]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/alloc_background.c
Update bcachefs sources to b6d5426551 bcachefs: Fix bch2_btree_iter_peek_with_updates()
[bcachefs-tools-debian] / libbcachefs / alloc_background.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "bcachefs.h"
3 #include "alloc_background.h"
4 #include "alloc_foreground.h"
5 #include "btree_cache.h"
6 #include "btree_io.h"
7 #include "btree_key_cache.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_gc.h"
11 #include "buckets.h"
12 #include "clock.h"
13 #include "debug.h"
14 #include "ec.h"
15 #include "error.h"
16 #include "recovery.h"
17 #include "varint.h"
18
19 #include <linux/kthread.h>
20 #include <linux/math64.h>
21 #include <linux/random.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24 #include <linux/sched/task.h>
25 #include <linux/sort.h>
26 #include <trace/events/bcachefs.h>
27
28 const char * const bch2_allocator_states[] = {
29 #define x(n)    #n,
30         ALLOC_THREAD_STATES()
31 #undef x
32         NULL
33 };
34
35 static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = {
36 #define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8,
37         BCH_ALLOC_FIELDS_V1()
38 #undef x
39 };
40
41 /* Persistent alloc info: */
42
43 static inline u64 alloc_field_v1_get(const struct bch_alloc *a,
44                                      const void **p, unsigned field)
45 {
46         unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
47         u64 v;
48
49         if (!(a->fields & (1 << field)))
50                 return 0;
51
52         switch (bytes) {
53         case 1:
54                 v = *((const u8 *) *p);
55                 break;
56         case 2:
57                 v = le16_to_cpup(*p);
58                 break;
59         case 4:
60                 v = le32_to_cpup(*p);
61                 break;
62         case 8:
63                 v = le64_to_cpup(*p);
64                 break;
65         default:
66                 BUG();
67         }
68
69         *p += bytes;
70         return v;
71 }
72
73 static inline void alloc_field_v1_put(struct bkey_i_alloc *a, void **p,
74                                       unsigned field, u64 v)
75 {
76         unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field];
77
78         if (!v)
79                 return;
80
81         a->v.fields |= 1 << field;
82
83         switch (bytes) {
84         case 1:
85                 *((u8 *) *p) = v;
86                 break;
87         case 2:
88                 *((__le16 *) *p) = cpu_to_le16(v);
89                 break;
90         case 4:
91                 *((__le32 *) *p) = cpu_to_le32(v);
92                 break;
93         case 8:
94                 *((__le64 *) *p) = cpu_to_le64(v);
95                 break;
96         default:
97                 BUG();
98         }
99
100         *p += bytes;
101 }
102
103 static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out,
104                                  struct bkey_s_c k)
105 {
106         const struct bch_alloc *in = bkey_s_c_to_alloc(k).v;
107         const void *d = in->data;
108         unsigned idx = 0;
109
110         out->gen = in->gen;
111
112 #define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++);
113         BCH_ALLOC_FIELDS_V1()
114 #undef  x
115 }
116
117 static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out,
118                                 struct bkey_s_c k)
119 {
120         struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k);
121         const u8 *in = a.v->data;
122         const u8 *end = bkey_val_end(a);
123         unsigned fieldnr = 0;
124         int ret;
125         u64 v;
126
127         out->gen        = a.v->gen;
128         out->oldest_gen = a.v->oldest_gen;
129         out->data_type  = a.v->data_type;
130
131 #define x(_name, _bits)                                                 \
132         if (fieldnr < a.v->nr_fields) {                                 \
133                 ret = bch2_varint_decode(in, end, &v);                  \
134                 if (ret < 0)                                            \
135                         return ret;                                     \
136                 in += ret;                                              \
137         } else {                                                        \
138                 v = 0;                                                  \
139         }                                                               \
140         out->_name = v;                                                 \
141         if (v != out->_name)                                            \
142                 return -1;                                              \
143         fieldnr++;
144
145         BCH_ALLOC_FIELDS_V2()
146 #undef  x
147         return 0;
148 }
149
150 static void bch2_alloc_pack_v2(struct bkey_alloc_buf *dst,
151                                const struct bkey_alloc_unpacked src)
152 {
153         struct bkey_i_alloc_v2 *a = bkey_alloc_v2_init(&dst->k);
