]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/alloc_background.c
93fa9bf931d20d1cb5d8c99dca87f5d24c33bbc5
[bcachefs-tools-debian] / libbcachefs / alloc_background.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "bcachefs.h"
3 #include "alloc_background.h"
4 #include "alloc_foreground.h"
5 #include "btree_cache.h"
6 #include "btree_io.h"
7 #include "btree_key_cache.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_gc.h"
11 #include "buckets.h"
12 #include "clock.h"
13 #include "debug.h"
14 #include "ec.h"
15 #include "error.h"
16 #include "recovery.h"
17 #include "varint.h"
18
19 #include <linux/kthread.h>
20 #include <linux/math64.h>
21 #include <linux/random.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24 #include <linux/sched/task.h>
25 #include <linux/sort.h>
26 #include <trace/events/bcachefs.h>
27
28 const char * const bch2_allocator_states[] = {
29 #define x(n)    #n,
30         ALLOC_THREAD_STATES()
31 #undef x
32         NULL
33 };
34
35 static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = {
36 #define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8,
37         BCH_ALLOC_FIELDS_V1()
38 #undef x
39 };
40
41 /* Persistent alloc info: */
42
43 static inline u64 alloc_field_v1_get(const struct bch_alloc *a,
44                                      const void **p, unsigned field)
45 {
46         unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
47         u64 v;
48
49         if (!(a->fields & (1 << field)))
50                 return 0;
51
52         switch (bytes) {
53         case 1:
54                 v = *((const u8 *) *p);
55                 break;
56         case 2:
57                 v = le16_to_cpup(*p);
58                 break;
59         case 4:
60                 v = le32_to_cpup(*p);
61                 break;
62         case 8:
63                 v = le64_to_cpup(*p);
64                 break;
65         default:
66                 BUG();
67         }
68
69         *p += bytes;
70         return v;
71 }
72
73 static inline void alloc_field_v1_put(struct bkey_i_alloc *a, void **p,
74                                       unsigned field, u64 v)
75 {
76         unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
77
78         if (!v)
79                 return;
80
81         a->v.fields |= 1 << field;
82
83         switch (bytes) {
84         case 1:
85                 *((u8 *) *p) = v;
86                 break;
87         case 2:
88                 *((__le16 *) *p) = cpu_to_le16(v);
89                 break;
90         case 4:
91                 *((__le32 *) *p) = cpu_to_le32(v);
92                 break;
93         case 8:
94                 *((__le64 *) *p) = cpu_to_le64(v);
95                 break;
96         default:
97                 BUG();
98         }
99
100         *p += bytes;
101 }
102
103 static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out,
104                                  struct bkey_s_c k)
105 {
106         const struct bch_alloc *in = bkey_s_c_to_alloc(k).v;
107         const void *d = in->data;
108         unsigned idx = 0;
109
110         out->gen = in->gen;
111
112 #define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++);
113         BCH_ALLOC_FIELDS_V1()
114 #undef  x
115 }
116
117 static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out,
118                                 struct bkey_s_c k)
119 {
120         struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k);
121         const u8 *in = a.v->data;
122         const u8 *end = bkey_val_end(a);
123         unsigned fieldnr = 0;
124         int ret;
125         u64 v;
126
127         out->gen        = a.v->gen;
128         out->oldest_gen = a.v->oldest_gen;
129         out->data_type  = a.v->data_type;
130
131 #define x(_name, _bits)                                                 \
132         if (fieldnr < a.v->nr_fields) {                                 \
133                 ret = bch2_varint_decode_fast(in, end, &v);             \
134                 if (ret < 0)                                            \
135                         return ret;                                     \
136                 in += ret;                                              \
137         } else {                                                        \
138                 v = 0;                                                  \
139         }                                                               \
140         out->_name = v;                                                 \
141         if (v != out->_name)                                            \
142                 return -1;                                              \
143         fieldnr++;
144
145         BCH_ALLOC_FIELDS_V2()
146 #undef  x
147         return 0;
148 }
149
150 static void bch2_alloc_pack_v2(struct bkey_alloc_buf *dst,
151                                const struct bkey_alloc_unpacked src)
152 {
153         struct bkey_i_alloc_v2 *a = bkey_alloc_v2_init(&dst->k);
154         unsigned nr_fields = 0, last_nonzero_fieldnr = 0;
155         u8 *out = a->v.data;
156         u8 *end = (void *) &dst[1];
157         u8 *last_nonzero_field = out;
158         unsigned bytes;
159
160         a->k.p          = POS(src.dev, src.bucket);
