]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/alloc_background.c
b080f30ea46c4dee79a17ff19ef5783b67e12b55
[bcachefs-tools-debian] / libbcachefs / alloc_background.c
1 #include "bcachefs.h"
2 #include "alloc_background.h"
3 #include "alloc_foreground.h"
4 #include "btree_cache.h"
5 #include "btree_io.h"
6 #include "btree_update.h"
7 #include "btree_update_interior.h"
8 #include "btree_gc.h"
9 #include "buckets.h"
10 #include "clock.h"
11 #include "debug.h"
12 #include "ec.h"
13 #include "error.h"
14 #include "journal_io.h"
15
16 #include <linux/kthread.h>
17 #include <linux/math64.h>
18 #include <linux/random.h>
19 #include <linux/rculist.h>
20 #include <linux/rcupdate.h>
21 #include <linux/sched/task.h>
22 #include <linux/sort.h>
23 #include <trace/events/bcachefs.h>
24
25 static const char * const bch2_alloc_field_names[] = {
26 #define x(name, bytes) #name,
27         BCH_ALLOC_FIELDS()
28 #undef x
29         NULL
30 };
31
32 static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int);
33
34 /* Ratelimiting/PD controllers */
35
36 static void pd_controllers_update(struct work_struct *work)
37 {
38         struct bch_fs *c = container_of(to_delayed_work(work),
39                                            struct bch_fs,
40                                            pd_controllers_update);
41         struct bch_dev *ca;
42         unsigned i;
43
44         for_each_member_device(ca, c, i) {
45                 struct bch_dev_usage stats = bch2_dev_usage_read(c, ca);
46
47                 u64 free = bucket_to_sector(ca,
48                                 __dev_buckets_free(ca, stats)) << 9;
49                 /*
50                  * Bytes of internal fragmentation, which can be
51                  * reclaimed by copy GC
52                  */
53                 s64 fragmented = (bucket_to_sector(ca,
54                                         stats.buckets[BCH_DATA_USER] +
55                                         stats.buckets[BCH_DATA_CACHED]) -
56                                   (stats.sectors[BCH_DATA_USER] +
57                                    stats.sectors[BCH_DATA_CACHED])) << 9;
58
59                 fragmented = max(0LL, fragmented);
60
61                 bch2_pd_controller_update(&ca->copygc_pd,
62                                          free, fragmented, -1);
63         }
64
65         schedule_delayed_work(&c->pd_controllers_update,
66                               c->pd_controllers_update_seconds * HZ);
67 }
68
69 /* Persistent alloc info: */
70
71 static inline u64 get_alloc_field(const struct bch_alloc *a,
72                                   const void **p, unsigned field)
73 {
74         unsigned bytes = BCH_ALLOC_FIELD_BYTES[field];
75         u64 v;
76
77         if (!(a->fields & (1 << field)))
78                 return 0;
79
80         switch (bytes) {
81         case 1:
82                 v = *((const u8 *) *p);
83                 break;
84         case 2:
85                 v = le16_to_cpup(*p);
86                 break;
87         case 4:
88                 v = le32_to_cpup(*p);
89                 break;
90         case 8:
91                 v = le64_to_cpup(*p);
92                 break;
93         default:
94                 BUG();
95         }
96
97         *p += bytes;
98         return v;
99 }
100
101 static inline void put_alloc_field(struct bkey_i_alloc *a, void **p,
102                                    unsigned field, u64 v)
103 {
104         unsigned bytes = BCH_ALLOC_FIELD_BYTES[field];
105
106         if (!v)
107                 return;
108
109         a->v.fields |= 1 << field;
110
111         switch (bytes) {
112         case 1:
113                 *((u8 *) *p) = v;
114                 break;
115         case 2:
116                 *((__le16 *) *p) = cpu_to_le16(v);
117                 break;
118         case 4:
119                 *((__le32 *) *p) = cpu_to_le32(v);
120                 break;
121         case 8:
122                 *((__le64 *) *p) = cpu_to_le64(v);
123                 break;
124         default:
125                 BUG();
126         }
127
128         *p += bytes;
129 }
130
131 struct bkey_alloc_unpacked bch2_alloc_unpack(const struct bch_alloc *a)
132 {
133         struct bkey_alloc_unpacked ret = { .gen = a->gen };
134         const void *d = a->data;
135         unsigned idx = 0;
136
137 #define x(_name, _bits) ret._name = get_alloc_field(a, &d, idx++);
138         BCH_ALLOC_FIELDS()
139 #undef  x
140         return ret;
141 }
142
143 static void bch2_alloc_pack(struct bkey_i_alloc *dst,
144                             const struct bkey_alloc_unpacked src)
145 {
146         unsigned idx = 0;
147         void *d = dst->v.data;
148
149         dst->v.fields   = 0;
150         dst->v.gen      = src.gen;
151
152 #define x(_name, _bits) put_alloc_field(dst, &d, idx++, src._name);
153         BCH_ALLOC_FIELDS()
154 #undef  x
155
156         set_bkey_val_bytes(&dst->k, (void *) d - (void *) &dst->v);
157 }
158
159 static unsigned bch_alloc_val_u64s(const struct bch_alloc *a)
160 {
161         unsigned i, bytes = offsetof(struct bch_alloc, data);
162
163         for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_FIELD_BYTES); i++)
164                 if (a->fields & (1 << i))
165                         bytes += BCH_ALLOC_FIELD_BYTES[i];
166
167         return DIV_ROUND_UP(bytes, sizeof(u64));
168 }
169
170 const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k)
171 {
172         struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
173
174         if (k.k->p.inode >= c->sb.nr_devices ||
175             !c->devs[k.k->p.inode])
176                 return "invalid device";
177
178         /* allow for unknown fields */
179         if (bkey_val_u64s(a.k) < bch_alloc_val_u64s(a.v))
180                 return "incorrect value size";
181
182         return NULL;
183 }
184
185 void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c,
186                         struct bkey_s_c k)
187 {
188         struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
189         const void *d = a.v->data;
190         unsigned i;
191
192         pr_buf(out, "gen %u", a.v->gen);
193
194         for (i = 0; i < BCH_ALLOC_FIELD_NR; i++)
195                 if (a.v->fields & (1 << i))
196                         pr_buf(out, " %s %llu",
197                                bch2_alloc_field_names[i],
198                                get_alloc_field(a.v, &d, i));
199 }
200
201 static void __alloc_read_key(struct bucket *g, const struct bch_alloc *a)
202 {
203         const void *d = a->data;
204         unsigned idx = 0, data_type, dirty_sectors, cached_sectors;
205         struct bucket_mark m;
206
207         g->io_time[READ]        = get_alloc_field(a, &d, idx++);
208         g->io_time[WRITE]       = get_alloc_field(a, &d, idx++);
209         data_type               = get_alloc_field(a, &d, idx++);
210         dirty_sectors           = get_alloc_field(a, &d, idx++);
211         cached_sectors          = get_alloc_field(a, &d, idx++);
212         g->oldest_gen           = get_alloc_field(a, &d, idx++);
213
214         bucket_cmpxchg(g, m, ({
215                 m.gen                   = a->gen;
216                 m.data_type             = data_type;
217                 m.dirty_sectors         = dirty_sectors;