154         unsigned nr_fields = 0, last_nonzero_fieldnr = 0;
155         u8 *out = a->v.data;
156         u8 *end = (void *) &dst[1];
157         u8 *last_nonzero_field = out;
158         unsigned bytes;
159
160         a->k.p          = POS(src.dev, src.bucket);
161         a->v.gen        = src.gen;
162         a->v.oldest_gen = src.oldest_gen;
163         a->v.data_type  = src.data_type;
164
165 #define x(_name, _bits)                                                 \
166         nr_fields++;                                                    \
167                                                                         \
168         if (src._name) {                                                \
169                 out += bch2_varint_encode(out, src._name);              \
170                                                                         \
171                 last_nonzero_field = out;                               \
172                 last_nonzero_fieldnr = nr_fields;                       \
173         } else {                                                        \
174                 *out++ = 0;                                             \
175         }
176
177         BCH_ALLOC_FIELDS_V2()
178 #undef  x
179         BUG_ON(out > end);
180
181         out = last_nonzero_field;
182         a->v.nr_fields = last_nonzero_fieldnr;
183
184         bytes = (u8 *) out - (u8 *) &a->v;
185         set_bkey_val_bytes(&a->k, bytes);
186         memset_u64s_tail(&a->v, 0, bytes);
187 }
188
189 struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k)
190 {
191         struct bkey_alloc_unpacked ret = {
192                 .dev    = k.k->p.inode,
193                 .bucket = k.k->p.offset,
194                 .gen    = 0,
195         };
196
197         if (k.k->type == KEY_TYPE_alloc_v2)
198                 bch2_alloc_unpack_v2(&ret, k);
199         else if (k.k->type == KEY_TYPE_alloc)
200                 bch2_alloc_unpack_v1(&ret, k);
201
202         return ret;
203 }
204
205 void bch2_alloc_pack(struct bch_fs *c,
206                      struct bkey_alloc_buf *dst,
207                      const struct bkey_alloc_unpacked src)
208 {
209         bch2_alloc_pack_v2(dst, src);
210 }
211
212 static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a)
213 {
214         unsigned i, bytes = offsetof(struct bch_alloc, data);
215
216         for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++)
217                 if (a->fields & (1 << i))
218                         bytes += BCH_ALLOC_V1_FIELD_BYTES[i];
219
220         return DIV_ROUND_UP(bytes, sizeof(u64));
221 }
222
223 const char *bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k)
224 {
225         struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
226
227         if (k.k->p.inode >= c->sb.nr_devices ||
228             !c->devs[k.k->p.inode])
229                 return "invalid device";
230
231         /* allow for unknown fields */
232         if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v))
233                 return "incorrect value size";
234
235         return NULL;
236 }
237
238 const char *bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k)
239 {
240         struct bkey_alloc_unpacked u;
241
242         if (k.k->p.inode >= c->sb.nr_devices ||
243             !c->devs[k.k->p.inode])
244                 return "invalid device";
245
246         if (bch2_alloc_unpack_v2(&u, k))
247                 return "unpack error";
248
249         return NULL;
250 }
251
252 void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c,
253                            struct bkey_s_c k)
254 {
255         struct bkey_alloc_unpacked u = bch2_alloc_unpack(k);
256
257         pr_buf(out, "gen %u oldest_gen %u data_type %s",
258                u.gen, u.oldest_gen, bch2_data_types[u.data_type]);
259 #define x(_name, ...)   pr_buf(out, " " #_name " %llu", (u64) u._name);
260         BCH_ALLOC_FIELDS_V2()
261 #undef  x
262 }
263
264 static int bch2_alloc_read_fn(struct bch_fs *c, struct bkey_s_c k)
265 {
266         struct bch_dev *ca;
267         struct bucket *g;
268         struct bkey_alloc_unpacked u;
269
270         if (k.k->type != KEY_TYPE_alloc &&
271             k.k->type != KEY_TYPE_alloc_v2)
272                 return 0;
273
274         ca = bch_dev_bkey_exists(c, k.k->p.inode);
275         g = bucket(ca, k.k->p.offset);
276         u = bch2_alloc_unpack(k);
277
278         g->_mark.gen            = u.gen;
279         g->_mark.data_type      = u.data_type;
280         g->_mark.dirty_sectors  = u.dirty_sectors;
281         g->_mark.cached_sectors = u.cached_sectors;
282         g->io_time[READ]        = u.read_time;
283         g->io_time[WRITE]       = u.write_time;
284         g->oldest_gen           = u.oldest_gen;
285         g->gen_valid            = 1;
286
287         return 0;
288 }
289
290 int bch2_alloc_read(struct bch_fs *c)
291 {
292         int ret;
293
294         down_read(&c->gc_lock);
295         ret = bch2_btree_and_journal_walk(c, BTREE_ID_alloc, bch2_alloc_read_fn);
