]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcache/btree_gc.c
Delete more unused shim code, update bcache code
[bcachefs-tools-debian] / libbcache / btree_gc.c
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  * Copyright (C) 2014 Datera Inc.
4  */
5
6 #include "bcache.h"
7 #include "alloc.h"
8 #include "bkey_methods.h"
9 #include "btree_locking.h"
10 #include "btree_update.h"
11 #include "btree_io.h"
12 #include "btree_gc.h"
13 #include "buckets.h"
14 #include "clock.h"
15 #include "debug.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "keylist.h"
20 #include "move.h"
21 #include "super-io.h"
22 #include "writeback.h"
23
24 #include <linux/slab.h>
25 #include <linux/bitops.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
28 #include <linux/rcupdate.h>
29 #include <trace/events/bcache.h>
30
31 struct range_checks {
32         struct range_level {
33                 struct bpos     min;
34                 struct bpos     max;
35         }                       l[BTREE_MAX_DEPTH];
36         unsigned                depth;
37 };
38
39 static void btree_node_range_checks_init(struct range_checks *r, unsigned depth)
40 {
41         unsigned i;
42
43         for (i = 0; i < BTREE_MAX_DEPTH; i++)
44                 r->l[i].min = r->l[i].max = POS_MIN;
45         r->depth = depth;
46 }
47
48 static void btree_node_range_checks(struct cache_set *c, struct btree *b,
49                                     struct range_checks *r)
50 {
51         struct range_level *l = &r->l[b->level];
52
53         struct bpos expected_min = bkey_cmp(l->min, l->max)
54                 ? btree_type_successor(b->btree_id, l->max)
55                 : l->max;
56
57         bch_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c,
58                 "btree node has incorrect min key: %llu:%llu != %llu:%llu",
59                 b->data->min_key.inode,
60                 b->data->min_key.offset,
61                 expected_min.inode,
62                 expected_min.offset);
63
64         l->max = b->data->max_key;
65
66         if (b->level > r->depth) {
67                 l = &r->l[b->level - 1];
68
69                 bch_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c,
70                         "btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu",
71                         b->data->min_key.inode,
72                         b->data->min_key.offset,
73                         l->min.inode,
74                         l->min.offset);
75
76                 bch_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c,
77                         "btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu",
78                         b->data->max_key.inode,
79                         b->data->max_key.offset,
80                         l->max.inode,
81                         l->max.offset);
82
83                 if (bkey_cmp(b->data->max_key, POS_MAX))
84                         l->min = l->max =
85                                 btree_type_successor(b->btree_id,
86                                                      b->data->max_key);
87         }
88 }
89
90 u8 bch_btree_key_recalc_oldest_gen(struct cache_set *c, struct bkey_s_c k)
91 {
92         const struct bch_extent_ptr *ptr;
93         struct cache *ca;
94         u8 max_stale = 0;
95
96         if (bkey_extent_is_data(k.k)) {
97                 struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
98
99                 rcu_read_lock();
100
101                 extent_for_each_online_device(c, e, ptr, ca) {
102                         size_t b = PTR_BUCKET_NR(ca, ptr);
103
104                         if (__gen_after(ca->oldest_gens[b], ptr->gen))
105                                 ca->oldest_gens[b] = ptr->gen;
106
107                         max_stale = max(max_stale, ptr_stale(ca, ptr));
108                 }
109
110                 rcu_read_unlock();
111         }
112
113         return max_stale;
114 }
115
116 /*
117  * For runtime mark and sweep:
118  */
119 static u8 bch_btree_mark_key(struct cache_set *c, enum bkey_type type,
120                              struct bkey_s_c k)
121 {
122         switch (type) {
123         case BKEY_TYPE_BTREE:
124                 bch_gc_mark_key(c, k, c->sb.btree_node_size, true);
125                 return 0;
126         case BKEY_TYPE_EXTENTS:
127                 bch_gc_mark_key(c, k, k.k->size, false);
128                 return bch_btree_key_recalc_oldest_gen(c, k);
129         default:
130                 BUG();
131         }
132 }
133
134 u8 bch_btree_mark_key_initial(struct cache_set *c, enum bkey_type type,
135                           struct bkey_s_c k)
136 {
137         atomic64_set(&c->key_version,
138                      max_t(u64, k.k->version.lo,
139                            atomic64_read(&c->key_version)));
140
141         return bch_btree_mark_key(c, type, k);
142 }
143
144 static bool btree_gc_mark_node(struct cache_set *c, struct btree *b)
145 {
146         if (btree_node_has_ptrs(b)) {
147                 struct btree_node_iter iter;
148                 struct bkey unpacked;
149                 struct bkey_s_c k;
150                 u8 stale = 0;
151
152                 for_each_btree_node_key_unpack(b, k, &iter,
153                                                btree_node_is_extents(b),
154                                                &unpacked) {
155                         bkey_debugcheck(c, b, k);
156                         stale = max(stale, bch_btree_mark_key(c,
157                                                         btree_node_type(b), k));
158                 }
159
160                 if (btree_gc_rewrite_disabled(c))
161                         return false;
162
163                 if (stale > 10)
164                         return true;
165         }
166
167         if (btree_gc_always_rewrite(c))
168                 return true;
169
170         return false;
171 }
172
173 static inline void __gc_pos_set(struct cache_set *c, struct gc_pos new_pos)
174 {
175         write_seqcount_begin(&c->gc_pos_lock);
176         c->gc_pos = new_pos;
177         write_seqcount_end(&c->gc_pos_lock);
178 }
179
180 static inline void gc_pos_set(struct cache_set *c, struct gc_pos new_pos)
181 {
182         BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
183         __gc_pos_set(c, new_pos);
184 }
185
186 static int bch_gc_btree(struct cache_set *c, enum btree_id btree_id)
187 {
188         struct btree_iter iter;
189         struct btree *b;
190         bool should_rewrite;
191         struct range_checks r;
192         unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1;
193         int ret;
194
195         /*
196          * if expensive_debug_checks is on, run range_checks on all leaf nodes:
197          */
198         if (expensive_debug_checks(c))
199                 depth = 0;
200
201         btree_node_range_checks_init(&r, depth);
202
203         for_each_btree_node(&iter, c, btree_id, POS_MIN, depth, b) {
204                 btree_node_range_checks(c, b, &r);
205
206                 bch_verify_btree_nr_keys(b);
207
208                 should_rewrite = btree_gc_mark_node(c, b);
209
210                 gc_pos_set(c, gc_pos_btree_node(b));
211
212                 if (should_rewrite)
213                         bch_btree_node_rewrite(&iter, b, NULL);
214
215                 bch_btree_iter_cond_resched(&iter);
216         }
217         ret = bch_btree_iter_unlock(&iter);
218         if (ret)
219                 return ret;
220
221         mutex_lock(&c->btree_root_lock);
222
223         b = c->btree_roots[btree_id].b;
224         bch_btree_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&b->key));
225         gc_pos_set(c, gc_pos_btree_root(b->btree_id));
226
227         mutex_unlock(&c->btree_root_lock);
228         return 0;
229 }
230
231 static void bch_mark_allocator_buckets(struct cache_set *c)
232 {
233         struct cache *ca;