218                 m.cached_sectors        = cached_sectors;
219         }));
220
221         g->gen_valid            = 1;
222 }
223
224 static void __alloc_write_key(struct bkey_i_alloc *a, struct bucket *g,
225                               struct bucket_mark m)
226 {
227         unsigned idx = 0;
228         void *d = a->v.data;
229
230         a->v.fields     = 0;
231         a->v.gen        = m.gen;
232
233         d = a->v.data;
234         put_alloc_field(a, &d, idx++, g->io_time[READ]);
235         put_alloc_field(a, &d, idx++, g->io_time[WRITE]);
236         put_alloc_field(a, &d, idx++, m.data_type);
237         put_alloc_field(a, &d, idx++, m.dirty_sectors);
238         put_alloc_field(a, &d, idx++, m.cached_sectors);
239         put_alloc_field(a, &d, idx++, g->oldest_gen);
240
241         set_bkey_val_bytes(&a->k, (void *) d - (void *) &a->v);
242 }
243
244 static void bch2_alloc_read_key(struct bch_fs *c, struct bkey_s_c k)
245 {
246         struct bch_dev *ca;
247         struct bkey_s_c_alloc a;
248
249         if (k.k->type != KEY_TYPE_alloc)
250                 return;
251
252         a = bkey_s_c_to_alloc(k);
253         ca = bch_dev_bkey_exists(c, a.k->p.inode);
254
255         if (a.k->p.offset >= ca->mi.nbuckets)
256                 return;
257
258         percpu_down_read_preempt_disable(&c->mark_lock);
259         __alloc_read_key(bucket(ca, a.k->p.offset), a.v);
260         percpu_up_read_preempt_enable(&c->mark_lock);
261 }
262
263 int bch2_alloc_read(struct bch_fs *c, struct list_head *journal_replay_list)
264 {
265         struct journal_replay *r;
266         struct btree_iter iter;
267         struct bkey_s_c k;
268         struct bch_dev *ca;
269         unsigned i;
270         int ret;
271
272         for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS_MIN, 0, k) {
273                 bch2_alloc_read_key(c, k);
274                 bch2_btree_iter_cond_resched(&iter);
275         }
276
277         ret = bch2_btree_iter_unlock(&iter);
278         if (ret)
279                 return ret;
280
281         list_for_each_entry(r, journal_replay_list, list) {
282                 struct bkey_i *k, *n;
283                 struct jset_entry *entry;
284
285                 for_each_jset_key(k, n, entry, &r->j)
286                         if (entry->btree_id == BTREE_ID_ALLOC)
287                                 bch2_alloc_read_key(c, bkey_i_to_s_c(k));
288         }
289
290         for_each_member_device(ca, c, i)
291                 bch2_dev_usage_from_buckets(c, ca);
292
293         mutex_lock(&c->bucket_clock[READ].lock);
294         for_each_member_device(ca, c, i) {
295                 down_read(&ca->bucket_lock);
296                 bch2_recalc_oldest_io(c, ca, READ);
297                 up_read(&ca->bucket_lock);
298         }
299         mutex_unlock(&c->bucket_clock[READ].lock);
300
301         mutex_lock(&c->bucket_clock[WRITE].lock);
302         for_each_member_device(ca, c, i) {
303                 down_read(&ca->bucket_lock);
304                 bch2_recalc_oldest_io(c, ca, WRITE);
305                 up_read(&ca->bucket_lock);
306         }
307         mutex_unlock(&c->bucket_clock[WRITE].lock);
308
309         return 0;
310 }
311
312 static int __bch2_alloc_write_key(struct bch_fs *c, struct bch_dev *ca,
313                                   size_t b, struct btree_iter *iter,
314                                   u64 *journal_seq, unsigned flags)
315 {
316 #if 0
317         __BKEY_PADDED(k, BKEY_ALLOC_VAL_U64s_MAX) alloc_key;
318 #else
319         /* hack: */
320         __BKEY_PADDED(k, 8) alloc_key;
321 #endif
322         struct bkey_i_alloc *a = bkey_alloc_init(&alloc_key.k);
323         struct bucket *g;
324         struct bucket_mark m, new;
325         int ret;
326
327         BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8);
328
329         a->k.p = POS(ca->dev_idx, b);
330
331         bch2_btree_iter_set_pos(iter, a->k.p);
332
333         ret = bch2_btree_iter_traverse(iter);
334         if (ret)
335                 return ret;
336
337         percpu_down_read_preempt_disable(&c->mark_lock);
338         g = bucket(ca, b);
339         m = READ_ONCE(g->mark);
340
341         if (!m.dirty) {
342                 percpu_up_read_preempt_enable(&c->mark_lock);
343                 return 0;
344         }
345
346         __alloc_write_key(a, g, m);
347         percpu_up_read_preempt_enable(&c->mark_lock);
348
349         bch2_btree_iter_cond_resched(iter);
350
351         ret = bch2_btree_insert_at(c, NULL, journal_seq,
352                                    BTREE_INSERT_NOCHECK_RW|
353                                    BTREE_INSERT_NOFAIL|
354                                    BTREE_INSERT_USE_RESERVE|
355                                    BTREE_INSERT_USE_ALLOC_RESERVE|
356                                    BTREE_INSERT_NOMARK|
357                                    flags,
358                                    BTREE_INSERT_ENTRY(iter, &a->k_i));
359         if (ret)
360                 return ret;
361
362         new = m;
363         new.dirty = false;
364         atomic64_cmpxchg(&g->_mark.v, m.v.counter, new.v.counter);
365
366         if (ca->buckets_written)
367                 set_bit(b, ca->buckets_written);
368
369         return 0;
370 }
371
372 int bch2_alloc_replay_key(struct bch_fs *c, struct bkey_i *k)
373 {
374         struct bch_dev *ca;
375         struct btree_iter iter;
376         int ret;
377
378         if (k->k.p.inode >= c->sb.nr_devices ||
379             !c->devs[k->k.p.inode])
380                 return 0;
381
382         ca = bch_dev_bkey_exists(c, k->k.p.inode);
383
384         if (k->k.p.offset >= ca->mi.nbuckets)
385                 return 0;
386
387         bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, k->k.p,
388                              BTREE_ITER_INTENT);
389
390         ret = bch2_btree_iter_traverse(&iter);
391         if (ret)
392                 goto err;
393
394         /* check buckets_written with btree node locked: */
395
396         ret = test_bit(k->k.p.offset, ca->buckets_written)
397                 ? 0
398                 : bch2_btree_insert_at(c, NULL, NULL,
399                                        BTREE_INSERT_NOFAIL|
400                                        BTREE_INSERT_JOURNAL_REPLAY|
401                                        BTREE_INSERT_NOMARK,
402                                        BTREE_INSERT_ENTRY(&iter, k));
403 err:
404         bch2_btree_iter_unlock(&iter);
405         return ret;
406 }
407
408 int bch2_alloc_write(struct bch_fs *c, bool nowait, bool *wrote)
409 {
410         struct bch_dev *ca;
411         unsigned i;
412         int ret = 0;
413
414         *wrote = false;
415
416         for_each_rw_member(ca, c, i) {
417                 struct btree_iter iter;
418                 struct bucket_array *buckets;
419                 size_t b;
420
421                 bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN,
422                                      BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
423
424                 down_read(&ca->bucket_lock);
425                 buckets = bucket_array(ca);
426
427                 for (b = buckets->first_bucket;
428                      b < buckets->nbuckets;