161         a->v.gen        = src.gen;
162         a->v.oldest_gen = src.oldest_gen;
163         a->v.data_type  = src.data_type;
164
165 #define x(_name, _bits)                                                 \
166         nr_fields++;                                                    \
167                                                                         \
168         if (src._name) {                                                \
169                 out += bch2_varint_encode_fast(out, src._name);         \
170                                                                         \
171                 last_nonzero_field = out;                               \
172                 last_nonzero_fieldnr = nr_fields;                       \
173         } else {                                                        \
174                 *out++ = 0;                                             \
175         }
176
177         BCH_ALLOC_FIELDS_V2()
178 #undef  x
179         BUG_ON(out > end);
180
181         out = last_nonzero_field;
182         a->v.nr_fields = last_nonzero_fieldnr;
183
184         bytes = (u8 *) out - (u8 *) &a->v;
185         set_bkey_val_bytes(&a->k, bytes);
186         memset_u64s_tail(&a->v, 0, bytes);
187 }
188
189 struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k)
190 {
191         struct bkey_alloc_unpacked ret = {
192                 .dev    = k.k->p.inode,
193                 .bucket = k.k->p.offset,
194                 .gen    = 0,
195         };
196
197         if (k.k->type == KEY_TYPE_alloc_v2)
198                 bch2_alloc_unpack_v2(&ret, k);
199         else if (k.k->type == KEY_TYPE_alloc)
200                 bch2_alloc_unpack_v1(&ret, k);
201
202         return ret;
203 }
204
205 void bch2_alloc_pack(struct bch_fs *c,
206                      struct bkey_alloc_buf *dst,
207                      const struct bkey_alloc_unpacked src)
208 {
209         bch2_alloc_pack_v2(dst, src);
210 }
211
212 static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a)
213 {
214         unsigned i, bytes = offsetof(struct bch_alloc, data);
215
216         for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++)
217                 if (a->fields & (1 << i))
218                         bytes += BCH_ALLOC_V1_FIELD_BYTES[i];
219
220         return DIV_ROUND_UP(bytes, sizeof(u64));
221 }
222
223 const char *bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k)
224 {
225         struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
226
227         if (k.k->p.inode >= c->sb.nr_devices ||
228             !c->devs[k.k->p.inode])
229                 return "invalid device";
230
231         /* allow for unknown fields */
232         if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v))
233                 return "incorrect value size";
234
235         return NULL;
236 }
237
238 const char *bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k)
239 {
240         struct bkey_alloc_unpacked u;
241
242         if (k.k->p.inode >= c->sb.nr_devices ||
243             !c->devs[k.k->p.inode])
244                 return "invalid device";
245
246         if (bch2_alloc_unpack_v2(&u, k))
247                 return "unpack error";
248
249         return NULL;
250 }
251
252 void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c,
253                            struct bkey_s_c k)
254 {
255         struct bkey_alloc_unpacked u = bch2_alloc_unpack(k);
256
257         pr_buf(out, "gen %u oldest_gen %u data_type %s",
258                u.gen, u.oldest_gen, bch2_data_types[u.data_type]);
259 #define x(_name, ...)   pr_buf(out, " " #_name " %llu", (u64) u._name);
260         BCH_ALLOC_FIELDS_V2()
261 #undef  x
262 }
263
264 static int bch2_alloc_read_fn(struct bch_fs *c, struct bkey_s_c k)
265 {
266         struct bch_dev *ca;
267         struct bucket *g;
268         struct bkey_alloc_unpacked u;
269
270         if (k.k->type != KEY_TYPE_alloc &&
271             k.k->type != KEY_TYPE_alloc_v2)
272                 return 0;
273
274         ca = bch_dev_bkey_exists(c, k.k->p.inode);
275         g = bucket(ca, k.k->p.offset);
276         u = bch2_alloc_unpack(k);
277
278         g->_mark.gen            = u.gen;
279         g->_mark.data_type      = u.data_type;
280         g->_mark.dirty_sectors  = u.dirty_sectors;
281         g->_mark.cached_sectors = u.cached_sectors;
282         g->io_time[READ]        = u.read_time;
283         g->io_time[WRITE]       = u.write_time;
284         g->oldest_gen           = u.oldest_gen;
285         g->gen_valid            = 1;
286
287         return 0;
288 }
289
290 int bch2_alloc_read(struct bch_fs *c)
291 {
292         int ret;
293
294         down_read(&c->gc_lock);
295         ret = bch2_btree_and_journal_walk(c, BTREE_ID_alloc, bch2_alloc_read_fn);
296         up_read(&c->gc_lock);
297         if (ret) {
298                 bch_err(c, "error reading alloc info: %i", ret);
299                 return ret;
300         }
301
302         return 0;
303 }
304
305 static int bch2_alloc_write_key(struct btree_trans *trans,
306                                 struct btree_iter *iter,
307                                 unsigned flags)
308 {
309         struct bch_fs *c = trans->c;
310         struct bkey_s_c k;
311         struct bch_dev *ca;