234         struct open_bucket *ob;
235         size_t i, j, iter;
236         unsigned ci;
237
238         for_each_cache(ca, c, ci) {
239                 spin_lock(&ca->freelist_lock);
240
241                 fifo_for_each_entry(i, &ca->free_inc, iter)
242                         bch_mark_alloc_bucket(ca, &ca->buckets[i], true);
243
244                 for (j = 0; j < RESERVE_NR; j++)
245                         fifo_for_each_entry(i, &ca->free[j], iter)
246                                 bch_mark_alloc_bucket(ca, &ca->buckets[i], true);
247
248                 spin_unlock(&ca->freelist_lock);
249         }
250
251         for (ob = c->open_buckets;
252              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
253              ob++) {
254                 const struct bch_extent_ptr *ptr;
255
256                 mutex_lock(&ob->lock);
257                 rcu_read_lock();
258                 open_bucket_for_each_online_device(c, ob, ptr, ca)
259                         bch_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), true);
260                 rcu_read_unlock();
261                 mutex_unlock(&ob->lock);
262         }
263 }
264
265 /*
266  * Mark non btree metadata - prios, journal
267  */
268 static void bch_mark_metadata(struct cache_set *c)
269 {
270         struct cache *ca;
271         unsigned i, j;
272         u64 b;
273
274         for_each_cache(ca, c, i) {
275                 for (j = 0; j < ca->journal.nr; j++) {
276                         b = ca->journal.buckets[j];
277                         bch_mark_metadata_bucket(ca, ca->buckets + b, true);
278                 }
279
280                 spin_lock(&ca->prio_buckets_lock);
281
282                 for (j = 0; j < prio_buckets(ca) * 2; j++) {
283                         b = ca->prio_buckets[j];
284                         bch_mark_metadata_bucket(ca, ca->buckets + b, true);
285                 }
286
287                 spin_unlock(&ca->prio_buckets_lock);
288         }
289 }
290
291 /* Also see bch_pending_btree_node_free_insert_done() */
292 static void bch_mark_pending_btree_node_frees(struct cache_set *c)
293 {
294         struct bucket_stats_cache_set stats = { 0 };
295         struct btree_interior_update *as;
296         struct pending_btree_node_free *d;
297
298         mutex_lock(&c->btree_interior_update_lock);
299         gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
300
301         for_each_pending_btree_node_free(c, as, d)
302                 if (d->index_update_done)
303                         __bch_gc_mark_key(c, bkey_i_to_s_c(&d->key),
304                                           c->sb.btree_node_size, true,
305                                           &stats);
306         /*
307          * Don't apply stats - pending deletes aren't tracked in
308          * bch_alloc_stats:
309          */
310
311         mutex_unlock(&c->btree_interior_update_lock);
312 }
313
314 /**
315  * bch_gc - recompute bucket marks and oldest_gen, rewrite btree nodes
316  */
317 void bch_gc(struct cache_set *c)
318 {
319         struct cache *ca;
320         struct bucket *g;
321         struct bucket_mark new;
322         u64 start_time = local_clock();
323         unsigned i;
324         int cpu;
325
326         /*
327          * Walk _all_ references to buckets, and recompute them:
328          *
329          * Order matters here:
330          *  - Concurrent GC relies on the fact that we have a total ordering for
331          *    everything that GC walks - see  gc_will_visit_node(),
332          *    gc_will_visit_root()
333          *
334          *  - also, references move around in the course of index updates and
335          *    various other crap: everything needs to agree on the ordering
336          *    references are allowed to move around in - e.g., we're allowed to
337          *    start with a reference owned by an open_bucket (the allocator) and
338          *    move it to the btree, but not the reverse.