429                      b++) {
430                         if (!buckets->b[b].mark.dirty)
431                                 continue;
432
433                         ret = __bch2_alloc_write_key(c, ca, b, &iter, NULL,
434                                                      nowait
435                                                      ? BTREE_INSERT_NOWAIT
436                                                      : 0);
437                         if (ret)
438                                 break;
439
440                         *wrote = true;
441                 }
442                 up_read(&ca->bucket_lock);
443                 bch2_btree_iter_unlock(&iter);
444
445                 if (ret) {
446                         percpu_ref_put(&ca->io_ref);
447                         break;
448                 }
449         }
450
451         return ret;
452 }
453
454 /* Bucket IO clocks: */
455
456 static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw)
457 {
458         struct bucket_clock *clock = &c->bucket_clock[rw];
459         struct bucket_array *buckets = bucket_array(ca);
460         struct bucket *g;
461         u16 max_last_io = 0;
462         unsigned i;
463
464         lockdep_assert_held(&c->bucket_clock[rw].lock);
465
466         /* Recalculate max_last_io for this device: */
467         for_each_bucket(g, buckets)
468                 max_last_io = max(max_last_io, bucket_last_io(c, g, rw));
469
470         ca->max_last_bucket_io[rw] = max_last_io;
471
472         /* Recalculate global max_last_io: */
473         max_last_io = 0;
474
475         for_each_member_device(ca, c, i)
476                 max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]);
477
478         clock->max_last_io = max_last_io;
479 }
480
481 static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw)
482 {
483         struct bucket_clock *clock = &c->bucket_clock[rw];
484         struct bucket_array *buckets;
485         struct bch_dev *ca;
486         struct bucket *g;
487         unsigned i;
488
489         trace_rescale_prios(c);
490
491         for_each_member_device(ca, c, i) {
492                 down_read(&ca->bucket_lock);
493                 buckets = bucket_array(ca);
494
495                 for_each_bucket(g, buckets)
496                         g->io_time[rw] = clock->hand -
497                         bucket_last_io(c, g, rw) / 2;
498
499                 bch2_recalc_oldest_io(c, ca, rw);
500
501                 up_read(&ca->bucket_lock);
502         }
503 }
504
505 static inline u64 bucket_clock_freq(u64 capacity)
506 {
507         return max(capacity >> 10, 2028ULL);
508 }
509
510 static void bch2_inc_clock_hand(struct io_timer *timer)
511 {
512         struct bucket_clock *clock = container_of(timer,
513                                                 struct bucket_clock, rescale);
514         struct bch_fs *c = container_of(clock,
515                                         struct bch_fs, bucket_clock[clock->rw]);
516         struct bch_dev *ca;
517         u64 capacity;
518         unsigned i;
519
520         mutex_lock(&clock->lock);
521
522         /* if clock cannot be advanced more, rescale prio */
523         if (clock->max_last_io >= U16_MAX - 2)
524                 bch2_rescale_bucket_io_times(c, clock->rw);
525
526         BUG_ON(clock->max_last_io >= U16_MAX - 2);
527
528         for_each_member_device(ca, c, i)
529                 ca->max_last_bucket_io[clock->rw]++;
530         clock->max_last_io++;
531         clock->hand++;
532
533         mutex_unlock(&clock->lock);
534
535         capacity = READ_ONCE(c->capacity);
536
537         if (!capacity)
538                 return;
539
540         /*
541          * we only increment when 0.1% of the filesystem capacity has been read
542          * or written too, this determines if it's time
543          *
544          * XXX: we shouldn't really be going off of the capacity of devices in
545          * RW mode (that will be 0 when we're RO, yet we can still service
546          * reads)
547          */
548         timer->expire += bucket_clock_freq(capacity);
549
550         bch2_io_timer_add(&c->io_clock[clock->rw], timer);
551 }
552
553 static void bch2_bucket_clock_init(struct bch_fs *c, int rw)
554 {
555         struct bucket_clock *clock = &c->bucket_clock[rw];
556
557         clock->hand             = 1;
558         clock->rw               = rw;
559         clock->rescale.fn       = bch2_inc_clock_hand;
560         clock->rescale.expire   = bucket_clock_freq(c->capacity);
561         mutex_init(&clock->lock);
562 }
563
564 /* Background allocator thread: */
565
566 /*
567  * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens
568  * (marking them as invalidated on disk), then optionally issues discard
569  * commands to the newly free buckets, then puts them on the various freelists.
570  */
571
572 #define BUCKET_GC_GEN_MAX       96U
573
574 /**
575  * wait_buckets_available - wait on reclaimable buckets
576  *
577  * If there aren't enough available buckets to fill up free_inc, wait until
578  * there are.
579  */
580 static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca)
581 {
582         unsigned long gc_count = c->gc_count;
583         int ret = 0;
584
585         while (1) {
586                 set_current_state(TASK_INTERRUPTIBLE);
587                 if (kthread_should_stop()) {
588                         ret = 1;
589                         break;
590                 }
591
592                 if (gc_count != c->gc_count)
593                         ca->inc_gen_really_needs_gc = 0;
594
595                 if ((ssize_t) (dev_buckets_available(c, ca) -
596                                ca->inc_gen_really_needs_gc) >=
597                     (ssize_t) fifo_free(&ca->free_inc))
598                         break;
599
600                 up_read(&c->gc_lock);
601                 schedule();
602                 try_to_freeze();
603                 down_read(&c->gc_lock);
604         }
605
606         __set_current_state(TASK_RUNNING);
607         return ret;
608 }
609
610 static bool bch2_can_invalidate_bucket(struct bch_dev *ca,
611                                        size_t bucket,
612                                        struct bucket_mark mark)
613 {
614         u8 gc_gen;
615
616         if (!is_available_bucket(mark))
617                 return false;
618
619         if (ca->buckets_nouse &&
620             test_bit(bucket, ca->buckets_nouse))
621                 return false;
622
623         gc_gen = bucket_gc_gen(ca, bucket);
624
625         if (gc_gen >= BUCKET_GC_GEN_MAX / 2)
626                 ca->inc_gen_needs_gc++;
627
628         if (gc_gen >= BUCKET_GC_GEN_MAX)
629                 ca->inc_gen_really_needs_gc++;
630
631         return gc_gen < BUCKET_GC_GEN_MAX;
632 }
633
634 /*
635  * Determines what order we're going to reuse buckets, smallest bucket_key()
636  * first.
637  *
638  *
639  * - We take into account the read prio of the bucket, which gives us an
640  *   indication of how hot the data is -- we scale the prio so that the prio
641  *   farthest from the clock is worth 1/8th of the closest.
642  *
643  * - The number of sectors of cached data in the bucket, which gives us an
644  *   indication of the cost in cache misses this eviction will cause.