296         up_read(&c->gc_lock);
297         if (ret) {
298                 bch_err(c, "error reading alloc info: %i", ret);
299                 return ret;
300         }
301
302         return 0;
303 }
304
305 static int bch2_alloc_write_key(struct btree_trans *trans,
306                                 struct btree_iter *iter,
307                                 unsigned flags)
308 {
309         struct bch_fs *c = trans->c;
310         struct bkey_s_c k;
311         struct bch_dev *ca;
312         struct bucket *g;
313         struct bucket_mark m;
314         struct bkey_alloc_unpacked old_u, new_u;
315         struct bkey_alloc_buf a;
316         int ret;
317 retry:
318         bch2_trans_begin(trans);
319
320         ret = bch2_btree_key_cache_flush(trans,
321                         BTREE_ID_alloc, iter->pos);
322         if (ret)
323                 goto err;
324
325         k = bch2_btree_iter_peek_slot(iter);
326         ret = bkey_err(k);
327         if (ret)
328                 goto err;
329
330         old_u = bch2_alloc_unpack(k);
331
332         percpu_down_read(&c->mark_lock);
333         ca      = bch_dev_bkey_exists(c, iter->pos.inode);
334         g       = bucket(ca, iter->pos.offset);
335         m       = READ_ONCE(g->mark);
336         new_u   = alloc_mem_to_key(iter, g, m);
337         percpu_up_read(&c->mark_lock);
338
339         if (!bkey_alloc_unpacked_cmp(old_u, new_u))
340                 return 0;
341
342         bch2_alloc_pack(c, &a, new_u);
343         bch2_trans_update(trans, iter, &a.k,
344                           BTREE_TRIGGER_NORUN);
345         ret = bch2_trans_commit(trans, NULL, NULL,
346                                 BTREE_INSERT_NOFAIL|flags);
347 err:
348         if (ret == -EINTR)
349                 goto retry;
350         return ret;
351 }
352
353 int bch2_alloc_write(struct bch_fs *c, unsigned flags)
354 {
355         struct btree_trans trans;
356         struct btree_iter *iter;
357         struct bch_dev *ca;
358         unsigned i;
359         int ret = 0;
360
361         bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0);
362         iter = bch2_trans_get_iter(&trans, BTREE_ID_alloc, POS_MIN,
363                                    BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
364
365         for_each_member_device(ca, c, i) {
366                 bch2_btree_iter_set_pos(iter,
367                         POS(ca->dev_idx, ca->mi.first_bucket));
368
369                 while (iter->pos.offset < ca->mi.nbuckets) {
370                         bch2_trans_cond_resched(&trans);
371
372                         ret = bch2_alloc_write_key(&trans, iter, flags);
373                         if (ret) {
374                                 percpu_ref_put(&ca->ref);
375                                 goto err;
376                         }
377                         bch2_btree_iter_next_slot(iter);
378                 }
379         }
380 err:
381         bch2_trans_iter_put(&trans, iter);
382         bch2_trans_exit(&trans);
383         return ret;
384 }
385
386 /* Bucket IO clocks: */
387
388 int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev,
389                               size_t bucket_nr, int rw)
390 {
391         struct bch_fs *c = trans->c;
392         struct bch_dev *ca = bch_dev_bkey_exists(c, dev);
393         struct btree_iter *iter;
394         struct bucket *g;
395         struct bkey_alloc_buf *a;
396         struct bkey_alloc_unpacked u;
397         u64 *time, now;
398         int ret = 0;
399
400         iter = bch2_trans_get_iter(trans, BTREE_ID_alloc, POS(dev, bucket_nr),
401                                    BTREE_ITER_CACHED|
402                                    BTREE_ITER_CACHED_NOFILL|
403                                    BTREE_ITER_INTENT);
404         ret = bch2_btree_iter_traverse(iter);
405         if (ret)
406                 goto out;
407
408         a = bch2_trans_kmalloc(trans, sizeof(struct bkey_alloc_buf));
409         ret = PTR_ERR_OR_ZERO(a);
410         if (ret)
411                 goto out;
412
413         percpu_down_read(&c->mark_lock);
414         g = bucket(ca, bucket_nr);
415         u = alloc_mem_to_key(iter, g, READ_ONCE(g->mark));
416         percpu_up_read(&c->mark_lock);
417
418         time = rw == READ ? &u.read_time : &u.write_time;
419         now = atomic64_read(&c->io_clock[rw].now);
420         if (*time == now)
421                 goto out;
422
423         *time = now;
424
425         bch2_alloc_pack(c, a, u);
426         ret   = bch2_trans_update(trans, iter, &a->k, 0) ?:
427                 bch2_trans_commit(trans, NULL, NULL, 0);
428 out:
429         bch2_trans_iter_put(trans, iter);
430         return ret;
431 }
432
433 /* Background allocator thread: */
434
435 /*
436  * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens
437  * (marking them as invalidated on disk), then optionally issues discard
438  * commands to the newly free buckets, then puts them on the various freelists.
