]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/alloc_background.c
Update bcachefs sources to 95ff72a6c1 fixup! mm: Centralize & improve oom reporting...
[bcachefs-tools-debian] / libbcachefs / alloc_background.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "bcachefs.h"
3 #include "alloc_background.h"
4 #include "alloc_foreground.h"
5 #include "backpointers.h"
6 #include "btree_cache.h"
7 #include "btree_io.h"
8 #include "btree_key_cache.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_gc.h"
12 #include "buckets.h"
13 #include "buckets_waiting_for_journal.h"
14 #include "clock.h"
15 #include "debug.h"
16 #include "ec.h"
17 #include "error.h"
18 #include "lru.h"
19 #include "recovery.h"
20 #include "varint.h"
21
22 #include <linux/kthread.h>
23 #include <linux/math64.h>
24 #include <linux/random.h>
25 #include <linux/rculist.h>
26 #include <linux/rcupdate.h>
27 #include <linux/sched/task.h>
28 #include <linux/sort.h>
29 #include <trace/events/bcachefs.h>
30
31 /* Persistent alloc info: */
32
33 static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = {
34 #define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8,
35         BCH_ALLOC_FIELDS_V1()
36 #undef x
37 };
38
39 struct bkey_alloc_unpacked {
40         u64             journal_seq;
41         u8              gen;
42         u8              oldest_gen;
43         u8              data_type;
44         bool            need_discard:1;
45         bool            need_inc_gen:1;
46 #define x(_name, _bits) u##_bits _name;
47         BCH_ALLOC_FIELDS_V2()
48 #undef  x
49 };
50
51 static inline u64 alloc_field_v1_get(const struct bch_alloc *a,
52                                      const void **p, unsigned field)
53 {
54         unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
55         u64 v;
56
57         if (!(a->fields & (1 << field)))
58                 return 0;
59
60         switch (bytes) {
61         case 1:
62                 v = *((const u8 *) *p);
63                 break;
64         case 2:
65                 v = le16_to_cpup(*p);
66                 break;
67         case 4:
68                 v = le32_to_cpup(*p);
69                 break;
70         case 8:
71                 v = le64_to_cpup(*p);
72                 break;
73         default:
74                 BUG();
75         }
76
77         *p += bytes;
78         return v;
79 }
80
81 static inline void alloc_field_v1_put(struct bkey_i_alloc *a, void **p,
82                                       unsigned field, u64 v)
83 {
84         unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
85
86         if (!v)
87                 return;
88
89         a->v.fields |= 1 << field;
90
91         switch (bytes) {
92         case 1:
93                 *((u8 *) *p) = v;
94                 break;
95         case 2:
96                 *((__le16 *) *p) = cpu_to_le16(v);
97                 break;
98         case 4:
99                 *((__le32 *) *p) = cpu_to_le32(v);
100                 break;
101         case 8:
102                 *((__le64 *) *p) = cpu_to_le64(v);
103                 break;
104         default:
105                 BUG();
106         }
107
108         *p += bytes;
109 }
110
111 static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out,
112                                  struct bkey_s_c k)
113 {
114         const struct bch_alloc *in = bkey_s_c_to_alloc(k).v;
115         const void *d = in->data;
116         unsigned idx = 0;
117
118         out->gen = in->gen;
119
120 #define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++);
121         BCH_ALLOC_FIELDS_V1()
122 #undef  x
123 }
124
125 static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out,
126                                 struct bkey_s_c k)
127 {
128         struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k);
129         const u8 *in = a.v->data;
130         const u8 *end = bkey_val_end(a);
131         unsigned fieldnr = 0;
132         int ret;
133         u64 v;
134
135         out->gen        = a.v->gen;
136         out->oldest_gen = a.v->oldest_gen;
137         out->data_type  = a.v->data_type;
138
139 #define x(_name, _bits)                                                 \
140         if (fieldnr < a.v->nr_fields) {                                 \
141                 ret = bch2_varint_decode_fast(in, end, &v);             \
142                 if (ret < 0)                                            \
143                         return ret;                                     \
144                 in += ret;                                              \
145         } else {                                                        \
146                 v = 0;                                                  \
147         }                                                               \
148         out->_name = v;                                                 \
149         if (v != out->_name)                                            \
150                 return -1;                                              \
151         fieldnr++;
152
153         BCH_ALLOC_FIELDS_V2()
154 #undef  x
155         return 0;
156 }
157
158 static int bch2_alloc_unpack_v3(struct bkey_alloc_unpacked *out,
159                                 struct bkey_s_c k)
160 {
161         struct bkey_s_c_alloc_v3 a = bkey_s_c_to_alloc_v3(k);
162         const u8 *in = a.v->data;
163         const u8 *end = bkey_val_end(a);
164         unsigned fieldnr = 0;
165         int ret;
166         u64 v;
167
168         out->gen        = a.v->gen;
169         out->oldest_gen = a.v->oldest_gen;
170         out->data_type  = a.v->data_type;
171         out->need_discard = BCH_ALLOC_V3_NEED_DISCARD(a.v);
172         out->need_inc_gen = BCH_ALLOC_V3_NEED_INC_GEN(a.v);
173         out->journal_seq = le64_to_cpu(a.v->journal_seq);
174
175 #define x(_name, _bits)                                                 \
176         if (fieldnr < a.v->nr_fields) {                                 \
177                 ret = bch2_varint_decode_fast(in, end, &v);             \
178                 if (ret < 0)                                            \
179                         return ret;                                     \
180                 in += ret;                                              \
181         } else {                                                        \
182                 v = 0;                                                  \
183         }                                                               \
184         out->_name = v;                                                 \
185         if (v != out->_name)                                            \
186                 return -1;                                              \
187         fieldnr++;
188
189         BCH_ALLOC_FIELDS_V2()
190 #undef  x
191         return 0;
192 }
193
194 static struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k)
195 {
196         struct bkey_alloc_unpacked ret = { .gen = 0 };
197
198         switch (k.k->type) {
199         case KEY_TYPE_alloc:
200                 bch2_alloc_unpack_v1(&ret, k);
201                 break;
202         case KEY_TYPE_alloc_v2:
203                 bch2_alloc_unpack_v2(&ret, k);
204                 break;
205         case KEY_TYPE_alloc_v3:
206                 bch2_alloc_unpack_v3(&ret, k);
207                 break;
208         }
209
210         return ret;
211 }
212
213 struct bkey_i_alloc_v4 *
214 bch2_trans_start_alloc_update(struct btree_trans *trans, struct btree_iter *iter,
215                               struct bpos pos)
216 {
217         struct bkey_s_c k;
218         struct bkey_i_alloc_v4 *a;
219         int ret;
220