339          *
340          *    This is necessary to ensure that gc doesn't miss references that
341          *    move around - if references move backwards in the ordering GC
342          *    uses, GC could skip past them
343          */
344
345         if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
346                 return;
347
348         trace_bcache_gc_start(c);
349
350         /*
351          * Do this before taking gc_lock - bch_disk_reservation_get() blocks on
352          * gc_lock if sectors_available goes to 0:
353          */
354         bch_recalc_sectors_available(c);
355
356         down_write(&c->gc_lock);
357
358         lg_global_lock(&c->bucket_stats_lock);
359
360         /*
361          * Indicates to buckets code that gc is now in progress - done under
362          * bucket_stats_lock to avoid racing with bch_mark_key():
363          */
364         __gc_pos_set(c, GC_POS_MIN);
365
366         /* Save a copy of the existing bucket stats while we recompute them: */
367         for_each_cache(ca, c, i) {
368                 ca->bucket_stats_cached = __bch_bucket_stats_read_cache(ca);
369                 for_each_possible_cpu(cpu) {
370                         struct bucket_stats_cache *p =
371                                 per_cpu_ptr(ca->bucket_stats_percpu, cpu);
372                         memset(p, 0, sizeof(*p));
373                 }
374         }
375
376         c->bucket_stats_cached = __bch_bucket_stats_read_cache_set(c);
377         for_each_possible_cpu(cpu) {
378                 struct bucket_stats_cache_set *p =
379                         per_cpu_ptr(c->bucket_stats_percpu, cpu);
380
381                 memset(p->s, 0, sizeof(p->s));
382                 p->persistent_reserved = 0;
383         }
384
385         lg_global_unlock(&c->bucket_stats_lock);
386
387         /* Clear bucket marks: */
388         for_each_cache(ca, c, i)
389                 for_each_bucket(g, ca) {
390                         bucket_cmpxchg(g, new, ({
391                                 new.owned_by_allocator  = 0;
392                                 new.is_metadata         = 0;
393                                 new.cached_sectors      = 0;
394                                 new.dirty_sectors       = 0;
395                         }));
396                         ca->oldest_gens[g - ca->buckets] = new.gen;
397                 }
398
399         /* Walk allocator's references: */
400         bch_mark_allocator_buckets(c);
401
402         /* Walk btree: */
403         while (c->gc_pos.phase < (int) BTREE_ID_NR) {
404                 int ret = c->btree_roots[c->gc_pos.phase].b
405                         ? bch_gc_btree(c, (int) c->gc_pos.phase)
406                         : 0;
407
408                 if (ret) {
409                         bch_err(c, "btree gc failed: %d", ret);
410                         set_bit(BCH_FS_GC_FAILURE, &c->flags);
411                         up_write(&c->gc_lock);
412                         return;
413                 }
414
415                 gc_pos_set(c, gc_phase(c->gc_pos.phase + 1));
416         }
417
418         bch_mark_metadata(c);
419         bch_mark_pending_btree_node_frees(c);
420         bch_writeback_recalc_oldest_gens(c);
421
422         for_each_cache(ca, c, i)
423                 atomic_long_set(&ca->saturated_count, 0);
424
425         /* Indicates that gc is no longer in progress: */
426         gc_pos_set(c, gc_phase(GC_PHASE_DONE));
427
428         up_write(&c->gc_lock);
429         trace_bcache_gc_end(c);
430         bch_time_stats_update(&c->btree_gc_time, start_time);
431
432         /*
433          * Wake up allocator in case it was waiting for buckets
434          * because of not being able to inc gens
435          */
436         for_each_cache(ca, c, i)
437                 bch_wake_allocator(ca);
438 }
439
440 /* Btree coalescing */
441
442 static void recalc_packed_keys(struct btree *b)
443 {
444         struct bkey_packed *k;
445
446         memset(&b->nr, 0, sizeof(b->nr));
447
448         BUG_ON(b->nsets != 1);
449
450         for (k =  btree_bkey_first(b, b->set);
451              k != btree_bkey_last(b, b->set);
452              k = bkey_next(k))
453                 btree_keys_account_key_add(&b->nr, 0, k);
454 }
455
456 static void bch_coalesce_nodes(struct btree *old_nodes[GC_MERGE_NODES],
457                                struct btree_iter *iter)
458 {
459         struct btree *parent = iter->nodes[old_nodes[0]->level + 1];
460         struct cache_set *c = iter->c;
461         unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
462         unsigned blocks = btree_blocks(c) * 2 / 3;
463         struct btree *new_nodes[GC_MERGE_NODES];
464         struct btree_interior_update *as;
465         struct btree_reserve *res;
466         struct keylist keylist;
467         struct bkey_format_state format_state;