439  */
440
441 static bool bch2_can_invalidate_bucket(struct bch_dev *ca, size_t b,
442                                        struct bucket_mark m)
443 {
444         u8 gc_gen;
445
446         if (!is_available_bucket(m))
447                 return false;
448
449         if (m.owned_by_allocator)
450                 return false;
451
452         if (ca->buckets_nouse &&
453             test_bit(b, ca->buckets_nouse))
454                 return false;
455
456         gc_gen = bucket_gc_gen(bucket(ca, b));
457
458         ca->inc_gen_needs_gc            += gc_gen >= BUCKET_GC_GEN_MAX / 2;
459         ca->inc_gen_really_needs_gc     += gc_gen >= BUCKET_GC_GEN_MAX;
460
461         return gc_gen < BUCKET_GC_GEN_MAX;
462 }
463
464 /*
465  * Determines what order we're going to reuse buckets, smallest bucket_key()
466  * first.
467  */
468
469 static unsigned bucket_sort_key(struct bucket *g, struct bucket_mark m,
470                                 u64 now, u64 last_seq_ondisk)
471 {
472         unsigned used = bucket_sectors_used(m);
473
474         if (used) {
475                 /*
476                  * Prefer to keep buckets that have been read more recently, and
477                  * buckets that have more data in them:
478                  */
479                 u64 last_read = max_t(s64, 0, now - g->io_time[READ]);
480                 u32 last_read_scaled = max_t(u64, U32_MAX, div_u64(last_read, used));
481
482                 return -last_read_scaled;
483         } else {
484                 /*
485                  * Prefer to use buckets with smaller gc_gen so that we don't
486                  * have to walk the btree and recalculate oldest_gen - but shift
487                  * off the low bits so that buckets will still have equal sort
488                  * keys when there's only a small difference, so that we can
489                  * keep sequential buckets together:
490                  */
491                 return  (bucket_needs_journal_commit(m, last_seq_ondisk) << 4)|
492                         (bucket_gc_gen(g) >> 4);
493         }
494 }
495
496 static inline int bucket_alloc_cmp(alloc_heap *h,
497                                    struct alloc_heap_entry l,
498                                    struct alloc_heap_entry r)
499 {
500         return  cmp_int(l.key, r.key) ?:
501                 cmp_int(r.nr, l.nr) ?:
502                 cmp_int(l.bucket, r.bucket);
503 }
504
505 static inline int bucket_idx_cmp(const void *_l, const void *_r)
506 {
507         const struct alloc_heap_entry *l = _l, *r = _r;
508
509         return cmp_int(l->bucket, r->bucket);
510 }
511
512 static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca)
513 {
514         struct bucket_array *buckets;
515         struct alloc_heap_entry e = { 0 };
516         u64 now, last_seq_ondisk;
517         size_t b, i, nr = 0;
518
519         down_read(&ca->bucket_lock);
520
521         buckets = bucket_array(ca);
522         ca->alloc_heap.used = 0;
523         now = atomic64_read(&c->io_clock[READ].now);
524         last_seq_ondisk = c->journal.last_seq_ondisk;
525
526         /*
527          * Find buckets with lowest read priority, by building a maxheap sorted
528          * by read priority and repeatedly replacing the maximum element until
529          * all buckets have been visited.