221         bch2_trans_iter_init(trans, iter, BTREE_ID_alloc, pos,
222                              BTREE_ITER_WITH_UPDATES|
223                              BTREE_ITER_CACHED|
224                              BTREE_ITER_INTENT);
225         k = bch2_btree_iter_peek_slot(iter);
226         ret = bkey_err(k);
227         if (ret) {
228                 bch2_trans_iter_exit(trans, iter);
229                 return ERR_PTR(ret);
230         }
231
232         a = bch2_alloc_to_v4_mut(trans, k);
233         if (IS_ERR(a))
234                 bch2_trans_iter_exit(trans, iter);
235         return a;
236 }
237
238 static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a)
239 {
240         unsigned i, bytes = offsetof(struct bch_alloc, data);
241
242         for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++)
243                 if (a->fields & (1 << i))
244                         bytes += BCH_ALLOC_V1_FIELD_BYTES[i];
245
246         return DIV_ROUND_UP(bytes, sizeof(u64));
247 }
248
249 int bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k,
250                           int rw, struct printbuf *err)
251 {
252         struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
253
254         /* allow for unknown fields */
255         if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v)) {
256                 prt_printf(err, "incorrect value size (%zu < %u)",
257                        bkey_val_u64s(a.k), bch_alloc_v1_val_u64s(a.v));
258                 return -EINVAL;
259         }
260
261         return 0;
262 }
263
264 int bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k,
265                           int rw, struct printbuf *err)
266 {
267         struct bkey_alloc_unpacked u;
268
269         if (bch2_alloc_unpack_v2(&u, k)) {
270                 prt_printf(err, "unpack error");
271                 return -EINVAL;
272         }
273
274         return 0;
275 }
276
277 int bch2_alloc_v3_invalid(const struct bch_fs *c, struct bkey_s_c k,
278                           int rw, struct printbuf *err)
279 {
280         struct bkey_alloc_unpacked u;
281
282         if (bch2_alloc_unpack_v3(&u, k)) {
283                 prt_printf(err, "unpack error");
284                 return -EINVAL;
285         }
286
287         return 0;
288 }
289
290 int bch2_alloc_v4_invalid(const struct bch_fs *c, struct bkey_s_c k,
291                           int rw, struct printbuf *err)
292 {
293         struct bkey_s_c_alloc_v4 a = bkey_s_c_to_alloc_v4(k);
294
295         if (alloc_v4_u64s(a.v) != bkey_val_u64s(k.k)) {
296                 prt_printf(err, "bad val size (%lu != %u)",
297                        bkey_val_u64s(k.k), alloc_v4_u64s(a.v));
298                 return -EINVAL;
299         }
300
301         if (!BCH_ALLOC_V4_BACKPOINTERS_START(a.v) &&
302             BCH_ALLOC_V4_NR_BACKPOINTERS(a.v)) {
303                 prt_printf(err, "invalid backpointers_start");
304                 return -EINVAL;
305         }
306
307         if (rw == WRITE) {
308                 if (alloc_data_type(*a.v, a.v->data_type) != a.v->data_type) {
309                         prt_printf(err, "invalid data type (got %u should be %u)",
310                                a.v->data_type, alloc_data_type(*a.v, a.v->data_type));
311                         return -EINVAL;
312                 }
313
314                 switch (a.v->data_type) {
315                 case BCH_DATA_free:
316                 case BCH_DATA_need_gc_gens:
317                 case BCH_DATA_need_discard:
318                         if (a.v->dirty_sectors ||
319                             a.v->cached_sectors ||
320                             a.v->stripe) {
321                                 prt_printf(err, "empty data type free but have data");
322                                 return -EINVAL;
323                         }
324                         break;
325                 case BCH_DATA_sb:
326                 case BCH_DATA_journal:
327                 case BCH_DATA_btree:
328                 case BCH_DATA_user:
329                 case BCH_DATA_parity:
330                         if (!a.v->dirty_sectors) {
331                                 prt_printf(err, "data_type %s but dirty_sectors==0",
332                                        bch2_data_types[a.v->data_type]);
333                                 return -EINVAL;
334                         }
335                         break;
336                 case BCH_DATA_cached:
337                         if (!a.v->cached_sectors ||
338                             a.v->dirty_sectors ||
339                             a.v->stripe) {
340                                 prt_printf(err, "data type inconsistency");
341                                 return -EINVAL;
342                         }
343
344                         if (!a.v->io_time[READ] &&
345                             test_bit(BCH_FS_CHECK_ALLOC_TO_LRU_REFS_DONE, &c->flags)) {
346                                 prt_printf(err, "cached bucket with read_time == 0");
347                                 return -EINVAL;
348                         }
349                         break;
350                 case BCH_DATA_stripe:
351                         if (!a.v->stripe) {
352                                 prt_printf(err, "data_type %s but stripe==0",
353                                        bch2_data_types[a.v->data_type]);
354                                 return -EINVAL;
355                         }
356                         break;
357                 }
358         }
359
360         return 0;
361 }
362
363 static inline u64 swab40(u64 x)
364 {
365         return (((x & 0x00000000ffULL) << 32)|
366                 ((x & 0x000000ff00ULL) << 16)|
367                 ((x & 0x0000ff0000ULL) >>  0)|
368                 ((x & 0x00ff000000ULL) >> 16)|
369                 ((x & 0xff00000000ULL) >> 32));
370 }
371
372 void bch2_alloc_v4_swab(struct bkey_s k)
373 {
374         struct bch_alloc_v4 *a = bkey_s_to_alloc_v4(k).v;
375         struct bch_backpointer *bp, *bps;
376
377         a->journal_seq          = swab64(a->journal_seq);
378         a->flags                = swab32(a->flags);
379         a->dirty_sectors        = swab32(a->dirty_sectors);
380         a->cached_sectors       = swab32(a->cached_sectors);
381         a->io_time[0]           = swab64(a->io_time[0]);
382         a->io_time[1]           = swab64(a->io_time[1]);
383         a->stripe               = swab32(a->stripe);
384         a->nr_external_backpointers = swab32(a->nr_external_backpointers);
385
386         bps = alloc_v4_backpointers(a);
387         for (bp = bps; bp < bps + BCH_ALLOC_V4_NR_BACKPOINTERS(a); bp++) {
388                 bp->bucket_offset       = swab40(bp->bucket_offset);
389                 bp->bucket_len          = swab32(bp->bucket_len);
390                 bch2_bpos_swab(&bp->pos);
391         }
392 }
393
394 void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
395 {
396         struct bch_alloc_v4 _a;
397         const struct bch_alloc_v4 *a = &_a;
398         const struct bch_backpointer *bps;
399         unsigned i;
400
401         if (k.k->type == KEY_TYPE_alloc_v4)
402                 a = bkey_s_c_to_alloc_v4(k).v;
403         else
404                 bch2_alloc_to_v4(k, &_a);
405
406         prt_newline(out);
407         printbuf_indent_add(out, 2);
408
409         prt_printf(out, "gen %u oldest_gen %u data_type %s",
410                a->gen, a->oldest_gen, bch2_data_types[a->data_type]);
411         prt_newline(out);
412         prt_printf(out, "journal_seq       %llu",       a->journal_seq);
413         prt_newline(out);
414         prt_printf(out, "need_discard      %llu",       BCH_ALLOC_V4_NEED_DISCARD(a));
