
364 };
365
366 #define DECL_COMP_FFT(N)                                                       \
367 static void compound_fft_##N##xM(AVTXContext *s, void *_out,                   \
368                                  void *_in, ptrdiff_t stride)                  \
369 {                                                                              \
370     const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m;          \
371     FFTComplex *in = _in;                                                      \
372     FFTComplex *out = _out;                                                    \
373     FFTComplex fft##N##in[N];                                                  \
374     void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m) - 2];                \
375                                                                                \
376     for (int i = 0; i < m; i++) {                                              \
377         for (int j = 0; j < N; j++)                                            \
378             fft##N##in[j] = in[in_map[i*N + j]];                               \
379         fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
380     }                                                                          \
381                                                                                \
382     for (int i = 0; i < N; i++)                                                \
383         fftp(s->tmp + m*i);                                                    \
384                                                                                \
385     for (int i = 0; i < N*m; i++)                                              \
386         out[i] = s->tmp[out_map[i]];                                           \
387 }
388
389 DECL_COMP_FFT(3)
390 DECL_COMP_FFT(5)
391 DECL_COMP_FFT(15)
392
393 static void monolithic_fft(AVTXContext *s, void *_out, void *_in,
394                            ptrdiff_t stride)
395 {
396     FFTComplex *in = _in;
397     FFTComplex *out = _out;
398     int m = s->m, mb = av_log2(m) - 2;
399     for (int i = 0; i < m; i++)
400         out[s->revtab[i]] = in[i];
401     fft_dispatch[mb](out);
402 }
403
404 #define DECL_COMP_IMDCT(N)                                                     \
405 static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src,     \
406                                    ptrdiff_t stride)                           \
407 {                                                                              \
408     FFTComplex fft##N##in[N];                                                  \
409     FFTComplex *z = _dst, *exp = s->exptab;                                    \
410     const int m = s->m, len8 = N*m >> 1;                                       \
411     const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
412     const FFTSample *src = _src, *in1, *in2;                                   \
413     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
414                                                                                \
415     stride /= sizeof(*src); /* To convert it from bytes */                     \
416     in1 = src;                                                                 \
417     in2 = src + ((N*m*2) - 1) * stride;                                        \
418                                                                                \
419     for (int i = 0; i < m; i++) {                                              \
420         for (int j = 0; j < N; j++) {                                          \
421             const int k = in_map[i*N + j];                                     \
422             FFTComplex tmp = { in2[-k*stride], in1[k*stride] };                \
423             CMUL3(fft##N##in[j], tmp, exp[k >> 1]);                            \
424         }                                                                      \
425         fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
426     }                                                                          \
427                                                                                \
428     for (int i = 0; i < N; i++)                                                \
429         fftp(s->tmp + m*i);                                                    \
430                                                                                \
431     for (int i = 0; i < len8; i++) {                                           \
432         const int i0 = len8 + i, i1 = len8 - i - 1;                            \
433         const int s0 = out_map[i0], s1 = out_map[i1];                          \
434         FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re };                    \
435         FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re };                    \
436                                                                                \
437         CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);    \
438         CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);    \
439     }                                                                          \
440 }
441
442 DECL_COMP_IMDCT(3)
443 DECL_COMP_IMDCT(5)
444 DECL_COMP_IMDCT(15)
445
446 #define DECL_COMP_MDCT(N)                                                      \
447 static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src,      \
448                                   ptrdiff_t stride)                            \
449 {                                                                              \
450     FFTSample *src = _src, *dst = _dst;                                        \
451     FFTComplex *exp = s->exptab, tmp, fft##N##in[N];                           \
452     const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1;         \
453     const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
454     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
455                                                                                \
456     stride /= sizeof(*dst);                                                    \
457                                                                                \
458     for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */             \
459         for (int j = 0; j < N; j++) {                                          \
460             const int k = in_map[i*N + j];                                     \
461             if (k < len4) {                                                    \
462                 tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];                \
463                 tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];                \
464             } else {                                                           \
465                 tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];                \
466                 tmp.im =  src[-len4 + k] - src[1*len3 - 1 - k];                \
467             }                                                                  \
468             CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im,           \