645  *
646  * - If hotness * sectors used compares equal, we pick the bucket with the
647  *   smallest bucket_gc_gen() - since incrementing the same bucket's generation
648  *   number repeatedly forces us to run mark and sweep gc to avoid generation
649  *   number wraparound.
650  */
651
652 static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca,
653                                      size_t b, struct bucket_mark m)
654 {
655         unsigned last_io = bucket_last_io(c, bucket(ca, b), READ);
656         unsigned max_last_io = ca->max_last_bucket_io[READ];
657
658         /*
659          * Time since last read, scaled to [0, 8) where larger value indicates
660          * more recently read data:
661          */
662         unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io;
663
664         /* How much we want to keep the data in this bucket: */
665         unsigned long data_wantness =
666                 (hotness + 1) * bucket_sectors_used(m);
667
668         unsigned long needs_journal_commit =
669                 bucket_needs_journal_commit(m, c->journal.last_seq_ondisk);
670
671         return  (data_wantness << 9) |
672                 (needs_journal_commit << 8) |
673                 (bucket_gc_gen(ca, b) / 16);
674 }
675
676 static inline int bucket_alloc_cmp(alloc_heap *h,
677                                    struct alloc_heap_entry l,
678                                    struct alloc_heap_entry r)
679 {
680         return (l.key > r.key) - (l.key < r.key) ?:
681                 (l.nr < r.nr)  - (l.nr  > r.nr) ?:
682                 (l.bucket > r.bucket) - (l.bucket < r.bucket);
683 }
684
685 static inline int bucket_idx_cmp(const void *_l, const void *_r)
686 {
687         const struct alloc_heap_entry *l = _l, *r = _r;
688
689         return (l->bucket > r->bucket) - (l->bucket < r->bucket);
690 }
691
692 static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca)
693 {
694         struct bucket_array *buckets;
695         struct alloc_heap_entry e = { 0 };
696         size_t b, i, nr = 0;
697
698         ca->alloc_heap.used = 0;
699
700         mutex_lock(&c->bucket_clock[READ].lock);
701         down_read(&ca->bucket_lock);
702
703         buckets = bucket_array(ca);
704
705         bch2_recalc_oldest_io(c, ca, READ);
706
707         /*
708          * Find buckets with lowest read priority, by building a maxheap sorted
709          * by read priority and repeatedly replacing the maximum element until
710          * all buckets have been visited.
711          */
712         for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) {
713                 struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
714                 unsigned long key = bucket_sort_key(c, ca, b, m);
715
716                 if (!bch2_can_invalidate_bucket(ca, b, m))
717                         continue;
718
719                 if (e.nr && e.bucket + e.nr == b && e.key == key) {
720                         e.nr++;
721                 } else {
722                         if (e.nr)
723                                 heap_add_or_replace(&ca->alloc_heap, e,
724                                         -bucket_alloc_cmp, NULL);
725
726                         e = (struct alloc_heap_entry) {
727                                 .bucket = b,
728                                 .nr     = 1,
729                                 .key    = key,
730                         };
731                 }
732
733                 cond_resched();
734         }
735
736         if (e.nr)
737                 heap_add_or_replace(&ca->alloc_heap, e,
738                                 -bucket_alloc_cmp, NULL);
739
740         for (i = 0; i < ca->alloc_heap.used; i++)
741                 nr += ca->alloc_heap.data[i].nr;
742
743         while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) {
744                 nr -= ca->alloc_heap.data[0].nr;
745                 heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL);
746         }
747
748         up_read(&ca->bucket_lock);
749         mutex_unlock(&c->bucket_clock[READ].lock);
750 }
751
752 static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca)
753 {
754         struct bucket_array *buckets = bucket_array(ca);
755         struct bucket_mark m;
756         size_t b, start;
757
758         if (ca->fifo_last_bucket <  ca->mi.first_bucket ||
759             ca->fifo_last_bucket >= ca->mi.nbuckets)
760                 ca->fifo_last_bucket = ca->mi.first_bucket;
761
762         start = ca->fifo_last_bucket;
763
764         do {
765                 ca->fifo_last_bucket++;
766                 if (ca->fifo_last_bucket == ca->mi.nbuckets)
767                         ca->fifo_last_bucket = ca->mi.first_bucket;
768
769                 b = ca->fifo_last_bucket;
770                 m = READ_ONCE(buckets->b[b].mark);
771
772                 if (bch2_can_invalidate_bucket(ca, b, m)) {
773                         struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
774
775                         heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
776                         if (heap_full(&ca->alloc_heap))
777                                 break;
778                 }
779
780                 cond_resched();
781         } while (ca->fifo_last_bucket != start);
782 }
783
784 static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca)
785 {
786         struct bucket_array *buckets = bucket_array(ca);
787         struct bucket_mark m;
788         size_t checked, i;
789
790         for (checked = 0;
791              checked < ca->mi.nbuckets / 2;
792              checked++) {
793                 size_t b = bch2_rand_range(ca->mi.nbuckets -
794                                            ca->mi.first_bucket) +
795                         ca->mi.first_bucket;
796
797                 m = READ_ONCE(buckets->b[b].mark);
798
799                 if (bch2_can_invalidate_bucket(ca, b, m)) {
800                         struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
801
802                         heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
803                         if (heap_full(&ca->alloc_heap))
804                                 break;
805                 }
806
807                 cond_resched();
808         }
809
810         sort(ca->alloc_heap.data,
811              ca->alloc_heap.used,
812              sizeof(ca->alloc_heap.data[0]),
813              bucket_idx_cmp, NULL);
814
815         /* remove duplicates: */
816         for (i = 0; i + 1 < ca->alloc_heap.used; i++)
817                 if (ca->alloc_heap.data[i].bucket ==
818                     ca->alloc_heap.data[i + 1].bucket)
819                         ca->alloc_heap.data[i].nr = 0;
820 }
821
822 static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca)
823 {
824         size_t i, nr = 0;
825
826         ca->inc_gen_needs_gc                    = 0;
827
828         switch (ca->mi.replacement) {
829         case CACHE_REPLACEMENT_LRU:
830                 find_reclaimable_buckets_lru(c, ca);
831                 break;
832         case CACHE_REPLACEMENT_FIFO:
833                 find_reclaimable_buckets_fifo(c, ca);
834                 break;
835         case CACHE_REPLACEMENT_RANDOM:
836                 find_reclaimable_buckets_random(c, ca);
837                 break;
838         }
839
840         heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL);
841
842         for (i = 0; i < ca->alloc_heap.used; i++)
843                 nr += ca->alloc_heap.data[i].nr;
844
845         return nr;
846 }
847
848 static inline long next_alloc_bucket(struct bch_dev *ca)
849 {
850         struct alloc_heap_entry e, *top = ca->alloc_heap.data;
851