468         struct bkey_format new_format;
469
470         memset(new_nodes, 0, sizeof(new_nodes));
471         bch_keylist_init(&keylist, NULL, 0);
472
473         /* Count keys that are not deleted */
474         for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
475                 u64s += old_nodes[i]->nr.live_u64s;
476
477         nr_old_nodes = nr_new_nodes = i;
478
479         /* Check if all keys in @old_nodes could fit in one fewer node */
480         if (nr_old_nodes <= 1 ||
481             __vstruct_blocks(struct btree_node, c->block_bits,
482                              DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
483                 return;
484
485         res = bch_btree_reserve_get(c, parent, nr_old_nodes,
486                                     BTREE_INSERT_NOFAIL|
487                                     BTREE_INSERT_USE_RESERVE,
488                                     NULL);
489         if (IS_ERR(res)) {
490                 trace_bcache_btree_gc_coalesce_fail(c,
491                                 BTREE_GC_COALESCE_FAIL_RESERVE_GET);
492                 return;
493         }
494
495         if (bch_keylist_realloc(&keylist, NULL, 0,
496                         (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
497                 trace_bcache_btree_gc_coalesce_fail(c,
498                                 BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
499                 goto out;
500         }
501
502         /* Find a format that all keys in @old_nodes can pack into */
503         bch_bkey_format_init(&format_state);
504
505         for (i = 0; i < nr_old_nodes; i++)
506                 __bch_btree_calc_format(&format_state, old_nodes[i]);
507
508         new_format = bch_bkey_format_done(&format_state);
509
510         /* Check if repacking would make any nodes too big to fit */
511         for (i = 0; i < nr_old_nodes; i++)
512                 if (!bch_btree_node_format_fits(c, old_nodes[i], &new_format)) {
513                         trace_bcache_btree_gc_coalesce_fail(c,
514                                         BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
515                         goto out;
516                 }
517
518         trace_bcache_btree_gc_coalesce(c, parent, nr_old_nodes);
519
520         as = bch_btree_interior_update_alloc(c);
521
522         for (i = 0; i < nr_old_nodes; i++)
523                 bch_btree_interior_update_will_free_node(c, as, old_nodes[i]);
524
525         /* Repack everything with @new_format and sort down to one bset */
526         for (i = 0; i < nr_old_nodes; i++)
527                 new_nodes[i] = __btree_node_alloc_replacement(c, old_nodes[i],
528                                                               new_format, res);
529
530         /*
531          * Conceptually we concatenate the nodes together and slice them
532          * up at different boundaries.
533          */
534         for (i = nr_new_nodes - 1; i > 0; --i) {
535                 struct btree *n1 = new_nodes[i];
536                 struct btree *n2 = new_nodes[i - 1];
537
538                 struct bset *s1 = btree_bset_first(n1);
539                 struct bset *s2 = btree_bset_first(n2);
540                 struct bkey_packed *k, *last = NULL;
541
542                 /* Calculate how many keys from @n2 we could fit inside @n1 */
543                 u64s = 0;
544
545                 for (k = s2->start;
546                      k < vstruct_last(s2) &&
547                      vstruct_blocks_plus(n1->data, c->block_bits,
548                                          u64s + k->u64s) <= blocks;
549                      k = bkey_next(k)) {
550                         last = k;
551                         u64s += k->u64s;
552                 }
553
554                 if (u64s == le16_to_cpu(s2->u64s)) {
555                         /* n2 fits entirely in n1 */
556                         n1->key.k.p = n1->data->max_key = n2->data->max_key;
557
558                         memcpy_u64s(vstruct_last(s1),
559                                     s2->start,
560                                     le16_to_cpu(s2->u64s));
561                         le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
562
563                         set_btree_bset_end(n1, n1->set);
564
565                         six_unlock_write(&n2->lock);
566                         bch_btree_node_free_never_inserted(c, n2);
567                         six_unlock_intent(&n2->lock);
568
569                         memmove(new_nodes + i - 1,
570                                 new_nodes + i,
571                                 sizeof(new_nodes[0]) * (nr_new_nodes - i));
572                         new_nodes[--nr_new_nodes] = NULL;
573                 } else if (u64s) {
574                         /* move part of n2 into n1 */
575                         n1->key.k.p = n1->data->max_key =