312         struct bucket *g;
313         struct bucket_mark m;
314         struct bkey_alloc_unpacked old_u, new_u;
315         struct bkey_alloc_buf a;
316         int ret;
317 retry:
318         bch2_trans_begin(trans);
319
320         ret = bch2_btree_key_cache_flush(trans,
321                         BTREE_ID_alloc, iter->pos);
322         if (ret)
323                 goto err;
324
325         k = bch2_btree_iter_peek_slot(iter);
326         ret = bkey_err(k);
327         if (ret)
328                 goto err;
329
330         old_u = bch2_alloc_unpack(k);
331
332         percpu_down_read(&c->mark_lock);
333         ca      = bch_dev_bkey_exists(c, iter->pos.inode);
334         g       = bucket(ca, iter->pos.offset);
335         m       = READ_ONCE(g->mark);
336         new_u   = alloc_mem_to_key(iter, g, m);
337         percpu_up_read(&c->mark_lock);
338
339         if (!bkey_alloc_unpacked_cmp(old_u, new_u))
340                 return 0;
341
342         bch2_alloc_pack(c, &a, new_u);
343         ret   = bch2_trans_update(trans, iter, &a.k,
344                                   BTREE_TRIGGER_NORUN) ?:
345                 bch2_trans_commit(trans, NULL, NULL,
346                                 BTREE_INSERT_NOFAIL|flags);
347 err:
348         if (ret == -EINTR)
349                 goto retry;
350         return ret;
351 }
352
353 int bch2_alloc_write(struct bch_fs *c, unsigned flags)
354 {
355         struct btree_trans trans;
356         struct btree_iter iter;
357         struct bch_dev *ca;
358         unsigned i;
359         int ret = 0;
360
361         bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0);
362         bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN,
363                              BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
364
365         for_each_member_device(ca, c, i) {
366                 bch2_btree_iter_set_pos(&iter,
367                         POS(ca->dev_idx, ca->mi.first_bucket));
368
369                 while (iter.pos.offset < ca->mi.nbuckets) {
370                         ret = bch2_alloc_write_key(&trans, &iter, flags);
371                         if (ret) {
372                                 percpu_ref_put(&ca->ref);
373                                 goto err;
374                         }
375                         bch2_btree_iter_advance(&iter);
376                 }
377         }
378 err:
379         bch2_trans_iter_exit(&trans, &iter);
380         bch2_trans_exit(&trans);
381         return ret;
382 }
383
384 /* Bucket IO clocks: */
385
386 int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
387                               size_t bucket_nr, int rw)
388 {
389         struct bch_fs *c = trans->c;
390         struct bch_dev *ca = bch_dev_bkey_exists(c, dev);
391         struct btree_iter iter;
392         struct bucket *g;
393         struct bkey_alloc_buf *a;
394         struct bkey_alloc_unpacked u;
395         u64 *time, now;
396         int ret = 0;
397
398         bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, POS(dev, bucket_nr),
399                              BTREE_ITER_CACHED|
400                              BTREE_ITER_CACHED_NOFILL|
401                              BTREE_ITER_INTENT);
402         ret = bch2_btree_iter_traverse(&iter);
403         if (ret)
404                 goto out;
405
406         a = bch2_trans_kmalloc(trans, sizeof(struct bkey_alloc_buf));
407         ret = PTR_ERR_OR_ZERO(a);
408         if (ret)
409                 goto out;
410
411         percpu_down_read(&c->mark_lock);
412         g = bucket(ca, bucket_nr);
413         u = alloc_mem_to_key(&iter, g, READ_ONCE(g->mark));
414         percpu_up_read(&c->mark_lock);
415
416         time = rw == READ ? &u.read_time : &u.write_time;
417         now = atomic64_read(&c->io_clock[rw].now);
418         if (*time == now)
419                 goto out;
420
421         *time = now;
422
423         bch2_alloc_pack(c, a, u);
424         ret   = bch2_trans_update(trans, &iter, &a->k, 0) ?:
425                 bch2_trans_commit(trans, NULL, NULL, 0);
426 out:
427         bch2_trans_iter_exit(trans, &iter);
428         return ret;
429 }
430
431 /* Background allocator thread: */
432
433 /*
434  * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens
435  * (marking them as invalidated on disk), then optionally issues discard
436  * commands to the newly free buckets, then puts them on the various freelists.
437  */
438
439 static bool bch2_can_invalidate_bucket(struct bch_dev *ca, size_t b,
440                                        struct bucket_mark m)
441 {
442         u8 gc_gen;
443
444         if (!is_available_bucket(m))
445                 return false;
446
447         if (m.owned_by_allocator)
448                 return false;
449
450         if (ca->buckets_nouse &&
451             test_bit(b, ca->buckets_nouse))
452                 return false;
453
454         gc_gen = bucket_gc_gen(bucket(ca, b));
455
456         ca->inc_gen_needs_gc            += gc_gen >= BUCKET_GC_GEN_MAX / 2;
457         ca->inc_gen_really_needs_gc     += gc_gen >= BUCKET_GC_GEN_MAX;
458
459         return gc_gen < BUCKET_GC_GEN_MAX;
460 }
461
462 /*
463  * Determines what order we're going to reuse buckets, smallest bucket_key()
464  * first.
