]> git.sesse.net Git - ffmpeg/blob - libavutil/tx_template.c
lavu/tx: slightly optimize fft15
[ffmpeg] / libavutil / tx_template.c
1 /*
2  * Copyright (c) 2019 Lynne <dev@lynne.ee>
3  * Power of two FFT:
4  * Copyright (c) 2008 Loren Merritt
5  * Copyright (c) 2002 Fabrice Bellard
6  * Partly based on libdjbfft by D. J. Bernstein
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24
25 /* All costabs for a type are defined here */
26 COSTABLE(16);
27 COSTABLE(32);
28 COSTABLE(64);
29 COSTABLE(128);
30 COSTABLE(256);
31 COSTABLE(512);
32 COSTABLE(1024);
33 COSTABLE(2048);
34 COSTABLE(4096);
35 COSTABLE(8192);
36 COSTABLE(16384);
37 COSTABLE(32768);
38 COSTABLE(65536);
39 COSTABLE(131072);
40 DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4];
41
42 static FFTSample * const cos_tabs[18] = {
43     NULL,
44     NULL,
45     NULL,
46     NULL,
47     TX_NAME(ff_cos_16),
48     TX_NAME(ff_cos_32),
49     TX_NAME(ff_cos_64),
50     TX_NAME(ff_cos_128),
51     TX_NAME(ff_cos_256),
52     TX_NAME(ff_cos_512),
53     TX_NAME(ff_cos_1024),
54     TX_NAME(ff_cos_2048),
55     TX_NAME(ff_cos_4096),
56     TX_NAME(ff_cos_8192),
57     TX_NAME(ff_cos_16384),
58     TX_NAME(ff_cos_32768),
59     TX_NAME(ff_cos_65536),
60     TX_NAME(ff_cos_131072),
61 };
62
63 static av_always_inline void init_cos_tabs_idx(int index)
64 {
65     int m = 1 << index;
66     double freq = 2*M_PI/m;
67     FFTSample *tab = cos_tabs[index];
68     for(int i = 0; i <= m/4; i++)
69         tab[i] = RESCALE(cos(i*freq));
70     for(int i = 1; i < m/4; i++)
71         tab[m/2 - i] = tab[i];
72 }
73
74 #define INIT_FF_COS_TABS_FUNC(index, size)                                     \
75 static av_cold void init_cos_tabs_ ## size (void)                              \
76 {                                                                              \
77     init_cos_tabs_idx(index);                                                  \
78 }
79
80 INIT_FF_COS_TABS_FUNC(4, 16)
81 INIT_FF_COS_TABS_FUNC(5, 32)
82 INIT_FF_COS_TABS_FUNC(6, 64)
83 INIT_FF_COS_TABS_FUNC(7, 128)
84 INIT_FF_COS_TABS_FUNC(8, 256)
85 INIT_FF_COS_TABS_FUNC(9, 512)
86 INIT_FF_COS_TABS_FUNC(10, 1024)
87 INIT_FF_COS_TABS_FUNC(11, 2048)
88 INIT_FF_COS_TABS_FUNC(12, 4096)
89 INIT_FF_COS_TABS_FUNC(13, 8192)
90 INIT_FF_COS_TABS_FUNC(14, 16384)
91 INIT_FF_COS_TABS_FUNC(15, 32768)
92 INIT_FF_COS_TABS_FUNC(16, 65536)
93 INIT_FF_COS_TABS_FUNC(17, 131072)
94
95 static av_cold void ff_init_53_tabs(void)
96 {
97     TX_NAME(ff_cos_53)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 12)), RESCALE(cos(2 * M_PI / 12)) };
98     TX_NAME(ff_cos_53)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI /  6)), RESCALE(cos(2 * M_PI /  6)) };
99     TX_NAME(ff_cos_53)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI /  5)), RESCALE(sin(2 * M_PI /  5)) };
100     TX_NAME(ff_cos_53)[3] = (FFTComplex){ RESCALE(cos(2 * M_PI / 10)), RESCALE(sin(2 * M_PI / 10)) };
101 }
102
103 static CosTabsInitOnce cos_tabs_init_once[] = {
104     { ff_init_53_tabs, AV_ONCE_INIT },
105     { NULL },
106     { NULL },
107     { NULL },
108     { init_cos_tabs_16, AV_ONCE_INIT },
109     { init_cos_tabs_32, AV_ONCE_INIT },
110     { init_cos_tabs_64, AV_ONCE_INIT },
111     { init_cos_tabs_128, AV_ONCE_INIT },
112     { init_cos_tabs_256, AV_ONCE_INIT },
113     { init_cos_tabs_512, AV_ONCE_INIT },
114     { init_cos_tabs_1024, AV_ONCE_INIT },
115     { init_cos_tabs_2048, AV_ONCE_INIT },
116     { init_cos_tabs_4096, AV_ONCE_INIT },
117     { init_cos_tabs_8192, AV_ONCE_INIT },
118     { init_cos_tabs_16384, AV_ONCE_INIT },
119     { init_cos_tabs_32768, AV_ONCE_INIT },
120     { init_cos_tabs_65536, AV_ONCE_INIT },
121     { init_cos_tabs_131072, AV_ONCE_INIT },
122 };
123
124 static av_cold void init_cos_tabs(int index)
125 {
126     ff_thread_once(&cos_tabs_init_once[index].control,
127                     cos_tabs_init_once[index].func);
128 }
129
130 static av_always_inline void fft3(FFTComplex *out, FFTComplex *in,
131                                   ptrdiff_t stride)
132 {
133     FFTComplex tmp[2];
134
135     BF(tmp[0].re, tmp[1].im, in[1].im, in[2].im);
136     BF(tmp[0].im, tmp[1].re, in[1].re, in[2].re);
137
138     out[0*stride].re = in[0].re + tmp[1].re;
139     out[0*stride].im = in[0].im + tmp[1].im;
140
141     tmp[0].re = MUL(TX_NAME(ff_cos_53)[0].re, tmp[0].re);
142     tmp[0].im = MUL(TX_NAME(ff_cos_53)[0].im, tmp[0].im);
143     tmp[1].re = MUL(TX_NAME(ff_cos_53)[1].re, tmp[1].re);
144     tmp[1].im = MUL(TX_NAME(ff_cos_53)[1].re, tmp[1].im);
145