576                                 bkey_unpack_pos(n1, last);
577
578                         n2->data->min_key =
579                                 btree_type_successor(iter->btree_id,
580                                                      n1->data->max_key);
581
582                         memcpy_u64s(vstruct_last(s1),
583                                     s2->start, u64s);
584                         le16_add_cpu(&s1->u64s, u64s);
585
586                         memmove(s2->start,
587                                 vstruct_idx(s2, u64s),
588                                 (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
589                         s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
590
591                         set_btree_bset_end(n1, n1->set);
592                         set_btree_bset_end(n2, n2->set);
593                 }
594         }
595
596         for (i = 0; i < nr_new_nodes; i++) {
597                 struct btree *n = new_nodes[i];
598
599                 recalc_packed_keys(n);
600                 btree_node_reset_sib_u64s(n);
601
602                 bch_btree_build_aux_trees(n);
603                 six_unlock_write(&n->lock);
604
605                 bch_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
606         }
607
608         /*
609          * The keys for the old nodes get deleted. We don't want to insert keys
610          * that compare equal to the keys for the new nodes we'll also be
611          * inserting - we can't because keys on a keylist must be strictly
612          * greater than the previous keys, and we also don't need to since the
613          * key for the new node will serve the same purpose (overwriting the key
614          * for the old node).
615          */
616         for (i = 0; i < nr_old_nodes; i++) {
617                 struct bkey_i delete;
618                 unsigned j;
619
620                 for (j = 0; j < nr_new_nodes; j++)
621                         if (!bkey_cmp(old_nodes[i]->key.k.p,
622                                       new_nodes[j]->key.k.p))
623                                 goto next;
624
625                 bkey_init(&delete.k);
626                 delete.k.p = old_nodes[i]->key.k.p;
627                 bch_keylist_add_in_order(&keylist, &delete);
628 next:
629                 i = i;
630         }
631
632         /*
633          * Keys for the new nodes get inserted: bch_btree_insert_keys() only
634          * does the lookup once and thus expects the keys to be in sorted order
635          * so we have to make sure the new keys are correctly ordered with
636          * respect to the deleted keys added in the previous loop
637          */
638         for (i = 0; i < nr_new_nodes; i++)
639                 bch_keylist_add_in_order(&keylist, &new_nodes[i]->key);
640
641         /* Insert the newly coalesced nodes */
642         bch_btree_insert_node(parent, iter, &keylist, res, as);
643
644         BUG_ON(!bch_keylist_empty(&keylist));
645
646         BUG_ON(iter->nodes[old_nodes[0]->level] != old_nodes[0]);
647
648         BUG_ON(!bch_btree_iter_node_replace(iter, new_nodes[0]));
649
650         for (i = 0; i < nr_new_nodes; i++)
651                 btree_open_bucket_put(c, new_nodes[i]);
652
653         /* Free the old nodes and update our sliding window */
654         for (i = 0; i < nr_old_nodes; i++) {
655                 bch_btree_node_free_inmem(iter, old_nodes[i]);
656                 six_unlock_intent(&old_nodes[i]->lock);
657
658                 /*
659                  * the index update might have triggered a split, in which case
660                  * the nodes we coalesced - the new nodes we just created -
661                  * might not be sibling nodes anymore - don't add them to the
662                  * sliding window (except the first):
663                  */
664                 if (!i) {
665                         old_nodes[i] = new_nodes[i];
666                 } else {
667                         old_nodes[i] = NULL;
668                         if (new_nodes[i])
669                                 six_unlock_intent(&new_nodes[i]->lock);
670                 }
671         }
672 out:
673         bch_keylist_free(&keylist, NULL);
674         bch_btree_reserve_put(c, res);
675 }
676
677 static int bch_coalesce_btree(struct cache_set *c, enum btree_id btree_id)
678 {
679         struct btree_iter iter;
680         struct btree *b;
681         unsigned i;
682
683         /* Sliding window of adjacent btree nodes */
684         struct btree *merge[GC_MERGE_NODES];
685         u32 lock_seq[GC_MERGE_NODES];
686
687         /*
688          * XXX: We don't have a good way of positively matching on sibling nodes
689          * that have the same parent - this code works by handling the cases
690          * where they might not have the same parent, and is thus fragile. Ugh.