469                  exp[k >> 1].re, exp[k >> 1].im);                              \
470         }                                                                      \
471         fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
472     }                                                                          \
473                                                                                \
474     for (int i = 0; i < N; i++)                                                \
475         fftp(s->tmp + m*i);                                                    \
476                                                                                \
477     for (int i = 0; i < len8; i++) {                                           \
478         const int i0 = len8 + i, i1 = len8 - i - 1;                            \
479         const int s0 = out_map[i0], s1 = out_map[i1];                          \
480         FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im };                    \
481         FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im };                    \
482                                                                                \
483         CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,    \
484              exp[i0].im, exp[i0].re);                                          \
485         CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,    \
486              exp[i1].im, exp[i1].re);                                          \
487     }                                                                          \
488 }
489
490 DECL_COMP_MDCT(3)
491 DECL_COMP_MDCT(5)
492 DECL_COMP_MDCT(15)
493
494 static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src,
495                              ptrdiff_t stride)
496 {
497     FFTComplex *z = _dst, *exp = s->exptab;
498     const int m = s->m, len8 = m >> 1;
499     const FFTSample *src = _src, *in1, *in2;
500     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
501
502     stride /= sizeof(*src);
503     in1 = src;
504     in2 = src + ((m*2) - 1) * stride;
505
506     for (int i = 0; i < m; i++) {
507         FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] };
508         CMUL3(z[s->revtab[i]], tmp, exp[i]);
509     }
510
511     fftp(z);
512
513     for (int i = 0; i < len8; i++) {
514         const int i0 = len8 + i, i1 = len8 - i - 1;
515         FFTComplex src1 = { z[i1].im, z[i1].re };
516         FFTComplex src0 = { z[i0].im, z[i0].re };
517
518         CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
519         CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
520     }
521 }
522
523 static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src,
524                             ptrdiff_t stride)
525 {
526     FFTSample *src = _src, *dst = _dst;
527     FFTComplex *exp = s->exptab, tmp, *z = _dst;
528     const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1;
529     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
530
531     stride /= sizeof(*dst);
532
533     for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */
534         const int k = 2*i;
535         if (k < len4) {
536             tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];
537             tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];
538         } else {
539             tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];
540             tmp.im =  src[-len4 + k] - src[1*len3 - 1 - k];
541         }
542         CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im,
543              exp[i].re, exp[i].im);
544     }
545
546     fftp(z);
547
548     for (int i = 0; i < len8; i++) {
549         const int i0 = len8 + i, i1 = len8 - i - 1;
550         FFTComplex src1 = { z[i1].re, z[i1].im };
551         FFTComplex src0 = { z[i0].re, z[i0].im };
552
553         CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
554              exp[i0].im, exp[i0].re);
555         CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
556              exp[i1].im, exp[i1].re);
557     }
558 }
559
560 static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
561 {
562     const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
563
564     if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab))))
565         return AVERROR(ENOMEM);
566
567     scale = sqrt(fabs(scale));
568     for (int i = 0; i < len4; i++) {
569         const double alpha = M_PI_2 * (i + theta) / len4;
570         s->exptab[i].re = cos(alpha) * scale;
571         s->exptab[i].im = sin(alpha) * scale;
572     }
573
574     return 0;
575 }
576
577 int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx,
578                                  enum AVTXType type, int inv, int len,
579                                  const void *scale, uint64_t flags)
580 {
581     const int is_mdct = type == AV_TX_FLOAT_MDCT || type == AV_TX_DOUBLE_MDCT;
582     int err, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) + 1);
583
584     if (is_mdct)
585         len >>= 1;
586
587 #define CHECK_FACTOR(DST, FACTOR, SRC)                                         \
588     if (DST == 1 && !(SRC % FACTOR)) {                                         \
589         DST = FACTOR;                                                          \
590         SRC /= FACTOR;                                                         \
591     }
592     CHECK_FACTOR(n, 15, len)
593     CHECK_FACTOR(n,  5, len)
594     CHECK_FACTOR(n,  3, len)
595 #undef CHECK_NPTWO_FACTOR
596
597     /* len must be a power of two now */
598     if (!(len & (len - 1)) && len >= 4 && len <= max_ptwo) {
599         m = len;
600         len = 1;
601     }
602
603     s->n = n;
604     s->m = m;
605     s->inv = inv;
606     s->type = type;
607
608     /* Filter out direct 3, 5 and 15 transforms, too niche */
609     if (len > 1 || m == 1) {
610         av_log(NULL, AV_LOG_ERROR, "Unsupported transform size: n = %i, "
611                "m = %i, residual = %i!\n", n, m, len);
612         return AVERROR(EINVAL);
613     } else if (n > 1 && m > 1) { /* 2D transform case */
614         if ((err = ff_tx_gen_compound_mapping(s)))
615             return err;
616         if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp))))
617             return AVERROR(ENOMEM);
618         *tx = n == 3 ? compound_fft_3xM :
619               n == 5 ? compound_fft_5xM :
620                        compound_fft_15xM;
621         if (is_mdct)
622             *tx = n == 3 ? inv ? compound_imdct_3xM  : compound_mdct_3xM :
623                   n == 5 ? inv ? compound_imdct_5xM  : compound_mdct_5xM :
624                            inv ? compound_imdct_15xM : compound_mdct_15xM;
625     } else { /* Direct transform case */
626         *tx = monolithic_fft;
627         if (is_mdct)
628             *tx = inv ? monolithic_imdct : monolithic_mdct;
629     }
630
631     if (n != 1)
632         init_cos_tabs(0);
633     if (m != 1) {
634         ff_tx_gen_ptwo_revtab(s);
635         for (int i = 4; i <= av_log2(m); i++)
636             init_cos_tabs(i);
637     }
638
639     if (is_mdct)
640         return gen_mdct_exptab(s, n*m, *((FFTSample *)scale));
641
642     return 0;
643 }