852         while (ca->alloc_heap.used) {
853                 if (top->nr) {
854                         size_t b = top->bucket;
855
856                         top->bucket++;
857                         top->nr--;
858                         return b;
859                 }
860
861                 heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
862         }
863
864         return -1;
865 }
866
867 /*
868  * returns sequence number of most recent journal entry that updated this
869  * bucket:
870  */
871 static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m)
872 {
873         if (m.journal_seq_valid) {
874                 u64 journal_seq = atomic64_read(&c->journal.seq);
875                 u64 bucket_seq  = journal_seq;
876
877                 bucket_seq &= ~((u64) U16_MAX);
878                 bucket_seq |= m.journal_seq;
879
880                 if (bucket_seq > journal_seq)
881                         bucket_seq -= 1 << 16;
882
883                 return bucket_seq;
884         } else {
885                 return 0;
886         }
887 }
888
889 static int bch2_invalidate_one_bucket2(struct bch_fs *c, struct bch_dev *ca,
890                                        struct btree_iter *iter,
891                                        u64 *journal_seq, unsigned flags)
892 {
893 #if 0
894         __BKEY_PADDED(k, BKEY_ALLOC_VAL_U64s_MAX) alloc_key;
895 #else
896         /* hack: */
897         __BKEY_PADDED(k, 8) alloc_key;
898 #endif
899         struct bkey_i_alloc *a;
900         struct bkey_alloc_unpacked u;
901         struct bucket_mark m;
902         struct bkey_s_c k;
903         bool invalidating_cached_data;
904         size_t b;
905         int ret;
906
907         BUG_ON(!ca->alloc_heap.used ||
908                !ca->alloc_heap.data[0].nr);
909         b = ca->alloc_heap.data[0].bucket;
910
911         /* first, put on free_inc and mark as owned by allocator: */
912         percpu_down_read_preempt_disable(&c->mark_lock);
913         spin_lock(&c->freelist_lock);
914
915         verify_not_on_freelist(c, ca, b);
916
917         BUG_ON(!fifo_push(&ca->free_inc, b));
918
919         bch2_mark_alloc_bucket(c, ca, b, true, gc_pos_alloc(c, NULL), 0);
920         m = bucket(ca, b)->mark;
921
922         spin_unlock(&c->freelist_lock);
923         percpu_up_read_preempt_enable(&c->mark_lock);
924
925         bch2_btree_iter_cond_resched(iter);
926
927         BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8);
928
929         bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, b));
930 retry:
931         k = bch2_btree_iter_peek_slot(iter);
932         ret = btree_iter_err(k);
933         if (ret)
934                 return ret;
935
936         if (k.k && k.k->type == KEY_TYPE_alloc)
937                 u = bch2_alloc_unpack(bkey_s_c_to_alloc(k).v);
938         else
939                 memset(&u, 0, sizeof(u));
940
941         invalidating_cached_data = u.cached_sectors != 0;
942
943         //BUG_ON(u.dirty_sectors);
944         u.data_type     = 0;
945         u.dirty_sectors = 0;
946         u.cached_sectors = 0;
947         u.read_time     = c->bucket_clock[READ].hand;
948         u.write_time    = c->bucket_clock[WRITE].hand;
949         u.gen++;
950
951         a = bkey_alloc_init(&alloc_key.k);
952         a->k.p = iter->pos;
953         bch2_alloc_pack(a, u);
954
955         ret = bch2_btree_insert_at(c, NULL,
956                         invalidating_cached_data ? journal_seq : NULL,
957                         BTREE_INSERT_ATOMIC|
958                         BTREE_INSERT_NOCHECK_RW|
959                         BTREE_INSERT_NOFAIL|
960                         BTREE_INSERT_USE_RESERVE|
961                         BTREE_INSERT_USE_ALLOC_RESERVE|
962                         flags,
963                         BTREE_INSERT_ENTRY(iter, &a->k_i));
964         if (ret == -EINTR)
965                 goto retry;
966
967         if (!ret) {
968                 /* remove from alloc_heap: */
969                 struct alloc_heap_entry e, *top = ca->alloc_heap.data;
970
971                 top->bucket++;
972                 top->nr--;
973
974                 if (!top->nr)
975                         heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
976
977                 /*
978                  * Make sure we flush the last journal entry that updated this
979                  * bucket (i.e. deleting the last reference) before writing to
980                  * this bucket again:
981                  */
982                 *journal_seq = max(*journal_seq, bucket_journal_seq(c, m));
983         } else {
984                 size_t b2;
985
986                 /* remove from free_inc: */
987                 percpu_down_read_preempt_disable(&c->mark_lock);
988                 spin_lock(&c->freelist_lock);
989
990                 bch2_mark_alloc_bucket(c, ca, b, false,
991                                        gc_pos_alloc(c, NULL), 0);
992
993                 BUG_ON(!fifo_pop_back(&ca->free_inc, b2));
994                 BUG_ON(b != b2);
995
996                 spin_unlock(&c->freelist_lock);
997                 percpu_up_read_preempt_enable(&c->mark_lock);
998         }
999
1000         return ret;
1001 }
1002
1003 static bool bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca,
1004                                        size_t bucket, u64 *flush_seq)
1005 {
1006         struct bucket_mark m;
1007
1008         percpu_down_read_preempt_disable(&c->mark_lock);
1009         spin_lock(&c->freelist_lock);
1010
1011         bch2_invalidate_bucket(c, ca, bucket, &m);
1012
1013         verify_not_on_freelist(c, ca, bucket);
1014         BUG_ON(!fifo_push(&ca->free_inc, bucket));
1015
1016         spin_unlock(&c->freelist_lock);
1017
1018         bucket_io_clock_reset(c, ca, bucket, READ);
1019         bucket_io_clock_reset(c, ca, bucket, WRITE);
1020
1021         percpu_up_read_preempt_enable(&c->mark_lock);
1022
1023         *flush_seq = max(*flush_seq, bucket_journal_seq(c, m));
1024
1025         return m.cached_sectors != 0;
1026 }
1027
1028 /*
1029  * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc:
1030  */
1031 static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca)
1032 {
1033         struct btree_iter iter;
1034         u64 journal_seq = 0;
1035         int ret = 0;
1036
1037         bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0),
1038                              BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
1039
1040         /* Only use nowait if we've already invalidated at least one bucket: */
1041         while (!ret &&
1042                !fifo_full(&ca->free_inc) &&
1043                ca->alloc_heap.used)
1044                 ret = bch2_invalidate_one_bucket2(c, ca, &iter, &journal_seq,
1045                                 BTREE_INSERT_GC_LOCK_HELD|
1046                                 (!fifo_empty(&ca->free_inc)
1047                                  ? BTREE_INSERT_NOWAIT : 0));
1048
1049         bch2_btree_iter_unlock(&iter);
1050
1051         /* If we used NOWAIT, don't return the error: */
1052         if (!fifo_empty(&ca->free_inc))
1053                 ret = 0;
1054         if (ret) {
1055                 bch_err(ca, "error invalidating buckets: %i", ret);
1056                 return ret;
1057         }
1058
1059         if (journal_seq)
1060                 ret = bch2_journal_flush_seq(&c->journal, journal_seq);
1061         if (ret) {
1062                 bch_err(ca, "journal error: %i", ret);
1063                 return ret;
1064         }
1065
1066         return 0;
1067 }
1068
1069 static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket)
1070 {
1071         unsigned i;
1072         int ret = 0;