146     out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re;
147     out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im;
148     out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re;
149     out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im;
150 }
151
152 #define DECL_FFT5(NAME, D0, D1, D2, D3, D4)                                                       \
153 static av_always_inline void NAME(FFTComplex *out, FFTComplex *in,                                \
154                                   ptrdiff_t stride)                                               \
155 {                                                                                                 \
156     FFTComplex z0[4], t[6];                                                                       \
157                                                                                                   \
158     BF(t[1].im, t[0].re, in[1].re, in[4].re);                                                     \
159     BF(t[1].re, t[0].im, in[1].im, in[4].im);                                                     \
160     BF(t[3].im, t[2].re, in[2].re, in[3].re);                                                     \
161     BF(t[3].re, t[2].im, in[2].im, in[3].im);                                                     \
162                                                                                                   \
163     out[D0*stride].re = in[0].re + t[0].re + t[2].re;                                             \
164     out[D0*stride].im = in[0].im + t[0].im + t[2].im;                                             \
165                                                                                                   \
166     SMUL(t[4].re, t[0].re, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].re, t[0].re); \
167     SMUL(t[4].im, t[0].im, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].im, t[0].im); \
168     CMUL(t[5].re, t[1].re, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].re, t[1].re); \
169     CMUL(t[5].im, t[1].im, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].im, t[1].im); \
170                                                                                                   \
171     BF(z0[0].re, z0[3].re, t[0].re, t[1].re);                                                     \
172     BF(z0[0].im, z0[3].im, t[0].im, t[1].im);                                                     \
173     BF(z0[2].re, z0[1].re, t[4].re, t[5].re);                                                     \
174     BF(z0[2].im, z0[1].im, t[4].im, t[5].im);                                                     \
175                                                                                                   \
176     out[D1*stride].re = in[0].re + z0[3].re;                                                      \
177     out[D1*stride].im = in[0].im + z0[0].im;                                                      \
178     out[D2*stride].re = in[0].re + z0[2].re;                                                      \
179     out[D2*stride].im = in[0].im + z0[1].im;                                                      \
180     out[D3*stride].re = in[0].re + z0[1].re;                                                      \
181     out[D3*stride].im = in[0].im + z0[2].im;                                                      \
182     out[D4*stride].re = in[0].re + z0[0].re;                                                      \
183     out[D4*stride].im = in[0].im + z0[3].im;                                                      \
184 }
185
186 DECL_FFT5(fft5,     0,  1,  2,  3,  4)
187 DECL_FFT5(fft5_m1,  0,  6, 12,  3,  9)
188 DECL_FFT5(fft5_m2, 10,  1,  7, 13,  4)
189 DECL_FFT5(fft5_m3,  5, 11,  2,  8, 14)
190
191 static av_always_inline void fft15(FFTComplex *out, FFTComplex *in,
192                                    ptrdiff_t stride)
193 {
194     FFTComplex tmp[15];
195
196     for (int i = 0; i < 5; i++)
197         fft3(tmp + i, in + i*3, 5);
198
199     fft5_m1(out, tmp +  0, stride);
200     fft5_m2(out, tmp +  5, stride);
201     fft5_m3(out, tmp + 10, stride);
202 }
203
204 #define BUTTERFLIES(a0,a1,a2,a3) {\
205     BF(t3, t5, t5, t1);\
206     BF(a2.re, a0.re, a0.re, t5);\
207     BF(a3.im, a1.im, a1.im, t3);\
208     BF(t4, t6, t2, t6);\
209     BF(a3.re, a1.re, a1.re, t4);\
210     BF(a2.im, a0.im, a0.im, t6);\
211 }
212
213 // force loading all the inputs before storing any.
214 // this is slightly slower for small data, but avoids store->load aliasing