415         prt_newline(out);
416         prt_printf(out, "need_inc_gen      %llu",       BCH_ALLOC_V4_NEED_INC_GEN(a));
417         prt_newline(out);
418         prt_printf(out, "dirty_sectors     %u", a->dirty_sectors);
419         prt_newline(out);
420         prt_printf(out, "cached_sectors    %u", a->cached_sectors);
421         prt_newline(out);
422         prt_printf(out, "stripe            %u", a->stripe);
423         prt_newline(out);
424         prt_printf(out, "stripe_redundancy %u", a->stripe_redundancy);
425         prt_newline(out);
426         prt_printf(out, "io_time[READ]     %llu",       a->io_time[READ]);
427         prt_newline(out);
428         prt_printf(out, "io_time[WRITE]    %llu",       a->io_time[WRITE]);
429         prt_newline(out);
430         prt_printf(out, "backpointers:     %llu",       BCH_ALLOC_V4_NR_BACKPOINTERS(a));
431         printbuf_indent_add(out, 2);
432
433         bps = alloc_v4_backpointers_c(a);
434         for (i = 0; i < BCH_ALLOC_V4_NR_BACKPOINTERS(a); i++) {
435                 prt_newline(out);
436                 bch2_backpointer_to_text(out, &bps[i]);
437         }
438
439         printbuf_indent_sub(out, 4);
440 }
441
442 void bch2_alloc_to_v4(struct bkey_s_c k, struct bch_alloc_v4 *out)
443 {
444         if (k.k->type == KEY_TYPE_alloc_v4) {
445                 int d;
446
447                 *out = *bkey_s_c_to_alloc_v4(k).v;
448
449                 d = (int) BCH_ALLOC_V4_U64s -
450                         (int) (BCH_ALLOC_V4_BACKPOINTERS_START(out) ?: BCH_ALLOC_V4_U64s_V0);
451                 if (unlikely(d > 0)) {
452                         memset((u64 *) out + BCH_ALLOC_V4_BACKPOINTERS_START(out),
453                                0,
454                                d * sizeof(u64));
455                         SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s);
456                 }
457         } else {
458                 struct bkey_alloc_unpacked u = bch2_alloc_unpack(k);
459
460                 *out = (struct bch_alloc_v4) {
461                         .journal_seq            = u.journal_seq,
462                         .flags                  = u.need_discard,
463                         .gen                    = u.gen,
464                         .oldest_gen             = u.oldest_gen,
465                         .data_type              = u.data_type,
466                         .stripe_redundancy      = u.stripe_redundancy,
467                         .dirty_sectors          = u.dirty_sectors,
468                         .cached_sectors         = u.cached_sectors,
469                         .io_time[READ]          = u.read_time,
470                         .io_time[WRITE]         = u.write_time,
471                         .stripe                 = u.stripe,
472                 };
473
474                 SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s);
475         }
476 }
477
478 struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k)
479 {
480         unsigned bytes = k.k->type == KEY_TYPE_alloc_v4
481                 ? bkey_bytes(k.k)
482                 : sizeof(struct bkey_i_alloc_v4);
483         struct bkey_i_alloc_v4 *ret;
484
485         /*
486          * Reserve space for one more backpointer here:
487          * Not sketchy at doing it this way, nope...
488          */
489         ret = bch2_trans_kmalloc(trans, bytes + sizeof(struct bch_backpointer));
490         if (IS_ERR(ret))
491                 return ret;
492
493         if (k.k->type == KEY_TYPE_alloc_v4) {
494                 bkey_reassemble(&ret->k_i, k);
495
496                 if (BCH_ALLOC_V4_BACKPOINTERS_START(&ret->v) < BCH_ALLOC_V4_U64s) {
497                         struct bch_backpointer *src, *dst;
498
499                         src = alloc_v4_backpointers(&ret->v);
500                         SET_BCH_ALLOC_V4_BACKPOINTERS_START(&ret->v, BCH_ALLOC_V4_U64s);
501                         dst = alloc_v4_backpointers(&ret->v);
502
503                         memmove(dst, src, BCH_ALLOC_V4_NR_BACKPOINTERS(&ret->v) *
504                                 sizeof(struct bch_backpointer));
505                         memset(src, 0, dst - src);
506                         set_alloc_v4_u64s(ret);
507                 }
508         } else {
509                 bkey_alloc_v4_init(&ret->k_i);
510                 ret->k.p = k.k->p;
511                 bch2_alloc_to_v4(k, &ret->v);
512         }
513         return ret;
514 }
515
516 int bch2_alloc_read(struct bch_fs *c)
517 {
518         struct btree_trans trans;
519         struct btree_iter iter;
520         struct bkey_s_c k;
521         struct bch_alloc_v4 a;
522         struct bch_dev *ca;
523         int ret;
524
525         bch2_trans_init(&trans, c, 0, 0);
526
527         for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
528                            BTREE_ITER_PREFETCH, k, ret) {
529                 /*
530                  * Not a fsck error because this is checked/repaired by
531                  * bch2_check_alloc_key() which runs later:
532                  */
533                 if (!bch2_dev_bucket_exists(c, k.k->p))
534                         continue;
535
536                 ca = bch_dev_bkey_exists(c, k.k->p.inode);
537                 bch2_alloc_to_v4(k, &a);
538
539                 *bucket_gen(ca, k.k->p.offset) = a.gen;
540         }
541         bch2_trans_iter_exit(&trans, &iter);
542
543         bch2_trans_exit(&trans);
544
545         if (ret)
546                 bch_err(c, "error reading alloc info: %i", ret);
547
548         return ret;
549 }
550
551 /* Free space/discard btree: */
552
553 static int bch2_bucket_do_index(struct btree_trans *trans,
554                                 struct bkey_s_c alloc_k,
555                                 const struct bch_alloc_v4 *a,
556                                 bool set)
557 {
558         struct bch_fs *c = trans->c;
559         struct bch_dev *ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode);
560         struct btree_iter iter;
561         struct bkey_s_c old;
562         struct bkey_i *k;
563         enum btree_id btree;
564         enum bch_bkey_type old_type = !set ? KEY_TYPE_set : KEY_TYPE_deleted;
565         enum bch_bkey_type new_type =  set ? KEY_TYPE_set : KEY_TYPE_deleted;
566         struct printbuf buf = PRINTBUF;
567         int ret;
568
569         if (a->data_type != BCH_DATA_free &&
570             a->data_type != BCH_DATA_need_discard)
571                 return 0;
572
573         k = bch2_trans_kmalloc(trans, sizeof(*k));
574         if (IS_ERR(k))
575                 return PTR_ERR(k);
576
577         bkey_init(&k->k);
578         k->k.type = new_type;
579
580         switch (a->data_type) {
581         case BCH_DATA_free:
582                 btree = BTREE_ID_freespace;
583                 k->k.p = alloc_freespace_pos(alloc_k.k->p, *a);
584                 bch2_key_resize(&k->k, 1);
585                 break;
586         case BCH_DATA_need_discard:
587                 btree = BTREE_ID_need_discard;
588                 k->k.p = alloc_k.k->p;
589                 break;
590         default:
591                 return 0;
592         }
593
594         bch2_trans_iter_init(trans, &iter, btree,
595                              bkey_start_pos(&k->k),
596                              BTREE_ITER_INTENT);
597         old = bch2_btree_iter_peek_slot(&iter);
598         ret = bkey_err(old);
599         if (ret)
600                 goto err;
601
602         if (ca->mi.freespace_initialized &&
603             bch2_trans_inconsistent_on(old.k->type != old_type, trans,
604                         "incorrect key when %s %s btree (got %s should be %s)\n"
605                         "  for %s",