1073
1074         while (1) {
1075                 set_current_state(TASK_INTERRUPTIBLE);
1076
1077                 spin_lock(&c->freelist_lock);
1078                 for (i = 0; i < RESERVE_NR; i++)
1079                         if (fifo_push(&ca->free[i], bucket)) {
1080                                 fifo_pop(&ca->free_inc, bucket);
1081
1082                                 closure_wake_up(&c->freelist_wait);
1083                                 ca->allocator_blocked_full = false;
1084
1085                                 spin_unlock(&c->freelist_lock);
1086                                 goto out;
1087                         }
1088
1089                 if (!ca->allocator_blocked_full) {
1090                         ca->allocator_blocked_full = true;
1091                         closure_wake_up(&c->freelist_wait);
1092                 }
1093
1094                 spin_unlock(&c->freelist_lock);
1095
1096                 if ((current->flags & PF_KTHREAD) &&
1097                     kthread_should_stop()) {
1098                         ret = 1;
1099                         break;
1100                 }
1101
1102                 schedule();
1103                 try_to_freeze();
1104         }
1105 out:
1106         __set_current_state(TASK_RUNNING);
1107         return ret;
1108 }
1109
1110 /*
1111  * Pulls buckets off free_inc, discards them (if enabled), then adds them to
1112  * freelists, waiting until there's room if necessary:
1113  */
1114 static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca)
1115 {
1116         while (!fifo_empty(&ca->free_inc)) {
1117                 size_t bucket = fifo_peek(&ca->free_inc);
1118
1119                 if (ca->mi.discard &&
1120                     blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev)))
1121                         blkdev_issue_discard(ca->disk_sb.bdev,
1122                                              bucket_to_sector(ca, bucket),
1123                                              ca->mi.bucket_size, GFP_NOIO, 0);
1124
1125                 if (push_invalidated_bucket(c, ca, bucket))
1126                         return 1;
1127         }
1128
1129         return 0;
1130 }
1131
1132 /**
1133  * bch_allocator_thread - move buckets from free_inc to reserves
1134  *
1135  * The free_inc FIFO is populated by find_reclaimable_buckets(), and
1136  * the reserves are depleted by bucket allocation. When we run out
1137  * of free_inc, try to invalidate some buckets and write out
1138  * prios and gens.
1139  */
1140 static int bch2_allocator_thread(void *arg)
1141 {
1142         struct bch_dev *ca = arg;
1143         struct bch_fs *c = ca->fs;
1144         size_t nr;
1145         int ret;
1146
1147         set_freezable();
1148
1149         while (1) {
1150                 cond_resched();
1151
1152                 pr_debug("discarding %zu invalidated buckets",
1153                          fifo_used(&ca->free_inc));
1154
1155                 ret = discard_invalidated_buckets(c, ca);
1156                 if (ret)
1157                         goto stop;
1158
1159                 down_read(&c->gc_lock);
1160
1161                 ret = bch2_invalidate_buckets(c, ca);
1162                 if (ret) {
1163                         up_read(&c->gc_lock);
1164                         goto stop;
1165                 }
1166
1167                 if (!fifo_empty(&ca->free_inc)) {
1168                         up_read(&c->gc_lock);
1169                         continue;
1170                 }
1171
1172                 pr_debug("free_inc now empty");
1173
1174                 do {
1175                         /*
1176                          * Find some buckets that we can invalidate, either
1177                          * they're completely unused, or only contain clean data
1178                          * that's been written back to the backing device or
1179                          * another cache tier
1180                          */
1181
1182                         pr_debug("scanning for reclaimable buckets");
1183
1184                         nr = find_reclaimable_buckets(c, ca);
1185
1186                         pr_debug("found %zu buckets", nr);
1187
1188                         trace_alloc_batch(ca, nr, ca->alloc_heap.size);
1189
1190                         if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) ||
1191                              ca->inc_gen_really_needs_gc) &&
1192                             c->gc_thread) {
1193                                 atomic_inc(&c->kick_gc);
1194                                 wake_up_process(c->gc_thread);
1195                         }
1196
1197                         /*
1198                          * If we found any buckets, we have to invalidate them
1199                          * before we scan for more - but if we didn't find very
1200                          * many we may want to wait on more buckets being
1201                          * available so we don't spin:
1202                          */
1203                         if (!nr ||
1204                             (nr < ALLOC_SCAN_BATCH(ca) &&
1205                              !fifo_full(&ca->free[RESERVE_MOVINGGC]))) {
1206                                 ca->allocator_blocked = true;
1207                                 closure_wake_up(&c->freelist_wait);
1208
1209                                 ret = wait_buckets_available(c, ca);
1210                                 if (ret) {
1211                                         up_read(&c->gc_lock);
1212                                         goto stop;
1213                                 }
1214                         }
1215                 } while (!nr);
1216
1217                 ca->allocator_blocked = false;
1218                 up_read(&c->gc_lock);
1219
1220                 pr_debug("%zu buckets to invalidate", nr);
1221
1222                 /*
1223                  * alloc_heap is now full of newly-invalidated buckets: next,
1224                  * write out the new bucket gens:
1225                  */
1226         }
1227
1228 stop:
1229         pr_debug("alloc thread stopping (ret %i)", ret);
1230         return 0;
1231 }
1232
1233 /* Startup/shutdown (ro/rw): */
1234
1235 void bch2_recalc_capacity(struct bch_fs *c)
1236 {
1237         struct bch_dev *ca;
1238         u64 capacity = 0, reserved_sectors = 0, gc_reserve;
1239         unsigned bucket_size_max = 0;
1240         unsigned long ra_pages = 0;
1241         unsigned i, j;
1242
1243         lockdep_assert_held(&c->state_lock);
1244
1245         for_each_online_member(ca, c, i) {
1246                 struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi;
1247
1248                 ra_pages += bdi->ra_pages;
1249         }
1250
1251         bch2_set_ra_pages(c, ra_pages);
1252
1253         for_each_rw_member(ca, c, i) {
1254                 u64 dev_reserve = 0;
1255
1256                 /*
1257                  * We need to reserve buckets (from the number
1258                  * of currently available buckets) against
1259                  * foreground writes so that mainly copygc can
1260                  * make forward progress.
1261                  *
1262                  * We need enough to refill the various reserves
1263                  * from scratch - copygc will use its entire
1264                  * reserve all at once, then run against when
1265                  * its reserve is refilled (from the formerly
1266                  * available buckets).
1267                  *
1268                  * This reserve is just used when considering if
1269                  * allocations for foreground writes must wait -
1270                  * not -ENOSPC calculations.