465  */
466
467 static unsigned bucket_sort_key(struct bucket *g, struct bucket_mark m,
468                                 u64 now, u64 last_seq_ondisk)
469 {
470         unsigned used = bucket_sectors_used(m);
471
472         if (used) {
473                 /*
474                  * Prefer to keep buckets that have been read more recently, and
475                  * buckets that have more data in them:
476                  */
477                 u64 last_read = max_t(s64, 0, now - g->io_time[READ]);
478                 u32 last_read_scaled = max_t(u64, U32_MAX, div_u64(last_read, used));
479
480                 return -last_read_scaled;
481         } else {
482                 /*
483                  * Prefer to use buckets with smaller gc_gen so that we don't
484                  * have to walk the btree and recalculate oldest_gen - but shift
485                  * off the low bits so that buckets will still have equal sort
486                  * keys when there's only a small difference, so that we can
487                  * keep sequential buckets together:
488                  */
489                 return  (bucket_needs_journal_commit(m, last_seq_ondisk) << 4)|
490                         (bucket_gc_gen(g) >> 4);
491         }
492 }
493
494 static inline int bucket_alloc_cmp(alloc_heap *h,
495                                    struct alloc_heap_entry l,
496                                    struct alloc_heap_entry r)
497 {
498         return  cmp_int(l.key, r.key) ?:
499                 cmp_int(r.nr, l.nr) ?:
500                 cmp_int(l.bucket, r.bucket);
501 }
502
503 static inline int bucket_idx_cmp(const void *_l, const void *_r)
504 {
505         const struct alloc_heap_entry *l = _l, *r = _r;
506
507         return cmp_int(l->bucket, r->bucket);
508 }
509
510 static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca)
511 {
512         struct bucket_array *buckets;
513         struct alloc_heap_entry e = { 0 };
514         u64 now, last_seq_ondisk;
515         size_t b, i, nr = 0;
516
517         down_read(&ca->bucket_lock);
518
519         buckets = bucket_array(ca);
520         ca->alloc_heap.used = 0;
521         now = atomic64_read(&c->io_clock[READ].now);
522         last_seq_ondisk = c->journal.last_seq_ondisk;
523
524         /*
525          * Find buckets with lowest read priority, by building a maxheap sorted
526          * by read priority and repeatedly replacing the maximum element until
527          * all buckets have been visited.
528          */
529         for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) {
530                 struct bucket *g = &buckets->b[b];
531                 struct bucket_mark m = READ_ONCE(g->mark);
532                 unsigned key = bucket_sort_key(g, m, now, last_seq_ondisk);
533
534                 cond_resched();
535
536                 if (!bch2_can_invalidate_bucket(ca, b, m))
537                         continue;
538
539                 if (e.nr && e.bucket + e.nr == b && e.key == key) {
540                         e.nr++;
541                 } else {
542                         if (e.nr)
543                                 heap_add_or_replace(&ca->alloc_heap, e,
544                                         -bucket_alloc_cmp, NULL);
545
546                         e = (struct alloc_heap_entry) {
547                                 .bucket = b,
548                                 .nr     = 1,
549                                 .key    = key,
550                         };
551                 }
552         }
553
554         if (e.nr)
555                 heap_add_or_replace(&ca->alloc_heap, e,
556                                 -bucket_alloc_cmp, NULL);
557
558         for (i = 0; i < ca->alloc_heap.used; i++)
559                 nr += ca->alloc_heap.data[i].nr;
560
561         while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) {
562                 nr -= ca->alloc_heap.data[0].nr;
563                 heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL);
564         }
565
566         up_read(&ca->bucket_lock);
567 }
568
569 static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca)
570 {
571         struct bucket_array *buckets = bucket_array(ca);
572         struct bucket_mark m;
573         size_t b, start;
574
575         if (ca->fifo_last_bucket <  ca->mi.first_bucket ||
576             ca->fifo_last_bucket >= ca->mi.nbuckets)
577                 ca->fifo_last_bucket = ca->mi.first_bucket;
578
579         start = ca->fifo_last_bucket;
580
581         do {
582                 ca->fifo_last_bucket++;
583                 if (ca->fifo_last_bucket == ca->mi.nbuckets)
584                         ca->fifo_last_bucket = ca->mi.first_bucket;
585
586                 b = ca->fifo_last_bucket;
587                 m = READ_ONCE(buckets->b[b].mark);
588
589                 if (bch2_can_invalidate_bucket(ca, b, m)) {
590                         struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
591
592                         heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
593                         if (heap_full(&ca->alloc_heap))
594                                 break;
595                 }
596
597                 cond_resched();
598         } while (ca->fifo_last_bucket != start);
599 }
600
601 static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca)
602 {
603         struct bucket_array *buckets = bucket_array(ca);
604         struct bucket_mark m;
605         size_t checked, i;
606
607         for (checked = 0;
608              checked < ca->mi.nbuckets / 2;
609              checked++) {
610                 size_t b = bch2_rand_range(ca->mi.nbuckets -
611                                            ca->mi.first_bucket) +
612                         ca->mi.first_bucket;
613
614                 m = READ_ONCE(buckets->b[b].mark);
615
616                 if (bch2_can_invalidate_bucket(ca, b, m)) {