606                         set ? "setting" : "clearing",
607                         bch2_btree_ids[btree],
608                         bch2_bkey_types[old.k->type],
609                         bch2_bkey_types[old_type],
610                         (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
611                 ret = -EIO;
612                 goto err;
613         }
614
615         ret = bch2_trans_update(trans, &iter, k, 0);
616 err:
617         bch2_trans_iter_exit(trans, &iter);
618         printbuf_exit(&buf);
619         return ret;
620 }
621
622 int bch2_trans_mark_alloc(struct btree_trans *trans,
623                           enum btree_id btree_id, unsigned level,
624                           struct bkey_s_c old, struct bkey_i *new,
625                           unsigned flags)
626 {
627         struct bch_fs *c = trans->c;
628         struct bch_alloc_v4 old_a, *new_a;
629         u64 old_lru, new_lru;
630         int ret = 0;
631
632         /*
633          * Deletion only happens in the device removal path, with
634          * BTREE_TRIGGER_NORUN:
635          */
636         BUG_ON(new->k.type != KEY_TYPE_alloc_v4);
637
638         bch2_alloc_to_v4(old, &old_a);
639         new_a = &bkey_i_to_alloc_v4(new)->v;
640
641         new_a->data_type = alloc_data_type(*new_a, new_a->data_type);
642
643         if (new_a->dirty_sectors > old_a.dirty_sectors ||
644             new_a->cached_sectors > old_a.cached_sectors) {
645                 new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now));
646                 new_a->io_time[WRITE]= max_t(u64, 1, atomic64_read(&c->io_clock[WRITE].now));
647                 SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, true);
648                 SET_BCH_ALLOC_V4_NEED_DISCARD(new_a, true);
649         }
650
651         if (data_type_is_empty(new_a->data_type) &&
652             BCH_ALLOC_V4_NEED_INC_GEN(new_a) &&
653             !bch2_bucket_is_open_safe(c, new->k.p.inode, new->k.p.offset)) {
654                 new_a->gen++;
655                 SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, false);
656         }
657
658         if (old_a.data_type != new_a->data_type ||
659             (new_a->data_type == BCH_DATA_free &&
660              alloc_freespace_genbits(old_a) != alloc_freespace_genbits(*new_a))) {
661                 ret =   bch2_bucket_do_index(trans, old, &old_a, false) ?:
662                         bch2_bucket_do_index(trans, bkey_i_to_s_c(new), new_a, true);
663                 if (ret)
664                         return ret;
665         }
666
667         if (new_a->data_type == BCH_DATA_cached &&
668             !new_a->io_time[READ])
669                 new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now));
670
671         old_lru = alloc_lru_idx(old_a);
672         new_lru = alloc_lru_idx(*new_a);
673
674         if (old_lru != new_lru) {
675                 ret = bch2_lru_change(trans, new->k.p.inode, new->k.p.offset,
676                                       old_lru, &new_lru, old);
677                 if (ret)
678                         return ret;
679
680                 if (new_a->data_type == BCH_DATA_cached)
681                         new_a->io_time[READ] = new_lru;
682         }
683
684         return 0;
685 }
686
687 static int bch2_check_alloc_key(struct btree_trans *trans,
688                                 struct btree_iter *alloc_iter,
689                                 struct btree_iter *discard_iter,
690                                 struct btree_iter *freespace_iter)
691 {
692         struct bch_fs *c = trans->c;
693         struct bch_dev *ca;
694         struct bch_alloc_v4 a;
695         unsigned discard_key_type, freespace_key_type;
696         struct bkey_s_c alloc_k, k;
697         struct printbuf buf = PRINTBUF;
698         int ret;
699
700         alloc_k = bch2_dev_bucket_exists(c, alloc_iter->pos)
701                 ? bch2_btree_iter_peek_slot(alloc_iter)
702                 : bch2_btree_iter_peek(alloc_iter);
703         if (!alloc_k.k)
704                 return 1;
705
706         ret = bkey_err(alloc_k);
707         if (ret)
708                 return ret;
709
710         if (fsck_err_on(!bch2_dev_bucket_exists(c, alloc_k.k->p), c,
711                         "alloc key for invalid device:bucket %llu:%llu",
712                         alloc_k.k->p.inode, alloc_k.k->p.offset))
713                 return bch2_btree_delete_at(trans, alloc_iter, 0);
714
715         ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode);
716         if (!ca->mi.freespace_initialized)
717                 return 0;
718
719         bch2_alloc_to_v4(alloc_k, &a);
720
721         discard_key_type = a.data_type == BCH_DATA_need_discard
722                 ? KEY_TYPE_set : 0;
723         freespace_key_type = a.data_type == BCH_DATA_free
724                 ? KEY_TYPE_set : 0;
725
726         bch2_btree_iter_set_pos(discard_iter, alloc_k.k->p);
727         bch2_btree_iter_set_pos(freespace_iter, alloc_freespace_pos(alloc_k.k->p, a));
728
729         k = bch2_btree_iter_peek_slot(discard_iter);
730         ret = bkey_err(k);
731         if (ret)
732                 goto err;
733
734         if (fsck_err_on(k.k->type != discard_key_type, c,
735                         "incorrect key in need_discard btree (got %s should be %s)\n"
736                         "  %s",
737                         bch2_bkey_types[k.k->type],
738                         bch2_bkey_types[discard_key_type],
739                         (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
740                 struct bkey_i *update =
741                         bch2_trans_kmalloc(trans, sizeof(*update));
742
743                 ret = PTR_ERR_OR_ZERO(update);
744                 if (ret)
745                         goto err;
746
747                 bkey_init(&update->k);
748                 update->k.type  = discard_key_type;
749                 update->k.p     = discard_iter->pos;
750
751                 ret = bch2_trans_update(trans, discard_iter, update, 0);
752                 if (ret)
753                         goto err;
754         }
755
756         k = bch2_btree_iter_peek_slot(freespace_iter);
757         ret = bkey_err(k);
758         if (ret)
759                 goto err;
760
761         if (fsck_err_on(k.k->type != freespace_key_type, c,
762                         "incorrect key in freespace btree (got %s should be %s)\n"
763                         "  %s",
764                         bch2_bkey_types[k.k->type],
765                         bch2_bkey_types[freespace_key_type],
766                         (printbuf_reset(&buf),
767                          bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) {
768                 struct bkey_i *update =
769                         bch2_trans_kmalloc(trans, sizeof(*update));
770
771                 ret = PTR_ERR_OR_ZERO(update);
772                 if (ret)
773                         goto err;
774
775                 bkey_init(&update->k);
776                 update->k.type  = freespace_key_type;
777                 update->k.p     = freespace_iter->pos;
778                 bch2_key_resize(&update->k, 1);
779
780                 ret = bch2_trans_update(trans, freespace_iter, update, 0);
781                 if (ret)
782                         goto err;
783         }
784 err:
785 fsck_err:
786         printbuf_exit(&buf);
787         return ret;
788 }
789
790 static int bch2_check_discard_freespace_key(struct btree_trans *trans,
791                                             struct btree_iter *iter)
792 {
793         struct bch_fs *c = trans->c;
794         struct btree_iter alloc_iter;
795         struct bkey_s_c k, freespace_k;