1271                  */
1272                 for (j = 0; j < RESERVE_NONE; j++)
1273                         dev_reserve += ca->free[j].size;
1274
1275                 dev_reserve += 1;       /* btree write point */
1276                 dev_reserve += 1;       /* copygc write point */
1277                 dev_reserve += 1;       /* rebalance write point */
1278
1279                 dev_reserve *= ca->mi.bucket_size;
1280
1281                 ca->copygc_threshold = dev_reserve;
1282
1283                 capacity += bucket_to_sector(ca, ca->mi.nbuckets -
1284                                              ca->mi.first_bucket);
1285
1286                 reserved_sectors += dev_reserve * 2;
1287
1288                 bucket_size_max = max_t(unsigned, bucket_size_max,
1289                                         ca->mi.bucket_size);
1290         }
1291
1292         gc_reserve = c->opts.gc_reserve_bytes
1293                 ? c->opts.gc_reserve_bytes >> 9
1294                 : div64_u64(capacity * c->opts.gc_reserve_percent, 100);
1295
1296         reserved_sectors = max(gc_reserve, reserved_sectors);
1297
1298         reserved_sectors = min(reserved_sectors, capacity);
1299
1300         c->capacity = capacity - reserved_sectors;
1301
1302         c->bucket_size_max = bucket_size_max;
1303
1304         if (c->capacity) {
1305                 bch2_io_timer_add(&c->io_clock[READ],
1306                                  &c->bucket_clock[READ].rescale);
1307                 bch2_io_timer_add(&c->io_clock[WRITE],
1308                                  &c->bucket_clock[WRITE].rescale);
1309         } else {
1310                 bch2_io_timer_del(&c->io_clock[READ],
1311                                  &c->bucket_clock[READ].rescale);
1312                 bch2_io_timer_del(&c->io_clock[WRITE],
1313                                  &c->bucket_clock[WRITE].rescale);
1314         }
1315
1316         /* Wake up case someone was waiting for buckets */
1317         closure_wake_up(&c->freelist_wait);
1318 }
1319
1320 static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
1321 {
1322         struct open_bucket *ob;
1323         bool ret = false;
1324
1325         for (ob = c->open_buckets;
1326              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
1327              ob++) {
1328                 spin_lock(&ob->lock);
1329                 if (ob->valid && !ob->on_partial_list &&
1330                     ob->ptr.dev == ca->dev_idx)
1331                         ret = true;
1332                 spin_unlock(&ob->lock);
1333         }
1334
1335         return ret;
1336 }
1337
1338 /* device goes ro: */
1339 void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
1340 {
1341         unsigned i;
1342
1343         BUG_ON(ca->alloc_thread);
1344
1345         /* First, remove device from allocation groups: */
1346
1347         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1348                 clear_bit(ca->dev_idx, c->rw_devs[i].d);
1349
1350         /*
1351          * Capacity is calculated based off of devices in allocation groups:
1352          */
1353         bch2_recalc_capacity(c);
1354
1355         /* Next, close write points that point to this device... */
1356         for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
1357                 bch2_writepoint_stop(c, ca, &c->write_points[i]);
1358
1359         bch2_writepoint_stop(c, ca, &ca->copygc_write_point);
1360         bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
1361         bch2_writepoint_stop(c, ca, &c->btree_write_point);
1362
1363         mutex_lock(&c->btree_reserve_cache_lock);
1364         while (c->btree_reserve_cache_nr) {
1365                 struct btree_alloc *a =
1366                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
1367
1368                 bch2_open_buckets_put(c, &a->ob);
1369         }
1370         mutex_unlock(&c->btree_reserve_cache_lock);
1371
1372         while (1) {
1373                 struct open_bucket *ob;
1374
1375                 spin_lock(&c->freelist_lock);
1376                 if (!ca->open_buckets_partial_nr) {
1377                         spin_unlock(&c->freelist_lock);
1378                         break;
1379                 }
1380                 ob = c->open_buckets +
1381                         ca->open_buckets_partial[--ca->open_buckets_partial_nr];
1382                 ob->on_partial_list = false;
1383                 spin_unlock(&c->freelist_lock);
1384
1385                 bch2_open_bucket_put(c, ob);
1386         }
1387
1388         bch2_ec_stop_dev(c, ca);
1389
1390         /*
1391          * Wake up threads that were blocked on allocation, so they can notice
1392          * the device can no longer be removed and the capacity has changed:
1393          */
1394         closure_wake_up(&c->freelist_wait);
1395
1396         /*
1397          * journal_res_get() can block waiting for free space in the journal -
1398          * it needs to notice there may not be devices to allocate from anymore:
1399          */
1400         wake_up(&c->journal.wait);
1401
1402         /* Now wait for any in flight writes: */
1403
1404         closure_wait_event(&c->open_buckets_wait,
1405                            !bch2_dev_has_open_write_point(c, ca));
1406 }
1407
1408 /* device goes rw: */
1409 void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
1410 {
1411         unsigned i;
1412
1413         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1414                 if (ca->mi.data_allowed & (1 << i))
1415                         set_bit(ca->dev_idx, c->rw_devs[i].d);
1416 }
1417
1418 void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca)
1419 {
1420         if (ca->alloc_thread)
1421                 closure_wait_event(&c->freelist_wait, ca->allocator_blocked_full);
1422 }
1423
1424 /* stop allocator thread: */
1425 void bch2_dev_allocator_stop(struct bch_dev *ca)
1426 {
1427         struct task_struct *p;
1428
1429         p = rcu_dereference_protected(ca->alloc_thread, 1);
1430         ca->alloc_thread = NULL;
1431
1432         /*
1433          * We need an rcu barrier between setting ca->alloc_thread = NULL and
1434          * the thread shutting down to avoid bch2_wake_allocator() racing:
1435          *
1436          * XXX: it would be better to have the rcu barrier be asynchronous
1437          * instead of blocking us here
1438          */
1439         synchronize_rcu();
1440
1441         if (p) {
1442                 kthread_stop(p);
1443                 put_task_struct(p);
1444         }
1445 }
1446
1447 /* start allocator thread: */
1448 int bch2_dev_allocator_start(struct bch_dev *ca)
1449 {
1450         struct task_struct *p;
1451
1452         /*
1453          * allocator thread already started?