617                         struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
618
619                         heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
620                         if (heap_full(&ca->alloc_heap))
621                                 break;
622                 }
623
624                 cond_resched();
625         }
626
627         sort(ca->alloc_heap.data,
628              ca->alloc_heap.used,
629              sizeof(ca->alloc_heap.data[0]),
630              bucket_idx_cmp, NULL);
631
632         /* remove duplicates: */
633         for (i = 0; i + 1 < ca->alloc_heap.used; i++)
634                 if (ca->alloc_heap.data[i].bucket ==
635                     ca->alloc_heap.data[i + 1].bucket)
636                         ca->alloc_heap.data[i].nr = 0;
637 }
638
639 static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca)
640 {
641         size_t i, nr = 0;
642
643         ca->inc_gen_needs_gc                    = 0;
644         ca->inc_gen_really_needs_gc             = 0;
645
646         switch (ca->mi.replacement) {
647         case BCH_CACHE_REPLACEMENT_lru:
648                 find_reclaimable_buckets_lru(c, ca);
649                 break;
650         case BCH_CACHE_REPLACEMENT_fifo:
651                 find_reclaimable_buckets_fifo(c, ca);
652                 break;
653         case BCH_CACHE_REPLACEMENT_random:
654                 find_reclaimable_buckets_random(c, ca);
655                 break;
656         }
657
658         heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL);
659
660         for (i = 0; i < ca->alloc_heap.used; i++)
661                 nr += ca->alloc_heap.data[i].nr;
662
663         return nr;
664 }
665
666 /*
667  * returns sequence number of most recent journal entry that updated this
668  * bucket:
669  */
670 static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m)
671 {
672         if (m.journal_seq_valid) {
673                 u64 journal_seq = atomic64_read(&c->journal.seq);
674                 u64 bucket_seq  = journal_seq;
675
676                 bucket_seq &= ~((u64) U16_MAX);
677                 bucket_seq |= m.journal_seq;
678
679                 if (bucket_seq > journal_seq)
680                         bucket_seq -= 1 << 16;
681
682                 return bucket_seq;
683         } else {
684                 return 0;
685         }
686 }
687
688 static int bucket_invalidate_btree(struct btree_trans *trans,
689                                    struct bch_dev *ca, u64 b)
690 {
691         struct bch_fs *c = trans->c;
692         struct bkey_alloc_buf *a;
693         struct bkey_alloc_unpacked u;
694         struct bucket *g;
695         struct bucket_mark m;
696         struct btree_iter iter;
697         int ret;
698
699         bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc,
700                              POS(ca->dev_idx, b),
701                              BTREE_ITER_CACHED|
702                              BTREE_ITER_CACHED_NOFILL|
703                              BTREE_ITER_INTENT);
704
705         a = bch2_trans_kmalloc(trans, sizeof(*a));
706         ret = PTR_ERR_OR_ZERO(a);
707         if (ret)
708                 goto err;
709
710         ret = bch2_btree_iter_traverse(&iter);
711         if (ret)
712                 goto err;
713
714         percpu_down_read(&c->mark_lock);
715         g = bucket(ca, b);
716         m = READ_ONCE(g->mark);
717         u = alloc_mem_to_key(&iter, g, m);
718         percpu_up_read(&c->mark_lock);
719
720         u.gen++;
721         u.data_type     = 0;
722         u.dirty_sectors = 0;
723         u.cached_sectors = 0;
724         u.read_time     = atomic64_read(&c->io_clock[READ].now);
725         u.write_time    = atomic64_read(&c->io_clock[WRITE].now);
726
727         bch2_alloc_pack(c, a, u);
728         ret = bch2_trans_update(trans, &iter, &a->k,
729                                 BTREE_TRIGGER_BUCKET_INVALIDATE);
730 err:
731         bch2_trans_iter_exit(trans, &iter);
732         return ret;
733 }
734
735 static int bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca,
736                                       u64 *journal_seq, unsigned flags)
737 {
738         struct bucket *g;
739         struct bucket_mark m;
740         size_t b;
741         int ret = 0;
742
743         BUG_ON(!ca->alloc_heap.used ||
744                !ca->alloc_heap.data[0].nr);
745         b = ca->alloc_heap.data[0].bucket;
746
747         /* first, put on free_inc and mark as owned by allocator: */
748         percpu_down_read(&c->mark_lock);
749         g = bucket(ca, b);
750         m = READ_ONCE(g->mark);
751
752         BUG_ON(m.dirty_sectors);
753
754         bch2_mark_alloc_bucket(c, ca, b, true);
755
756         spin_lock(&c->freelist_lock);
757         verify_not_on_freelist(c, ca, b);
758         BUG_ON(!fifo_push(&ca->free_inc, b));
759         spin_unlock(&c->freelist_lock);
760
761         /*
762          * If we're not invalidating cached data, we only increment the bucket
763          * gen in memory here, the incremented gen will be updated in the btree
764          * by bch2_trans_mark_pointer():
765          */
766         if (!m.cached_sectors &&
767             !bucket_needs_journal_commit(m, c->journal.last_seq_ondisk)) {
768                 BUG_ON(m.data_type);
769                 bucket_cmpxchg(g, m, m.gen++);
770                 percpu_up_read(&c->mark_lock);
771                 goto out;
772         }
773
774         percpu_up_read(&c->mark_lock);
775
776         /*
777          * If the read-only path is trying to shut down, we can't be generating
778          * new btree updates:
779          */
780         if (test_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags)) {
781                 ret = 1;
782                 goto out;
783         }
784
785         ret = bch2_trans_do(c, NULL, journal_seq,
786                             BTREE_INSERT_NOCHECK_RW|