796         struct bch_alloc_v4 a;
797         u64 genbits;
798         struct bpos pos;
799         enum bch_data_type state = iter->btree_id == BTREE_ID_need_discard
800                 ? BCH_DATA_need_discard
801                 : BCH_DATA_free;
802         struct printbuf buf = PRINTBUF;
803         int ret;
804
805         freespace_k = bch2_btree_iter_peek(iter);
806         if (!freespace_k.k)
807                 return 1;
808
809         ret = bkey_err(freespace_k);
810         if (ret)
811                 return ret;
812
813         pos = iter->pos;
814         pos.offset &= ~(~0ULL << 56);
815         genbits = iter->pos.offset & (~0ULL << 56);
816
817         bch2_trans_iter_init(trans, &alloc_iter, BTREE_ID_alloc, pos, 0);
818
819         if (fsck_err_on(!bch2_dev_bucket_exists(c, pos), c,
820                         "entry in %s btree for nonexistant dev:bucket %llu:%llu",
821                         bch2_btree_ids[iter->btree_id], pos.inode, pos.offset))
822                 goto delete;
823
824         k = bch2_btree_iter_peek_slot(&alloc_iter);
825         ret = bkey_err(k);
826         if (ret)
827                 goto err;
828
829         bch2_alloc_to_v4(k, &a);
830
831         if (fsck_err_on(a.data_type != state ||
832                         (state == BCH_DATA_free &&
833                          genbits != alloc_freespace_genbits(a)), c,
834                         "%s\n  incorrectly set in %s index (free %u, genbits %llu should be %llu)",
835                         (bch2_bkey_val_to_text(&buf, c, k), buf.buf),
836                         bch2_btree_ids[iter->btree_id],
837                         a.data_type == state,
838                         genbits >> 56, alloc_freespace_genbits(a) >> 56))
839                 goto delete;
840 out:
841 err:
842 fsck_err:
843         bch2_trans_iter_exit(trans, &alloc_iter);
844         printbuf_exit(&buf);
845         return ret;
846 delete:
847         ret = bch2_btree_delete_extent_at(trans, iter,
848                         iter->btree_id == BTREE_ID_freespace ? 1 : 0, 0);
849         goto out;
850 }
851
852 int bch2_check_alloc_info(struct bch_fs *c)
853 {
854         struct btree_trans trans;
855         struct btree_iter iter, discard_iter, freespace_iter;
856         int ret = 0;
857
858         bch2_trans_init(&trans, c, 0, 0);
859
860         bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN,
861                              BTREE_ITER_PREFETCH);
862         bch2_trans_iter_init(&trans, &discard_iter, BTREE_ID_need_discard, POS_MIN,
863                              BTREE_ITER_PREFETCH);
864         bch2_trans_iter_init(&trans, &freespace_iter, BTREE_ID_freespace, POS_MIN,
865                              BTREE_ITER_PREFETCH);
866         while (1) {
867                 ret = __bch2_trans_do(&trans, NULL, NULL,
868                                       BTREE_INSERT_NOFAIL|
869                                       BTREE_INSERT_LAZY_RW,
870                         bch2_check_alloc_key(&trans, &iter,
871                                              &discard_iter,
872                                              &freespace_iter));
873                 if (ret)
874                         break;
875
876                 bch2_btree_iter_advance(&iter);
877         }
878         bch2_trans_iter_exit(&trans, &freespace_iter);
879         bch2_trans_iter_exit(&trans, &discard_iter);
880         bch2_trans_iter_exit(&trans, &iter);
881
882         if (ret < 0)
883                 goto err;
884
885         bch2_trans_iter_init(&trans, &iter, BTREE_ID_need_discard, POS_MIN,
886                              BTREE_ITER_PREFETCH);
887         while (1) {
888                 ret = __bch2_trans_do(&trans, NULL, NULL,
889                                       BTREE_INSERT_NOFAIL|
890                                       BTREE_INSERT_LAZY_RW,
891                         bch2_check_discard_freespace_key(&trans, &iter));
892                 if (ret)
893                         break;
894
895                 bch2_btree_iter_advance(&iter);
896         }
897         bch2_trans_iter_exit(&trans, &iter);
898
899         if (ret < 0)
900                 goto err;
901
902         bch2_trans_iter_init(&trans, &iter, BTREE_ID_freespace, POS_MIN,
903                              BTREE_ITER_PREFETCH);
904         while (1) {
905                 ret = __bch2_trans_do(&trans, NULL, NULL,
906                                       BTREE_INSERT_NOFAIL|
907                                       BTREE_INSERT_LAZY_RW,
908                         bch2_check_discard_freespace_key(&trans, &iter));
909                 if (ret)
910                         break;
911
912                 bch2_btree_iter_advance(&iter);
913         }
914         bch2_trans_iter_exit(&trans, &iter);
915 err:
916         bch2_trans_exit(&trans);
917         return ret < 0 ? ret : 0;
918 }
919
920 static int bch2_check_alloc_to_lru_ref(struct btree_trans *trans,
921                                        struct btree_iter *alloc_iter)
922 {
923         struct bch_fs *c = trans->c;
924         struct btree_iter lru_iter;
925         struct bch_alloc_v4 a;
926         struct bkey_s_c alloc_k, k;
927         struct printbuf buf = PRINTBUF;
928         struct printbuf buf2 = PRINTBUF;
929         int ret;
930
931         alloc_k = bch2_btree_iter_peek(alloc_iter);
932         if (!alloc_k.k)
933                 return 0;
934
935         ret = bkey_err(alloc_k);
936         if (ret)
937                 return ret;
938
939         bch2_alloc_to_v4(alloc_k, &a);
940
941         if (a.data_type != BCH_DATA_cached)
942                 return 0;
943
944         bch2_trans_iter_init(trans, &lru_iter, BTREE_ID_lru,
945                              POS(alloc_k.k->p.inode, a.io_time[READ]), 0);
946
947         k = bch2_btree_iter_peek_slot(&lru_iter);
948         ret = bkey_err(k);
949         if (ret)
950                 goto err;
951
952         if (fsck_err_on(!a.io_time[READ], c,
953                         "cached bucket with read_time 0\n"
954                         "  %s",
955                 (printbuf_reset(&buf),
956                  bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)) ||
957             fsck_err_on(k.k->type != KEY_TYPE_lru ||
958                         le64_to_cpu(bkey_s_c_to_lru(k).v->idx) != alloc_k.k->p.offset, c,
959                         "incorrect/missing lru entry\n"
960                         "  %s\n"
961                         "  %s",
962                         (printbuf_reset(&buf),
963                          bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf),
964                         (bch2_bkey_val_to_text(&buf2, c, k), buf2.buf))) {
965                 u64 read_time = a.io_time[READ];
966
967                 if (!a.io_time[READ])
968                         a.io_time[READ] = atomic64_read(&c->io_clock[READ].now);
969
970                 ret = bch2_lru_set(trans,
971                                    alloc_k.k->p.inode,
972                                    alloc_k.k->p.offset,
973                                    &a.io_time[READ]);
974                 if (ret)
975                         goto err;
976
977                 if (a.io_time[READ] != read_time) {
978                         struct bkey_i_alloc_v4 *a_mut =
979                                 bch2_alloc_to_v4_mut(trans, alloc_k);
980                         ret = PTR_ERR_OR_ZERO(a_mut);
981                         if (ret)
982                                 goto err;
983
984                         a_mut->v.io_time[READ] = a.io_time[READ];
985                         ret = bch2_trans_update(trans, alloc_iter,
986                                                 &a_mut->k_i, BTREE_TRIGGER_NORUN);