1454          */
1455         if (ca->alloc_thread)
1456                 return 0;
1457
1458         p = kthread_create(bch2_allocator_thread, ca,
1459                            "bch_alloc[%s]", ca->name);
1460         if (IS_ERR(p))
1461                 return PTR_ERR(p);
1462
1463         get_task_struct(p);
1464         rcu_assign_pointer(ca->alloc_thread, p);
1465         wake_up_process(p);
1466         return 0;
1467 }
1468
1469 static bool flush_held_btree_writes(struct bch_fs *c)
1470 {
1471         struct bucket_table *tbl;
1472         struct rhash_head *pos;
1473         struct btree *b;
1474         bool nodes_unwritten;
1475         size_t i;
1476 again:
1477         cond_resched();
1478         nodes_unwritten = false;
1479
1480         rcu_read_lock();
1481         for_each_cached_btree(b, c, tbl, i, pos)
1482                 if (btree_node_need_write(b)) {
1483                         if (btree_node_may_write(b)) {
1484                                 rcu_read_unlock();
1485                                 btree_node_lock_type(c, b, SIX_LOCK_read);
1486                                 bch2_btree_node_write(c, b, SIX_LOCK_read);
1487                                 six_unlock_read(&b->lock);
1488                                 goto again;
1489                         } else {
1490                                 nodes_unwritten = true;
1491                         }
1492                 }
1493         rcu_read_unlock();
1494
1495         if (c->btree_roots_dirty) {
1496                 bch2_journal_meta(&c->journal);
1497                 goto again;
1498         }
1499
1500         return !nodes_unwritten &&
1501                 !bch2_btree_interior_updates_nr_pending(c);
1502 }
1503
1504 static void allocator_start_issue_discards(struct bch_fs *c)
1505 {
1506         struct bch_dev *ca;
1507         unsigned dev_iter;
1508         size_t bu;
1509
1510         for_each_rw_member(ca, c, dev_iter)
1511                 while (fifo_pop(&ca->free_inc, bu))
1512                         blkdev_issue_discard(ca->disk_sb.bdev,
1513                                              bucket_to_sector(ca, bu),
1514                                              ca->mi.bucket_size, GFP_NOIO, 0);
1515 }
1516
1517 static int resize_free_inc(struct bch_dev *ca)
1518 {
1519         alloc_fifo free_inc;
1520
1521         if (!fifo_full(&ca->free_inc))
1522                 return 0;
1523
1524         if (!init_fifo(&free_inc,
1525                        ca->free_inc.size * 2,
1526                        GFP_KERNEL))
1527                 return -ENOMEM;
1528
1529         fifo_move(&free_inc, &ca->free_inc);
1530         swap(free_inc, ca->free_inc);
1531         free_fifo(&free_inc);
1532         return 0;
1533 }
1534
1535 static bool bch2_fs_allocator_start_fast(struct bch_fs *c)
1536 {
1537         struct bch_dev *ca;
1538         unsigned dev_iter;
1539         bool ret = true;
1540
1541         if (test_alloc_startup(c))
1542                 return false;
1543
1544         down_read(&c->gc_lock);
1545
1546         /* Scan for buckets that are already invalidated: */
1547         for_each_rw_member(ca, c, dev_iter) {
1548                 struct bucket_array *buckets;
1549                 struct bucket_mark m;
1550                 long bu;
1551
1552                 down_read(&ca->bucket_lock);
1553                 buckets = bucket_array(ca);
1554
1555                 for (bu = buckets->first_bucket;
1556                      bu < buckets->nbuckets; bu++) {
1557                         m = READ_ONCE(buckets->b[bu].mark);
1558
1559                         if (!buckets->b[bu].gen_valid ||
1560                             !is_available_bucket(m) ||
1561                             m.cached_sectors ||
1562                             (ca->buckets_nouse &&
1563                              test_bit(bu, ca->buckets_nouse)))
1564                                 continue;
1565
1566                         percpu_down_read_preempt_disable(&c->mark_lock);
1567                         bch2_mark_alloc_bucket(c, ca, bu, true,
1568                                         gc_pos_alloc(c, NULL), 0);
1569                         percpu_up_read_preempt_enable(&c->mark_lock);
1570
1571                         fifo_push(&ca->free_inc, bu);
1572
1573                         discard_invalidated_buckets(c, ca);
1574
1575                         if (fifo_full(&ca->free[RESERVE_BTREE]))
1576                                 break;
1577                 }
1578                 up_read(&ca->bucket_lock);
1579         }
1580
1581         up_read(&c->gc_lock);
1582
1583         /* did we find enough buckets? */
1584         for_each_rw_member(ca, c, dev_iter)
1585                 if (!fifo_full(&ca->free[RESERVE_BTREE]))
1586                         ret = false;
1587
1588         return ret;
1589 }
1590
1591 static int __bch2_fs_allocator_start(struct bch_fs *c)
1592 {
1593         struct bch_dev *ca;
1594         unsigned dev_iter;
1595         u64 journal_seq = 0;
1596         bool wrote;
1597         long bu;
1598         int ret = 0;
1599
1600         pr_debug("not enough empty buckets; scanning for reclaimable buckets");
1601
1602         /*
1603          * We're moving buckets to freelists _before_ they've been marked as
1604          * invalidated on disk - we have to so that we can allocate new btree
1605          * nodes to mark them as invalidated on disk.
1606          *
1607          * However, we can't _write_ to any of these buckets yet - they might
1608          * have cached data in them, which is live until they're marked as
1609          * invalidated on disk:
1610          */
1611         set_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
1612
1613         down_read(&c->gc_lock);
1614         do {
1615                 wrote = false;
1616
1617                 for_each_rw_member(ca, c, dev_iter) {
1618                         find_reclaimable_buckets(c, ca);
1619
1620                         while (!fifo_full(&ca->free[RESERVE_BTREE]) &&
1621                                (bu = next_alloc_bucket(ca)) >= 0) {
1622                                 ret = resize_free_inc(ca);
1623                                 if (ret) {
1624                                         percpu_ref_put(&ca->io_ref);
1625                                         up_read(&c->gc_lock);
1626                                         goto err;
1627                                 }
1628
1629                                 bch2_invalidate_one_bucket(c, ca, bu,
1630                                                            &journal_seq);
1631
1632                                 fifo_push(&ca->free[RESERVE_BTREE], bu);
1633                         }
1634                 }
1635
1636                 pr_debug("done scanning for reclaimable buckets");
1637
1638                 /*
1639                  * XXX: it's possible for this to deadlock waiting on journal reclaim,
1640                  * since we're holding btree writes. What then?
1641                  */
1642                 ret = bch2_alloc_write(c, true, &wrote);
1643
1644                 /*
1645                  * If bch2_alloc_write() did anything, it may have used some
1646                  * buckets, and we need the RESERVE_BTREE freelist full - so we
1647                  * need to loop and scan again.
1648                  * And if it errored, it may have been because there weren't
1649                  * enough buckets, so just scan and loop again as long as it
1650                  * made some progress:
1651                  */
1652         } while (wrote);
1653         up_read(&c->gc_lock);
1654
1655         if (ret)
1656                 goto err;
1657
1658         pr_debug("flushing journal");
1659
1660         ret = bch2_journal_flush(&c->journal);
1661         if (ret)
1662                 goto err;
1663
1664         pr_debug("issuing discards");
1665         allocator_start_issue_discards(c);
1666 err:
1667         clear_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
1668         closure_wait_event(&c->btree_interior_update_wait,
1669                            flush_held_btree_writes(c));
1670
1671         return ret;
1672 }
1673
1674 int bch2_fs_allocator_start(struct bch_fs *c)
1675 {
1676         struct bch_dev *ca;
1677         unsigned i;
1678         int ret;
1679
1680         ret = bch2_fs_allocator_start_fast(c) ? 0 :
1681                 __bch2_fs_allocator_start(c);
1682         if (ret)
1683                 return ret;
1684
1685         set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags);
1686
1687         for_each_rw_member(ca, c, i) {
1688                 ret = bch2_dev_allocator_start(ca);
1689                 if (ret) {
1690                         percpu_ref_put(&ca->io_ref);
1691                         return ret;
1692                 }
1693         }
1694
1695         set_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
1696         return 0;
1697 }
1698
1699 void bch2_fs_allocator_background_init(struct bch_fs *c)
1700 {
1701         spin_lock_init(&c->freelist_lock);
1702         bch2_bucket_clock_init(c, READ);
1703         bch2_bucket_clock_init(c, WRITE);
1704
1705         c->pd_controllers_update_seconds = 5;
1706         INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update);
1707 }