787                             BTREE_INSERT_NOFAIL|
788                             BTREE_INSERT_JOURNAL_RESERVED|
789                             flags,
790                             bucket_invalidate_btree(&trans, ca, b));
791 out:
792         if (!ret) {
793                 /* remove from alloc_heap: */
794                 struct alloc_heap_entry e, *top = ca->alloc_heap.data;
795
796                 top->bucket++;
797                 top->nr--;
798
799                 if (!top->nr)
800                         heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
801
802                 /*
803                  * Make sure we flush the last journal entry that updated this
804                  * bucket (i.e. deleting the last reference) before writing to
805                  * this bucket again:
806                  */
807                 *journal_seq = max(*journal_seq, bucket_journal_seq(c, m));
808         } else {
809                 size_t b2;
810
811                 /* remove from free_inc: */
812                 percpu_down_read(&c->mark_lock);
813                 spin_lock(&c->freelist_lock);
814
815                 bch2_mark_alloc_bucket(c, ca, b, false);
816
817                 BUG_ON(!fifo_pop_back(&ca->free_inc, b2));
818                 BUG_ON(b != b2);
819
820                 spin_unlock(&c->freelist_lock);
821                 percpu_up_read(&c->mark_lock);
822         }
823
824         return ret < 0 ? ret : 0;
825 }
826
827 /*
828  * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc:
829  */
830 static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca)
831 {
832         u64 journal_seq = 0;
833         int ret = 0;
834
835         /* Only use nowait if we've already invalidated at least one bucket: */
836         while (!ret &&
837                !fifo_full(&ca->free_inc) &&
838                ca->alloc_heap.used) {
839                 if (kthread_should_stop()) {
840                         ret = 1;
841                         break;
842                 }
843
844                 ret = bch2_invalidate_one_bucket(c, ca, &journal_seq,
845                                 (!fifo_empty(&ca->free_inc)
846                                  ? BTREE_INSERT_NOWAIT : 0));
847                 /*
848                  * We only want to batch up invalidates when they're going to
849                  * require flushing the journal:
850                  */
851                 if (!journal_seq)
852                         break;
853         }
854
855         /* If we used NOWAIT, don't return the error: */
856         if (!fifo_empty(&ca->free_inc))
857                 ret = 0;
858         if (ret < 0)
859                 bch_err(ca, "error invalidating buckets: %i", ret);
860         if (ret)
861                 return ret;
862
863         if (journal_seq)
864                 ret = bch2_journal_flush_seq(&c->journal, journal_seq);
865         if (ret) {
866                 bch_err(ca, "journal error: %i", ret);
867                 return ret;
868         }
869
870         return 0;
871 }
872
873 static void alloc_thread_set_state(struct bch_dev *ca, unsigned new_state)
874 {
875         if (ca->allocator_state != new_state) {
876                 ca->allocator_state = new_state;
877                 closure_wake_up(&ca->fs->freelist_wait);
878         }
879 }
880
881 static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b)
882 {
883         unsigned i;
884         int ret = 0;
885
886         spin_lock(&c->freelist_lock);
887         for (i = 0; i < RESERVE_NR; i++) {
888                 /*
889                  * Don't strand buckets on the copygc freelist until
890                  * after recovery is finished:
891                  */
892                 if (i == RESERVE_MOVINGGC &&
893                     !test_bit(BCH_FS_STARTED, &c->flags))
894                         continue;
895
896                 if (fifo_push(&ca->free[i], b)) {
897                         fifo_pop(&ca->free_inc, b);
898                         ret = 1;
899                         break;
900                 }
901         }
902         spin_unlock(&c->freelist_lock);
903
904         ca->allocator_state = ret
905                 ? ALLOCATOR_running
906                 : ALLOCATOR_blocked_full;
907         closure_wake_up(&c->freelist_wait);
908         return ret;
909 }
910
911 static void discard_one_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b)
912 {
913         if (ca->mi.discard &&
914             blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev)))
915                 blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, b),
916                                      ca->mi.bucket_size, GFP_NOFS, 0);
917 }
918
919 static bool allocator_thread_running(struct bch_dev *ca)
920 {
921         unsigned state = ca->mi.state == BCH_MEMBER_STATE_rw &&
922                 test_bit(BCH_FS_ALLOCATOR_RUNNING, &ca->fs->flags)
923                 ? ALLOCATOR_running
924                 : ALLOCATOR_stopped;
925         alloc_thread_set_state(ca, state);
926         return state == ALLOCATOR_running;
927 }
928
929 static int buckets_available(struct bch_dev *ca, unsigned long gc_count)
930 {
931         s64 available = dev_buckets_reclaimable(ca) -
932                 (gc_count == ca->fs->gc_count ? ca->inc_gen_really_needs_gc : 0);
933         bool ret = available > 0;
934
935         alloc_thread_set_state(ca, ret
936                                ? ALLOCATOR_running
937                                : ALLOCATOR_blocked);
938         return ret;
939 }
940
941 /**
942  * bch_allocator_thread - move buckets from free_inc to reserves
943  *
944  * The free_inc FIFO is populated by find_reclaimable_buckets(), and
945  * the reserves are depleted by bucket allocation. When we run out
946  * of free_inc, try to invalidate some buckets and write out
947  * prios and gens.