691          *
692          * Perhaps redo this to use multiple linked iterators?
693          */
694         memset(merge, 0, sizeof(merge));
695
696         __for_each_btree_node(&iter, c, btree_id, POS_MIN, 0, b, U8_MAX) {
697                 memmove(merge + 1, merge,
698                         sizeof(merge) - sizeof(merge[0]));
699                 memmove(lock_seq + 1, lock_seq,
700                         sizeof(lock_seq) - sizeof(lock_seq[0]));
701
702                 merge[0] = b;
703
704                 for (i = 1; i < GC_MERGE_NODES; i++) {
705                         if (!merge[i] ||
706                             !six_relock_intent(&merge[i]->lock, lock_seq[i]))
707                                 break;
708
709                         if (merge[i]->level != merge[0]->level) {
710                                 six_unlock_intent(&merge[i]->lock);
711                                 break;
712                         }
713                 }
714                 memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
715
716                 bch_coalesce_nodes(merge, &iter);
717
718                 for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
719                         lock_seq[i] = merge[i]->lock.state.seq;
720                         six_unlock_intent(&merge[i]->lock);
721                 }
722
723                 lock_seq[0] = merge[0]->lock.state.seq;
724
725                 if (test_bit(BCH_FS_GC_STOPPING, &c->flags)) {
726                         bch_btree_iter_unlock(&iter);
727                         return -ESHUTDOWN;
728                 }
729
730                 bch_btree_iter_cond_resched(&iter);
731
732                 /*
733                  * If the parent node wasn't relocked, it might have been split
734                  * and the nodes in our sliding window might not have the same
735                  * parent anymore - blow away the sliding window:
736                  */
737                 if (iter.nodes[iter.level + 1] &&
738                     !btree_node_intent_locked(&iter, iter.level + 1))
739                         memset(merge + 1, 0,
740                                (GC_MERGE_NODES - 1) * sizeof(merge[0]));
741         }
742         return bch_btree_iter_unlock(&iter);
743 }
744
745 /**
746  * bch_coalesce - coalesce adjacent nodes with low occupancy
747  */
748 void bch_coalesce(struct cache_set *c)
749 {
750         u64 start_time;
751         enum btree_id id;
752
753         if (btree_gc_coalesce_disabled(c))
754                 return;
755
756         if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
757                 return;
758
759         down_read(&c->gc_lock);
760         trace_bcache_gc_coalesce_start(c);
761         start_time = local_clock();
762
763         for (id = 0; id < BTREE_ID_NR; id++) {
764                 int ret = c->btree_roots[id].b
765                         ? bch_coalesce_btree(c, id)
766                         : 0;
767
768                 if (ret) {
769                         if (ret != -ESHUTDOWN)
770                                 bch_err(c, "btree coalescing failed: %d", ret);
771                         set_bit(BCH_FS_GC_FAILURE, &c->flags);
772                         return;
773                 }
774         }
775
776         bch_time_stats_update(&c->btree_coalesce_time, start_time);
777         trace_bcache_gc_coalesce_end(c);
778         up_read(&c->gc_lock);
779 }
780
781 static int bch_gc_thread(void *arg)
782 {
783         struct cache_set *c = arg;
784         struct io_clock *clock = &c->io_clock[WRITE];
785         unsigned long last = atomic_long_read(&clock->now);
786         unsigned last_kick = atomic_read(&c->kick_gc);
787
788         set_freezable();
789
790         while (1) {
791                 unsigned long next = last + c->capacity / 16;
792