215 // for addresses separated by large powers of 2.
216 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
217     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
218     BF(t3, t5, t5, t1);\
219     BF(a2.re, a0.re, r0, t5);\
220     BF(a3.im, a1.im, i1, t3);\
221     BF(t4, t6, t2, t6);\
222     BF(a3.re, a1.re, r1, t4);\
223     BF(a2.im, a0.im, i0, t6);\
224 }
225
226 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
227     CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
228     CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
229     BUTTERFLIES(a0,a1,a2,a3)\
230 }
231
232 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
233     t1 = a2.re;\
234     t2 = a2.im;\
235     t5 = a3.re;\
236     t6 = a3.im;\
237     BUTTERFLIES(a0,a1,a2,a3)\
238 }
239
240 /* z[0...8n-1], w[1...2n-1] */
241 #define PASS(name)\
242 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
243 {\
244     FFTSample t1, t2, t3, t4, t5, t6;\
245     int o1 = 2*n;\
246     int o2 = 4*n;\
247     int o3 = 6*n;\
248     const FFTSample *wim = wre+o1;\
249     n--;\
250 \
251     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
252     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
253     do {\
254         z += 2;\
255         wre += 2;\
256         wim -= 2;\
257         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
258         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
259     } while(--n);\
260 }
261
262 PASS(pass)
263 #undef BUTTERFLIES
264 #define BUTTERFLIES BUTTERFLIES_BIG
265 PASS(pass_big)
266
267 #define DECL_FFT(n,n2,n4)\
268 static void fft##n(FFTComplex *z)\
269 {\
270     fft##n2(z);\
271     fft##n4(z+n4*2);\
272     fft##n4(z+n4*3);\
273     pass(z,TX_NAME(ff_cos_##n),n4/2);\
274 }
275
276 static void fft4(FFTComplex *z)
277 {
278     FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
279
280     BF(t3, t1, z[0].re, z[1].re);
281     BF(t8, t6, z[3].re, z[2].re);
282     BF(z[2].re, z[0].re, t1, t6);
283     BF(t4, t2, z[0].im, z[1].im);
284     BF(t7, t5, z[2].im, z[3].im);
285     BF(z[3].im, z[1].im, t4, t8);
286     BF(z[3].re, z[1].re, t3, t7);
287     BF(z[2].im, z[0].im, t2, t5);
288 }
289
290 static void fft8(FFTComplex *z)
291 {
292     FFTSample t1, t2, t3, t4, t5, t6;
293
294     fft4(z);
295
296     BF(t1, z[5].re, z[4].re, -z[5].re);
297     BF(t2, z[5].im, z[4].im, -z[5].im);
298     BF(t5, z[7].re, z[6].re, -z[7].re);
299     BF(t6, z[7].im, z[6].im, -z[7].im);
300
301     BUTTERFLIES(z[0],z[2],z[4],z[6]);
302     TRANSFORM(z[1],z[3],z[5],z[7],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2));
303 }
304
305 static void fft16(FFTComplex *z)
306 {
307     FFTSample t1, t2, t3, t4, t5, t6;
308     FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1];
309     FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3];
310
311     fft8(z);
312     fft4(z+8);
313     fft4(z+12);
314
315     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
316     TRANSFORM(z[2],z[6],z[10],z[14],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2));
317     TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
318     TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
319 }
320
321 DECL_FFT(32,16,8)
322 DECL_FFT(64,32,16)
323 DECL_FFT(128,64,32)
324 DECL_FFT(256,128,64)
325 DECL_FFT(512,256,128)
326 #define pass pass_big
327 DECL_FFT(1024,512,256)
328 DECL_FFT(2048,1024,512)
329 DECL_FFT(4096,2048,1024)
330 DECL_FFT(8192,4096,2048)
331 DECL_FFT(16384,8192,4096)
332 DECL_FFT(32768,16384,8192)
333 DECL_FFT(65536,32768,16384)
334 DECL_FFT(131072,65536,32768)
335
336 static void (* const fft_dispatch[])(FFTComplex*) = {
337     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
338     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
339 };
340
341 #define DECL_COMP_FFT(N)                                                       \
342 static void compound_fft_##N##xM(AVTXContext *s, void *_out,                   \
343                                  void *_in, ptrdiff_t stride)                  \
344 {                                                                              \
345     const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m;          \
346     FFTComplex *in = _in;                                                      \
347     FFTComplex *out = _out;                                                    \
348     FFTComplex fft##N##in[N];                                                  \
349     void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m) - 2];                \