948  */
949 static int bch2_allocator_thread(void *arg)
950 {
951         struct bch_dev *ca = arg;
952         struct bch_fs *c = ca->fs;
953         unsigned long gc_count = c->gc_count;
954         size_t nr;
955         int ret;
956
957         set_freezable();
958
959         while (1) {
960                 ret = kthread_wait_freezable(allocator_thread_running(ca));
961                 if (ret)
962                         goto stop;
963
964                 while (!ca->alloc_heap.used) {
965                         cond_resched();
966
967                         ret = kthread_wait_freezable(buckets_available(ca, gc_count));
968                         if (ret)
969                                 goto stop;
970
971                         gc_count = c->gc_count;
972                         nr = find_reclaimable_buckets(c, ca);
973
974                         trace_alloc_scan(ca, nr, ca->inc_gen_needs_gc,
975                                          ca->inc_gen_really_needs_gc);
976
977                         if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) ||
978                              ca->inc_gen_really_needs_gc) &&
979                             c->gc_thread) {
980                                 atomic_inc(&c->kick_gc);
981                                 wake_up_process(c->gc_thread);
982                         }
983                 }
984
985                 ret = bch2_invalidate_buckets(c, ca);
986                 if (ret)
987                         goto stop;
988
989                 while (!fifo_empty(&ca->free_inc)) {
990                         u64 b = fifo_peek(&ca->free_inc);
991
992                         discard_one_bucket(c, ca, b);
993
994                         ret = kthread_wait_freezable(push_invalidated_bucket(c, ca, b));
995                         if (ret)
996                                 goto stop;
997                 }
998         }
999 stop:
1000         alloc_thread_set_state(ca, ALLOCATOR_stopped);
1001         return 0;
1002 }
1003
1004 /* Startup/shutdown (ro/rw): */
1005
1006 void bch2_recalc_capacity(struct bch_fs *c)
1007 {
1008         struct bch_dev *ca;
1009         u64 capacity = 0, reserved_sectors = 0, gc_reserve;
1010         unsigned bucket_size_max = 0;
1011         unsigned long ra_pages = 0;
1012         unsigned i, j;
1013
1014         lockdep_assert_held(&c->state_lock);
1015
1016         for_each_online_member(ca, c, i) {
1017                 struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi;
1018
1019                 ra_pages += bdi->ra_pages;
1020         }
1021
1022         bch2_set_ra_pages(c, ra_pages);
1023
1024         for_each_rw_member(ca, c, i) {
1025                 u64 dev_reserve = 0;
1026
1027                 /*
1028                  * We need to reserve buckets (from the number
1029                  * of currently available buckets) against
1030                  * foreground writes so that mainly copygc can
1031                  * make forward progress.
1032                  *
1033                  * We need enough to refill the various reserves
1034                  * from scratch - copygc will use its entire
1035                  * reserve all at once, then run against when
1036                  * its reserve is refilled (from the formerly
1037                  * available buckets).
1038                  *
1039                  * This reserve is just used when considering if
1040                  * allocations for foreground writes must wait -
1041                  * not -ENOSPC calculations.
1042                  */
1043                 for (j = 0; j < RESERVE_NONE; j++)
1044                         dev_reserve += ca->free[j].size;
1045
1046                 dev_reserve += 1;       /* btree write point */
1047                 dev_reserve += 1;       /* copygc write point */
1048                 dev_reserve += 1;       /* rebalance write point */
1049
1050                 dev_reserve *= ca->mi.bucket_size;
1051
1052                 capacity += bucket_to_sector(ca, ca->mi.nbuckets -
1053                                              ca->mi.first_bucket);
1054
1055                 reserved_sectors += dev_reserve * 2;
1056
1057                 bucket_size_max = max_t(unsigned, bucket_size_max,
1058                                         ca->mi.bucket_size);
1059         }
1060
1061         gc_reserve = c->opts.gc_reserve_bytes
1062                 ? c->opts.gc_reserve_bytes >> 9
1063                 : div64_u64(capacity * c->opts.gc_reserve_percent, 100);
1064
1065         reserved_sectors = max(gc_reserve, reserved_sectors);
1066
1067         reserved_sectors = min(reserved_sectors, capacity);
1068
1069         c->capacity = capacity - reserved_sectors;
1070
1071         c->bucket_size_max = bucket_size_max;
1072
1073         /* Wake up case someone was waiting for buckets */
1074         closure_wake_up(&c->freelist_wait);
1075 }
1076
1077 static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
1078 {
1079         struct open_bucket *ob;
1080         bool ret = false;
1081
1082         for (ob = c->open_buckets;
1083              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
1084              ob++) {
1085                 spin_lock(&ob->lock);
1086                 if (ob->valid && !ob->on_partial_list &&
1087                     ob->ptr.dev == ca->dev_idx)
1088                         ret = true;
1089                 spin_unlock(&ob->lock);
1090         }
1091
1092         return ret;
1093 }
1094
1095 /* device goes ro: */