987                         if (ret)
988                                 goto err;
989                 }
990         }
991 err:
992 fsck_err:
993         bch2_trans_iter_exit(trans, &lru_iter);
994         printbuf_exit(&buf2);
995         printbuf_exit(&buf);
996         return ret;
997 }
998
999 int bch2_check_alloc_to_lru_refs(struct bch_fs *c)
1000 {
1001         struct btree_trans trans;
1002         struct btree_iter iter;
1003         struct bkey_s_c k;
1004         int ret = 0;
1005
1006         bch2_trans_init(&trans, c, 0, 0);
1007
1008         for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
1009                            BTREE_ITER_PREFETCH, k, ret) {
1010                 ret = __bch2_trans_do(&trans, NULL, NULL,
1011                                       BTREE_INSERT_NOFAIL|
1012                                       BTREE_INSERT_LAZY_RW,
1013                         bch2_check_alloc_to_lru_ref(&trans, &iter));
1014                 if (ret)
1015                         break;
1016         }
1017         bch2_trans_iter_exit(&trans, &iter);
1018
1019         bch2_trans_exit(&trans);
1020         return ret < 0 ? ret : 0;
1021 }
1022
1023 static int bch2_clear_need_discard(struct btree_trans *trans, struct bpos pos,
1024                                    struct bch_dev *ca, bool *discard_done)
1025 {
1026         struct bch_fs *c = trans->c;
1027         struct btree_iter iter;
1028         struct bkey_s_c k;
1029         struct bkey_i_alloc_v4 *a;
1030         struct printbuf buf = PRINTBUF;
1031         int ret;
1032
1033         bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, pos,
1034                              BTREE_ITER_CACHED);
1035         k = bch2_btree_iter_peek_slot(&iter);
1036         ret = bkey_err(k);
1037         if (ret)
1038                 goto out;
1039
1040         a = bch2_alloc_to_v4_mut(trans, k);
1041         ret = PTR_ERR_OR_ZERO(a);
1042         if (ret)
1043                 goto out;
1044
1045         if (BCH_ALLOC_V4_NEED_INC_GEN(&a->v)) {
1046                 a->v.gen++;
1047                 SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false);
1048                 goto write;
1049         }
1050
1051         if (bch2_trans_inconsistent_on(a->v.journal_seq > c->journal.flushed_seq_ondisk, trans,
1052                         "clearing need_discard but journal_seq %llu > flushed_seq %llu\n"
1053                         "%s",
1054                         a->v.journal_seq,
1055                         c->journal.flushed_seq_ondisk,
1056                         (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
1057                 ret = -EIO;
1058                 goto out;
1059         }
1060
1061         if (bch2_trans_inconsistent_on(a->v.data_type != BCH_DATA_need_discard, trans,
1062                         "bucket incorrectly set in need_discard btree\n"
1063                         "%s",
1064                         (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
1065                 ret = -EIO;
1066                 goto out;
1067         }
1068
1069         if (!*discard_done && ca->mi.discard && !c->opts.nochanges) {
1070                 /*
1071                  * This works without any other locks because this is the only
1072                  * thread that removes items from the need_discard tree
1073                  */
1074                 bch2_trans_unlock(trans);
1075                 blkdev_issue_discard(ca->disk_sb.bdev,
1076                                      k.k->p.offset * ca->mi.bucket_size,
1077                                      ca->mi.bucket_size,
1078                                      GFP_KERNEL, 0);
1079                 *discard_done = true;
1080
1081                 ret = bch2_trans_relock(trans) ? 0 : -EINTR;
1082                 if (ret)
1083                         goto out;
1084         }
1085
1086         SET_BCH_ALLOC_V4_NEED_DISCARD(&a->v, false);
1087         a->v.data_type = alloc_data_type(a->v, a->v.data_type);
1088 write:
1089         ret = bch2_trans_update(trans, &iter, &a->k_i, 0);
1090 out:
1091         bch2_trans_iter_exit(trans, &iter);
1092         printbuf_exit(&buf);
1093         return ret;
1094 }
1095
1096 static void bch2_do_discards_work(struct work_struct *work)
1097 {
1098         struct bch_fs *c = container_of(work, struct bch_fs, discard_work);
1099         struct bch_dev *ca = NULL;
1100         struct btree_trans trans;
1101         struct btree_iter iter;
1102         struct bkey_s_c k;
1103         u64 seen = 0, open = 0, need_journal_commit = 0, discarded = 0;
1104         int ret;
1105
1106         bch2_trans_init(&trans, c, 0, 0);
1107
1108         for_each_btree_key(&trans, iter, BTREE_ID_need_discard,
1109                            POS_MIN, 0, k, ret) {
1110                 bool discard_done = false;
1111
1112                 if (ca && k.k->p.inode != ca->dev_idx) {
1113                         percpu_ref_put(&ca->io_ref);
1114                         ca = NULL;
1115                 }
1116
1117                 if (!ca) {
1118                         ca = bch_dev_bkey_exists(c, k.k->p.inode);
1119                         if (!percpu_ref_tryget(&ca->io_ref)) {
1120                                 ca = NULL;
1121                                 bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0));
1122                                 continue;
1123                         }
1124                 }
1125
1126                 seen++;
1127
1128                 if (bch2_bucket_is_open_safe(c, k.k->p.inode, k.k->p.offset)) {
1129                         open++;
1130                         continue;
1131                 }
1132
1133                 if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal,
1134                                 c->journal.flushed_seq_ondisk,
1135                                 k.k->p.inode, k.k->p.offset)) {
1136                         need_journal_commit++;
1137                         continue;
1138                 }
1139
1140                 ret = __bch2_trans_do(&trans, NULL, NULL,
1141                                       BTREE_INSERT_USE_RESERVE|
1142                                       BTREE_INSERT_NOFAIL,
1143                                 bch2_clear_need_discard(&trans, k.k->p, ca, &discard_done));
1144                 if (ret)
1145                         break;
1146
1147                 this_cpu_inc(c->counters[BCH_COUNTER_bucket_discard]);
1148                 discarded++;
1149         }
1150         bch2_trans_iter_exit(&trans, &iter);
1151
1152         if (ca)
1153                 percpu_ref_put(&ca->io_ref);
1154
1155         bch2_trans_exit(&trans);
1156
1157         if (need_journal_commit * 2 > seen)
1158                 bch2_journal_flush_async(&c->journal, NULL);
1159
1160         percpu_ref_put(&c->writes);
1161
1162         trace_discard_buckets(c, seen, open, need_journal_commit, discarded, ret);
1163 }
1164
1165 void bch2_do_discards(struct bch_fs *c)
1166 {
1167         if (percpu_ref_tryget_live(&c->writes) &&
1168             !queue_work(system_long_wq, &c->discard_work))
1169                 percpu_ref_put(&c->writes);
1170 }
1171
1172 static int invalidate_one_bucket(struct btree_trans *trans, struct bch_dev *ca,
1173                                  struct bpos *bucket_pos, unsigned *cached_sectors)
1174 {
1175         struct bch_fs *c = trans->c;
1176         struct btree_iter lru_iter, alloc_iter = { NULL };
1177         struct bkey_s_c k;
1178         struct bkey_i_alloc_v4 *a;
1179         u64 bucket, idx;
1180         struct printbuf buf = PRINTBUF;
1181         int ret;
1182
1183         bch2_trans_iter_init(trans, &lru_iter, BTREE_ID_lru,