350                                                                                \
351     for (int i = 0; i < m; i++) {                                              \
352         for (int j = 0; j < N; j++)                                            \
353             fft##N##in[j] = in[in_map[i*N + j]];                               \
354         fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
355     }                                                                          \
356                                                                                \
357     for (int i = 0; i < N; i++)                                                \
358         fftp(s->tmp + m*i);                                                    \
359                                                                                \
360     for (int i = 0; i < N*m; i++)                                              \
361         out[i] = s->tmp[out_map[i]];                                           \
362 }
363
364 DECL_COMP_FFT(3)
365 DECL_COMP_FFT(5)
366 DECL_COMP_FFT(15)
367
368 static void monolithic_fft(AVTXContext *s, void *_out, void *_in,
369                            ptrdiff_t stride)
370 {
371     FFTComplex *in = _in;
372     FFTComplex *out = _out;
373     int m = s->m, mb = av_log2(m) - 2;
374     for (int i = 0; i < m; i++)
375         out[s->revtab[i]] = in[i];
376     fft_dispatch[mb](out);
377 }
378
379 #define DECL_COMP_IMDCT(N)                                                     \
380 static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src,     \
381                                    ptrdiff_t stride)                           \
382 {                                                                              \
383     FFTComplex fft##N##in[N];                                                  \
384     FFTComplex *z = _dst, *exp = s->exptab;                                    \
385     const int m = s->m, len8 = N*m >> 1;                                       \
386     const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
387     const FFTSample *src = _src, *in1, *in2;                                   \
388     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
389                                                                                \
390     stride /= sizeof(*src); /* To convert it from bytes */                     \
391     in1 = src;                                                                 \
392     in2 = src + ((N*m*2) - 1) * stride;                                        \
393                                                                                \
394     for (int i = 0; i < m; i++) {                                              \
395         for (int j = 0; j < N; j++) {                                          \
396             const int k = in_map[i*N + j];                                     \
397             FFTComplex tmp = { in2[-k*stride], in1[k*stride] };                \
398             CMUL3(fft##N##in[j], tmp, exp[k >> 1]);                            \
399         }                                                                      \
400         fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
401     }                                                                          \
402                                                                                \
403     for (int i = 0; i < N; i++)                                                \
404         fftp(s->tmp + m*i);                                                    \
405                                                                                \
406     for (int i = 0; i < len8; i++) {                                           \
407         const int i0 = len8 + i, i1 = len8 - i - 1;                            \
408         const int s0 = out_map[i0], s1 = out_map[i1];                          \
409         FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re };                    \
410         FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re };                    \
411                                                                                \
412         CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);    \
413         CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);    \
414     }                                                                          \
415 }
416
417 DECL_COMP_IMDCT(3)
418 DECL_COMP_IMDCT(5)
419 DECL_COMP_IMDCT(15)
420
421 #define DECL_COMP_MDCT(N)                                                      \