1096 void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
1097 {
1098         unsigned i;
1099
1100         BUG_ON(ca->alloc_thread);
1101
1102         /* First, remove device from allocation groups: */
1103
1104         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1105                 clear_bit(ca->dev_idx, c->rw_devs[i].d);
1106
1107         /*
1108          * Capacity is calculated based off of devices in allocation groups:
1109          */
1110         bch2_recalc_capacity(c);
1111
1112         /* Next, close write points that point to this device... */
1113         for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
1114                 bch2_writepoint_stop(c, ca, &c->write_points[i]);
1115
1116         bch2_writepoint_stop(c, ca, &c->copygc_write_point);
1117         bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
1118         bch2_writepoint_stop(c, ca, &c->btree_write_point);
1119
1120         mutex_lock(&c->btree_reserve_cache_lock);
1121         while (c->btree_reserve_cache_nr) {
1122                 struct btree_alloc *a =
1123                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
1124
1125                 bch2_open_buckets_put(c, &a->ob);
1126         }
1127         mutex_unlock(&c->btree_reserve_cache_lock);
1128
1129         while (1) {
1130                 struct open_bucket *ob;
1131
1132                 spin_lock(&c->freelist_lock);
1133                 if (!ca->open_buckets_partial_nr) {
1134                         spin_unlock(&c->freelist_lock);
1135                         break;
1136                 }
1137                 ob = c->open_buckets +
1138                         ca->open_buckets_partial[--ca->open_buckets_partial_nr];
1139                 ob->on_partial_list = false;
1140                 spin_unlock(&c->freelist_lock);
1141
1142                 bch2_open_bucket_put(c, ob);
1143         }
1144
1145         bch2_ec_stop_dev(c, ca);
1146
1147         /*
1148          * Wake up threads that were blocked on allocation, so they can notice
1149          * the device can no longer be removed and the capacity has changed:
1150          */
1151         closure_wake_up(&c->freelist_wait);
1152
1153         /*
1154          * journal_res_get() can block waiting for free space in the journal -
1155          * it needs to notice there may not be devices to allocate from anymore:
1156          */
1157         wake_up(&c->journal.wait);
1158
1159         /* Now wait for any in flight writes: */
1160
1161         closure_wait_event(&c->open_buckets_wait,
1162                            !bch2_dev_has_open_write_point(c, ca));
1163 }
1164
1165 /* device goes rw: */
1166 void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
1167 {
1168         unsigned i;
1169
1170         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1171                 if (ca->mi.data_allowed & (1 << i))
1172                         set_bit(ca->dev_idx, c->rw_devs[i].d);
1173 }
1174
1175 void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca)
1176 {
1177         if (ca->alloc_thread)
1178                 closure_wait_event(&c->freelist_wait,
1179                                    ca->allocator_state != ALLOCATOR_running);
1180 }
1181
1182 /* stop allocator thread: */
1183 void bch2_dev_allocator_stop(struct bch_dev *ca)
1184 {
1185         struct task_struct *p;
1186
1187         p = rcu_dereference_protected(ca->alloc_thread, 1);
1188         ca->alloc_thread = NULL;
1189
1190         /*
1191          * We need an rcu barrier between setting ca->alloc_thread = NULL and
1192          * the thread shutting down to avoid bch2_wake_allocator() racing:
1193          *
1194          * XXX: it would be better to have the rcu barrier be asynchronous
1195          * instead of blocking us here
1196          */
1197         synchronize_rcu();
1198
1199         if (p) {
1200                 kthread_stop(p);
1201                 put_task_struct(p);
1202         }
1203 }
1204
1205 /* start allocator thread: */
1206 int bch2_dev_allocator_start(struct bch_dev *ca)
1207 {
1208         struct task_struct *p;
1209
1210         /*
1211          * allocator thread already started?
1212          */
1213         if (ca->alloc_thread)
1214                 return 0;
1215
1216         p = kthread_create(bch2_allocator_thread, ca,
1217                            "bch-alloc/%s", ca->name);
1218         if (IS_ERR(p)) {
1219                 bch_err(ca->fs, "error creating allocator thread: %li",
1220                         PTR_ERR(p));
1221                 return PTR_ERR(p);
1222         }
1223
1224         get_task_struct(p);
1225         rcu_assign_pointer(ca->alloc_thread, p);
1226         wake_up_process(p);
1227         return 0;
1228 }
1229
1230 void bch2_fs_allocator_background_init(struct bch_fs *c)
1231 {
1232         spin_lock_init(&c->freelist_lock);
1233 }
1234
1235 void bch2_open_buckets_to_text(struct printbuf *out, struct bch_fs *c)
1236 {
1237         struct open_bucket *ob;
1238
1239         for (ob = c->open_buckets;
1240              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
1241              ob++) {
1242                 spin_lock(&ob->lock);
1243                 if (ob->valid && !ob->on_partial_list) {
1244                         pr_buf(out, "%zu ref %u type %s\n",
1245                                ob - c->open_buckets,
1246                                atomic_read(&ob->pin),
1247                                bch2_data_types[ob->type]);
1248                 }
1249                 spin_unlock(&ob->lock);
1250         }
1251
1252 }