1184                              POS(ca->dev_idx, 0), 0);
1185 next_lru:
1186         k = bch2_btree_iter_peek(&lru_iter);
1187         ret = bkey_err(k);
1188         if (ret)
1189                 goto out;
1190
1191         if (!k.k || k.k->p.inode != ca->dev_idx) {
1192                 ret = 1;
1193                 goto out;
1194         }
1195
1196         if (k.k->type != KEY_TYPE_lru) {
1197                 prt_printf(&buf, "non lru key in lru btree:\n  ");
1198                 bch2_bkey_val_to_text(&buf, c, k);
1199
1200                 if (!test_bit(BCH_FS_CHECK_LRUS_DONE, &c->flags)) {
1201                         bch_err(c, "%s", buf.buf);
1202                         bch2_btree_iter_advance(&lru_iter);
1203                         goto next_lru;
1204                 } else {
1205                         bch2_trans_inconsistent(trans, "%s", buf.buf);
1206                         ret = -EINVAL;
1207                         goto out;
1208                 }
1209         }
1210
1211         idx     = k.k->p.offset;
1212         bucket  = le64_to_cpu(bkey_s_c_to_lru(k).v->idx);
1213
1214         *bucket_pos = POS(ca->dev_idx, bucket);
1215
1216         a = bch2_trans_start_alloc_update(trans, &alloc_iter, *bucket_pos);
1217         ret = PTR_ERR_OR_ZERO(a);
1218         if (ret)
1219                 goto out;
1220
1221         if (idx != alloc_lru_idx(a->v)) {
1222                 prt_printf(&buf, "alloc key does not point back to lru entry when invalidating bucket:\n  ");
1223                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&a->k_i));
1224                 prt_printf(&buf, "\n  ");
1225                 bch2_bkey_val_to_text(&buf, c, k);
1226
1227                 if (!test_bit(BCH_FS_CHECK_LRUS_DONE, &c->flags)) {
1228                         bch_err(c, "%s", buf.buf);
1229                         bch2_btree_iter_advance(&lru_iter);
1230                         goto next_lru;
1231                 } else {
1232                         bch2_trans_inconsistent(trans, "%s", buf.buf);
1233                         ret = -EINVAL;
1234                         goto out;
1235                 }
1236         }
1237
1238         if (!a->v.cached_sectors)
1239                 bch_err(c, "invalidating empty bucket, confused");
1240
1241         *cached_sectors = a->v.cached_sectors;
1242
1243         SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false);
1244         a->v.gen++;
1245         a->v.data_type          = 0;
1246         a->v.dirty_sectors      = 0;
1247         a->v.cached_sectors     = 0;
1248         a->v.io_time[READ]      = atomic64_read(&c->io_clock[READ].now);
1249         a->v.io_time[WRITE]     = atomic64_read(&c->io_clock[WRITE].now);
1250
1251         ret = bch2_trans_update(trans, &alloc_iter, &a->k_i,
1252                                 BTREE_TRIGGER_BUCKET_INVALIDATE);
1253         if (ret)
1254                 goto out;
1255 out:
1256         bch2_trans_iter_exit(trans, &alloc_iter);
1257         bch2_trans_iter_exit(trans, &lru_iter);
1258         printbuf_exit(&buf);
1259         return ret;
1260 }
1261
1262 static void bch2_do_invalidates_work(struct work_struct *work)
1263 {
1264         struct bch_fs *c = container_of(work, struct bch_fs, invalidate_work);
1265         struct bch_dev *ca;
1266         struct btree_trans trans;
1267         struct bpos bucket;
1268         unsigned i, sectors;
1269         int ret = 0;
1270
1271         bch2_trans_init(&trans, c, 0, 0);
1272
1273         for_each_member_device(ca, c, i) {
1274                 s64 nr_to_invalidate =
1275                         should_invalidate_buckets(ca, bch2_dev_usage_read(ca));
1276
1277                 while (nr_to_invalidate-- >= 0) {
1278                         ret = __bch2_trans_do(&trans, NULL, NULL,
1279                                               BTREE_INSERT_USE_RESERVE|
1280                                               BTREE_INSERT_NOFAIL,
1281                                         invalidate_one_bucket(&trans, ca, &bucket,
1282                                                               &sectors));
1283                         if (ret)
1284                                 break;
1285
1286                         trace_invalidate_bucket(c, bucket.inode, bucket.offset, sectors);
1287                         this_cpu_inc(c->counters[BCH_COUNTER_bucket_invalidate]);
1288                 }
1289         }
1290
1291         bch2_trans_exit(&trans);
1292         percpu_ref_put(&c->writes);
1293 }
1294
1295 void bch2_do_invalidates(struct bch_fs *c)
1296 {
1297         if (percpu_ref_tryget_live(&c->writes) &&
1298             !queue_work(system_long_wq, &c->invalidate_work))
1299                 percpu_ref_put(&c->writes);
1300 }
1301
1302 static int bucket_freespace_init(struct btree_trans *trans, struct btree_iter *iter)
1303 {
1304         struct bch_alloc_v4 a;
1305         struct bkey_s_c k;
1306         int ret;
1307
1308         k = bch2_btree_iter_peek_slot(iter);
1309         ret = bkey_err(k);
1310         if (ret)
1311                 return ret;
1312
1313         bch2_alloc_to_v4(k, &a);
1314         return bch2_bucket_do_index(trans, k, &a, true);
1315 }
1316
1317 static int bch2_dev_freespace_init(struct bch_fs *c, struct bch_dev *ca)
1318 {
1319         struct btree_trans trans;
1320         struct btree_iter iter;
1321         struct bkey_s_c k;
1322         struct bch_member *m;
1323         int ret;
1324
1325         bch2_trans_init(&trans, c, 0, 0);
1326
1327         for_each_btree_key(&trans, iter, BTREE_ID_alloc,
1328                            POS(ca->dev_idx, ca->mi.first_bucket),
1329                            BTREE_ITER_SLOTS|
1330                            BTREE_ITER_PREFETCH, k, ret) {
1331                 if (iter.pos.offset >= ca->mi.nbuckets)
1332                         break;
1333
1334                 ret = __bch2_trans_do(&trans, NULL, NULL,
1335                                       BTREE_INSERT_LAZY_RW,
1336                                  bucket_freespace_init(&trans, &iter));
1337                 if (ret)
1338                         break;
1339         }
1340         bch2_trans_iter_exit(&trans, &iter);
1341
1342         bch2_trans_exit(&trans);
1343
1344         if (ret) {
1345                 bch_err(ca, "error initializing free space: %i", ret);
1346                 return ret;
1347         }
1348
1349         mutex_lock(&c->sb_lock);
1350         m = bch2_sb_get_members(c->disk_sb.sb)->members + ca->dev_idx;
1351         SET_BCH_MEMBER_FREESPACE_INITIALIZED(m, true);
1352         mutex_unlock(&c->sb_lock);
1353
1354         return ret;
1355 }
1356
1357 int bch2_fs_freespace_init(struct bch_fs *c)
1358 {
1359         struct bch_dev *ca;
1360         unsigned i;
1361         int ret = 0;
1362         bool doing_init = false;
1363
1364         /*
1365          * We can crash during the device add path, so we need to check this on
1366          * every mount:
1367          */
1368
1369         for_each_member_device(ca, c, i) {
1370                 if (ca->mi.freespace_initialized)
1371                         continue;
1372
1373                 if (!doing_init) {
1374                         bch_info(c, "initializing freespace");
1375                         doing_init = true;
1376                 }
1377
1378                 ret = bch2_dev_freespace_init(c, ca);
1379                 if (ret) {
1380                         percpu_ref_put(&ca->ref);
1381                         return ret;
1382                 }
1383         }
1384
1385         if (doing_init) {
1386                 mutex_lock(&c->sb_lock);
1387                 bch2_write_super(c);
1388                 mutex_unlock(&c->sb_lock);
1389