793                 while (atomic_long_read(&clock->now) < next) {
794                         set_current_state(TASK_INTERRUPTIBLE);
795
796                         if (kthread_should_stop()) {
797                                 __set_current_state(TASK_RUNNING);
798                                 return 0;
799                         }
800
801                         if (atomic_read(&c->kick_gc) != last_kick) {
802                                 __set_current_state(TASK_RUNNING);
803                                 break;
804                         }
805
806                         bch_io_clock_schedule_timeout(clock, next);
807                         try_to_freeze();
808                 }
809
810                 last = atomic_long_read(&clock->now);
811                 last_kick = atomic_read(&c->kick_gc);
812
813                 bch_gc(c);
814                 bch_coalesce(c);
815
816                 debug_check_no_locks_held();
817         }
818
819         return 0;
820 }
821
822 void bch_gc_thread_stop(struct cache_set *c)
823 {
824         set_bit(BCH_FS_GC_STOPPING, &c->flags);
825
826         if (!IS_ERR_OR_NULL(c->gc_thread))
827                 kthread_stop(c->gc_thread);
828 }
829
830 int bch_gc_thread_start(struct cache_set *c)
831 {
832         clear_bit(BCH_FS_GC_STOPPING, &c->flags);
833
834         c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
835         if (IS_ERR(c->gc_thread))
836                 return PTR_ERR(c->gc_thread);
837
838         wake_up_process(c->gc_thread);
839         return 0;
840 }
841
842 /* Initial GC computes bucket marks during startup */
843
844 static void bch_initial_gc_btree(struct cache_set *c, enum btree_id id)
845 {
846         struct btree_iter iter;
847         struct btree *b;
848         struct range_checks r;
849
850         btree_node_range_checks_init(&r, 0);
851
852         if (!c->btree_roots[id].b)
853                 return;
854
855         /*
856          * We have to hit every btree node before starting journal replay, in
857          * order for the journal seq blacklist machinery to work:
858          */
859         for_each_btree_node(&iter, c, id, POS_MIN, 0, b) {
860                 btree_node_range_checks(c, b, &r);
861
862                 if (btree_node_has_ptrs(b)) {
863                         struct btree_node_iter node_iter;
864                         struct bkey unpacked;
865                         struct bkey_s_c k;
866
867                         for_each_btree_node_key_unpack(b, k, &node_iter,
868                                                        btree_node_is_extents(b),
869                                                        &unpacked)
870                                 bch_btree_mark_key_initial(c, btree_node_type(b), k);
871                 }
872
873                 bch_btree_iter_cond_resched(&iter);
874         }
875
876         bch_btree_iter_unlock(&iter);
877
878         bch_btree_mark_key(c, BKEY_TYPE_BTREE,
879                            bkey_i_to_s_c(&c->btree_roots[id].b->key));
880 }
881
882 int bch_initial_gc(struct cache_set *c, struct list_head *journal)
883 {
884         enum btree_id id;
885
886         if (journal) {
887                 for (id = 0; id < BTREE_ID_NR; id++)
888                         bch_initial_gc_btree(c, id);
889
890                 bch_journal_mark(c, journal);
891         }
892
893         /*
894          * Skip past versions that might have possibly been used (as nonces),
895          * but hadn't had their pointers written:
896          */
897         if (c->sb.encryption_type)
898                 atomic64_add(1 << 16, &c->key_version);
899
900         bch_mark_metadata(c);
901
902         gc_pos_set(c, gc_phase(GC_PHASE_DONE));
903         set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
904
905         return 0;
906 }