422 static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src,      \
423                                   ptrdiff_t stride)                            \
424 {                                                                              \
425     FFTSample *src = _src, *dst = _dst;                                        \
426     FFTComplex *exp = s->exptab, tmp, fft##N##in[N];                           \
427     const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1;         \
428     const int *in_map = s->pfatab, *out_map = in_map + N*m;                    \
429     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];                 \
430                                                                                \
431     stride /= sizeof(*dst);                                                    \
432                                                                                \
433     for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */             \
434         for (int j = 0; j < N; j++) {                                          \
435             const int k = in_map[i*N + j];                                     \
436             if (k < len4) {                                                    \
437                 tmp.re = FOLD(-src[ len4 + k],  src[1*len4 - 1 - k]);          \
438                 tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]);          \
439             } else {                                                           \
440                 tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]);          \
441                 tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]);          \
442             }                                                                  \
443             CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im,           \
444                  exp[k >> 1].re, exp[k >> 1].im);                              \
445         }                                                                      \
446         fft##N(s->tmp + s->revtab[i], fft##N##in, m);                          \
447     }                                                                          \
448                                                                                \
449     for (int i = 0; i < N; i++)                                                \
450         fftp(s->tmp + m*i);                                                    \
451                                                                                \
452     for (int i = 0; i < len8; i++) {                                           \
453         const int i0 = len8 + i, i1 = len8 - i - 1;                            \
454         const int s0 = out_map[i0], s1 = out_map[i1];                          \
455         FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im };                    \
456         FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im };                    \
457                                                                                \
458         CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,    \
459              exp[i0].im, exp[i0].re);                                          \
460         CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,    \
461              exp[i1].im, exp[i1].re);                                          \
462     }                                                                          \
463 }
464
465 DECL_COMP_MDCT(3)
466 DECL_COMP_MDCT(5)
467 DECL_COMP_MDCT(15)
468
469 static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src,
470                              ptrdiff_t stride)
471 {
472     FFTComplex *z = _dst, *exp = s->exptab;
473     const int m = s->m, len8 = m >> 1;
474     const FFTSample *src = _src, *in1, *in2;
475     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
476
477     stride /= sizeof(*src);
478     in1 = src;
479     in2 = src + ((m*2) - 1) * stride;
480
481     for (int i = 0; i < m; i++) {
482         FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] };
483         CMUL3(z[s->revtab[i]], tmp, exp[i]);
484     }
485
486     fftp(z);
487
488     for (int i = 0; i < len8; i++) {
489         const int i0 = len8 + i, i1 = len8 - i - 1;
490         FFTComplex src1 = { z[i1].im, z[i1].re };
491         FFTComplex src0 = { z[i0].im, z[i0].re };
492
493         CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
494         CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
495     }
496 }
497