1390                 bch_verbose(c, "done initializing freespace");
1391         }
1392
1393         return ret;
1394 }
1395
1396 /* Bucket IO clocks: */
1397
1398 int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
1399                               size_t bucket_nr, int rw)
1400 {
1401         struct bch_fs *c = trans->c;
1402         struct btree_iter iter;
1403         struct bkey_i_alloc_v4 *a;
1404         u64 now;
1405         int ret = 0;
1406
1407         a = bch2_trans_start_alloc_update(trans, &iter,  POS(dev, bucket_nr));
1408         ret = PTR_ERR_OR_ZERO(a);
1409         if (ret)
1410                 return ret;
1411
1412         now = atomic64_read(&c->io_clock[rw].now);
1413         if (a->v.io_time[rw] == now)
1414                 goto out;
1415
1416         a->v.io_time[rw] = now;
1417
1418         ret   = bch2_trans_update(trans, &iter, &a->k_i, 0) ?:
1419                 bch2_trans_commit(trans, NULL, NULL, 0);
1420 out:
1421         bch2_trans_iter_exit(trans, &iter);
1422         return ret;
1423 }
1424
1425 /* Startup/shutdown (ro/rw): */
1426
1427 void bch2_recalc_capacity(struct bch_fs *c)
1428 {
1429         struct bch_dev *ca;
1430         u64 capacity = 0, reserved_sectors = 0, gc_reserve;
1431         unsigned bucket_size_max = 0;
1432         unsigned long ra_pages = 0;
1433         unsigned i;
1434
1435         lockdep_assert_held(&c->state_lock);
1436
1437         for_each_online_member(ca, c, i) {
1438                 struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi;
1439
1440                 ra_pages += bdi->ra_pages;
1441         }
1442
1443         bch2_set_ra_pages(c, ra_pages);
1444
1445         for_each_rw_member(ca, c, i) {
1446                 u64 dev_reserve = 0;
1447
1448                 /*
1449                  * We need to reserve buckets (from the number
1450                  * of currently available buckets) against
1451                  * foreground writes so that mainly copygc can
1452                  * make forward progress.
1453                  *
1454                  * We need enough to refill the various reserves
1455                  * from scratch - copygc will use its entire
1456                  * reserve all at once, then run against when
1457                  * its reserve is refilled (from the formerly
1458                  * available buckets).
1459                  *
1460                  * This reserve is just used when considering if
1461                  * allocations for foreground writes must wait -
1462                  * not -ENOSPC calculations.
1463                  */
1464
1465                 dev_reserve += ca->nr_btree_reserve * 2;
1466                 dev_reserve += ca->mi.nbuckets >> 6; /* copygc reserve */
1467
1468                 dev_reserve += 1;       /* btree write point */
1469                 dev_reserve += 1;       /* copygc write point */
1470                 dev_reserve += 1;       /* rebalance write point */
1471
1472                 dev_reserve *= ca->mi.bucket_size;
1473
1474                 capacity += bucket_to_sector(ca, ca->mi.nbuckets -
1475                                              ca->mi.first_bucket);
1476
1477                 reserved_sectors += dev_reserve * 2;
1478
1479                 bucket_size_max = max_t(unsigned, bucket_size_max,
1480                                         ca->mi.bucket_size);
1481         }
1482
1483         gc_reserve = c->opts.gc_reserve_bytes
1484                 ? c->opts.gc_reserve_bytes >> 9
1485                 : div64_u64(capacity * c->opts.gc_reserve_percent, 100);
1486
1487         reserved_sectors = max(gc_reserve, reserved_sectors);
1488
1489         reserved_sectors = min(reserved_sectors, capacity);
1490
1491         c->capacity = capacity - reserved_sectors;
1492
1493         c->bucket_size_max = bucket_size_max;
1494
1495         /* Wake up case someone was waiting for buckets */
1496         closure_wake_up(&c->freelist_wait);
1497 }
1498
1499 static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
1500 {
1501         struct open_bucket *ob;
1502         bool ret = false;
1503
1504         for (ob = c->open_buckets;
1505              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
1506              ob++) {
1507                 spin_lock(&ob->lock);
1508                 if (ob->valid && !ob->on_partial_list &&
1509                     ob->dev == ca->dev_idx)
1510                         ret = true;
1511                 spin_unlock(&ob->lock);
1512         }
1513
1514         return ret;
1515 }
1516
1517 /* device goes ro: */
1518 void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
1519 {
1520         unsigned i;
1521
1522         /* First, remove device from allocation groups: */
1523
1524         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1525                 clear_bit(ca->dev_idx, c->rw_devs[i].d);
1526
1527         /*
1528          * Capacity is calculated based off of devices in allocation groups:
1529          */
1530         bch2_recalc_capacity(c);
1531
1532         /* Next, close write points that point to this device... */
1533         for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
1534                 bch2_writepoint_stop(c, ca, &c->write_points[i]);
1535
1536         bch2_writepoint_stop(c, ca, &c->copygc_write_point);
1537         bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
1538         bch2_writepoint_stop(c, ca, &c->btree_write_point);
1539
1540         mutex_lock(&c->btree_reserve_cache_lock);
1541         while (c->btree_reserve_cache_nr) {
1542                 struct btree_alloc *a =
1543                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
1544
1545                 bch2_open_buckets_put(c, &a->ob);
1546         }
1547         mutex_unlock(&c->btree_reserve_cache_lock);
1548
1549         while (1) {
1550                 struct open_bucket *ob;
1551
1552                 spin_lock(&c->freelist_lock);
1553                 if (!ca->open_buckets_partial_nr) {
1554                         spin_unlock(&c->freelist_lock);
1555                         break;
1556                 }
1557                 ob = c->open_buckets +
1558                         ca->open_buckets_partial[--ca->open_buckets_partial_nr];
1559                 ob->on_partial_list = false;
1560                 spin_unlock(&c->freelist_lock);
1561
1562                 bch2_open_bucket_put(c, ob);
1563         }
1564
1565         bch2_ec_stop_dev(c, ca);
1566
1567         /*
1568          * Wake up threads that were blocked on allocation, so they can notice
1569          * the device can no longer be removed and the capacity has changed:
1570          */
1571         closure_wake_up(&c->freelist_wait);
1572
1573         /*
1574          * journal_res_get() can block waiting for free space in the journal -
1575          * it needs to notice there may not be devices to allocate from anymore:
1576          */
1577         wake_up(&c->journal.wait);
1578
1579         /* Now wait for any in flight writes: */
1580
1581         closure_wait_event(&c->open_buckets_wait,
1582                            !bch2_dev_has_open_write_point(c, ca));
1583 }
1584
1585 /* device goes rw: */
1586 void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
1587 {
1588         unsigned i;
1589
1590         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1591                 if (ca->mi.data_allowed & (1 << i))
1592                         set_bit(ca->dev_idx, c->rw_devs[i].d);
1593 }
1594
1595 void bch2_fs_allocator_background_init(struct bch_fs *c)
1596 {
1597         spin_lock_init(&c->freelist_lock);
1598         INIT_WORK(&c->discard_work, bch2_do_discards_work);
1599         INIT_WORK(&c->invalidate_work, bch2_do_invalidates_work);
1600 }