498 static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src,
499                             ptrdiff_t stride)
500 {
501     FFTSample *src = _src, *dst = _dst;
502     FFTComplex *exp = s->exptab, tmp, *z = _dst;
503     const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1;
504     void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m) - 2];
505
506     stride /= sizeof(*dst);
507
508     for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */
509         const int k = 2*i;
510         if (k < len4) {
511             tmp.re = FOLD(-src[ len4 + k],  src[1*len4 - 1 - k]);
512             tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]);
513         } else {
514             tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]);
515             tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]);
516         }
517         CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im,
518              exp[i].re, exp[i].im);
519     }
520
521     fftp(z);
522
523     for (int i = 0; i < len8; i++) {
524         const int i0 = len8 + i, i1 = len8 - i - 1;
525         FFTComplex src1 = { z[i1].re, z[i1].im };
526         FFTComplex src0 = { z[i0].re, z[i0].im };
527
528         CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
529              exp[i0].im, exp[i0].re);
530         CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
531              exp[i1].im, exp[i1].re);
532     }
533 }
534
535 static int gen_mdct_exptab(AVTXContext *s, int len4, double scale)
536 {
537     const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
538
539     if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab))))
540         return AVERROR(ENOMEM);
541
542     scale = sqrt(fabs(scale));
543     for (int i = 0; i < len4; i++) {
544         const double alpha = M_PI_2 * (i + theta) / len4;
545         s->exptab[i].re = RESCALE(cos(alpha) * scale);
546         s->exptab[i].im = RESCALE(sin(alpha) * scale);
547     }
548
549     return 0;
550 }
551
552 int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx,
553                                  enum AVTXType type, int inv, int len,
554                                  const void *scale, uint64_t flags)
555 {
556     const int is_mdct = ff_tx_type_is_mdct(type);
557     int err, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) + 1);
558
559     if (is_mdct)
560         len >>= 1;
561
562 #define CHECK_FACTOR(DST, FACTOR, SRC)                                         \
563     if (DST == 1 && !(SRC % FACTOR)) {                                         \
564         DST = FACTOR;                                                          \
565         SRC /= FACTOR;                                                         \
566     }
567     CHECK_FACTOR(n, 15, len)
568     CHECK_FACTOR(n,  5, len)
569     CHECK_FACTOR(n,  3, len)
570 #undef CHECK_FACTOR
571
572     /* len must be a power of two now */
573     if (!(len & (len - 1)) && len >= 4 && len <= max_ptwo) {
574         m = len;
575         len = 1;
576     }
577
578     s->n = n;
579     s->m = m;
580     s->inv = inv;
581     s->type = type;
582
583     /* Filter out direct 3, 5 and 15 transforms, too niche */
584     if (len > 1 || m == 1) {
585         av_log(NULL, AV_LOG_ERROR, "Unsupported transform size: n = %i, "
586                "m = %i, residual = %i!\n", n, m, len);
587         return AVERROR(EINVAL);
588     } else if (n > 1 && m > 1) { /* 2D transform case */
589         if ((err = ff_tx_gen_compound_mapping(s)))
590             return err;
591         if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp))))
592             return AVERROR(ENOMEM);
593         *tx = n == 3 ? compound_fft_3xM :
594               n == 5 ? compound_fft_5xM :
595                        compound_fft_15xM;
596         if (is_mdct)
597             *tx = n == 3 ? inv ? compound_imdct_3xM  : compound_mdct_3xM :
598                   n == 5 ? inv ? compound_imdct_5xM  : compound_mdct_5xM :
599                            inv ? compound_imdct_15xM : compound_mdct_15xM;
600     } else { /* Direct transform case */
601         *tx = monolithic_fft;
602         if (is_mdct)
603             *tx = inv ? monolithic_imdct : monolithic_mdct;
604     }
605
606     if (n != 1)
607         init_cos_tabs(0);
608     if (m != 1) {
609         ff_tx_gen_ptwo_revtab(s);
610         for (int i = 4; i <= av_log2(m); i++)
611             init_cos_tabs(i);
612     }
613
614     if (is_mdct)
615         return gen_mdct_exptab(s, n*m, *((SCALE_TYPE *)scale));
616
617     return 0;
618 }