530          */
531         for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) {
532                 struct bucket *g = &buckets->b[b];
533                 struct bucket_mark m = READ_ONCE(g->mark);
534                 unsigned key = bucket_sort_key(g, m, now, last_seq_ondisk);
535
536                 cond_resched();
537
538                 if (!bch2_can_invalidate_bucket(ca, b, m))
539                         continue;
540
541                 if (e.nr && e.bucket + e.nr == b && e.key == key) {
542                         e.nr++;
543                 } else {
544                         if (e.nr)
545                                 heap_add_or_replace(&ca->alloc_heap, e,
546                                         -bucket_alloc_cmp, NULL);
547
548                         e = (struct alloc_heap_entry) {
549                                 .bucket = b,
550                                 .nr     = 1,
551                                 .key    = key,
552                         };
553                 }
554         }
555
556         if (e.nr)
557                 heap_add_or_replace(&ca->alloc_heap, e,
558                                 -bucket_alloc_cmp, NULL);
559
560         for (i = 0; i < ca->alloc_heap.used; i++)
561                 nr += ca->alloc_heap.data[i].nr;
562
563         while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) {
564                 nr -= ca->alloc_heap.data[0].nr;
565                 heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL);
566         }
567
568         up_read(&ca->bucket_lock);
569 }
570
571 static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca)
572 {
573         struct bucket_array *buckets = bucket_array(ca);
574         struct bucket_mark m;
575         size_t b, start;
576
577         if (ca->fifo_last_bucket <  ca->mi.first_bucket ||
578             ca->fifo_last_bucket >= ca->mi.nbuckets)
579                 ca->fifo_last_bucket = ca->mi.first_bucket;
580
581         start = ca->fifo_last_bucket;
582
583         do {
584                 ca->fifo_last_bucket++;
585                 if (ca->fifo_last_bucket == ca->mi.nbuckets)
586                         ca->fifo_last_bucket = ca->mi.first_bucket;
587
588                 b = ca->fifo_last_bucket;
589                 m = READ_ONCE(buckets->b[b].mark);
590
591                 if (bch2_can_invalidate_bucket(ca, b, m)) {
592                         struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
593
594                         heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
595                         if (heap_full(&ca->alloc_heap))
596                                 break;
597                 }
598
599                 cond_resched();
600         } while (ca->fifo_last_bucket != start);
601 }
602
603 static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca)
604 {
605         struct bucket_array *buckets = bucket_array(ca);
606         struct bucket_mark m;
607         size_t checked, i;
608
609         for (checked = 0;
610              checked < ca->mi.nbuckets / 2;
611              checked++) {
612                 size_t b = bch2_rand_range(ca->mi.nbuckets -
613                                            ca->mi.first_bucket) +
614                         ca->mi.first_bucket;
615
616                 m = READ_ONCE(buckets->b[b].mark);
617
618                 if (bch2_can_invalidate_bucket(ca, b, m)) {
619                         struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
620
621                         heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
622                         if (heap_full(&ca->alloc_heap))
623                                 break;
624                 }
625
626                 cond_resched();
627         }
628
629         sort(ca->alloc_heap.data,
630              ca->alloc_heap.used,
631              sizeof(ca->alloc_heap.data[0]),
632              bucket_idx_cmp, NULL);
633
634         /* remove duplicates: */
635         for (i = 0; i + 1 < ca->alloc_heap.used; i++)
636                 if (ca->alloc_heap.data[i].bucket ==
637                     ca->alloc_heap.data[i + 1].bucket)
638                         ca->alloc_heap.data[i].nr = 0;
639 }
640
641 static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca)
642 {
643         size_t i, nr = 0;
644
645         ca->inc_gen_needs_gc                    = 0;
646         ca->inc_gen_really_needs_gc             = 0;
647
648         switch (ca->mi.replacement) {
649         case BCH_CACHE_REPLACEMENT_lru:
650                 find_reclaimable_buckets_lru(c, ca);
651                 break;
652         case BCH_CACHE_REPLACEMENT_fifo:
653                 find_reclaimable_buckets_fifo(c, ca);
654                 break;
655         case BCH_CACHE_REPLACEMENT_random:
656                 find_reclaimable_buckets_random(c, ca);
657                 break;
658         }
659
660         heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL);
661
662         for (i = 0; i < ca->alloc_heap.used; i++)
663                 nr += ca->alloc_heap.data[i].nr;
664
665         return nr;
666 }
667
668 /*
669  * returns sequence number of most recent journal entry that updated this
670  * bucket:
671  */
672 static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m)
673 {
674         if (m.journal_seq_valid) {
675                 u64 journal_seq = atomic64_read(&c->journal.seq);
676                 u64 bucket_seq  = journal_seq;
677
678                 bucket_seq &= ~((u64) U16_MAX);
679                 bucket_seq |= m.journal_seq;
680
681                 if (bucket_seq > journal_seq)
682                         bucket_seq -= 1 << 16;
683
684                 return bucket_seq;
685         } else {
686                 return 0;
687         }
688 }
689
690 static int bucket_invalidate_btree(struct btree_trans *trans,
691                                    struct bch_dev *ca, u64 b)
692 {
693         struct bch_fs *c = trans->c;
694         struct bkey_alloc_buf *a;
695         struct bkey_alloc_unpacked u;
696         struct bucket *g;
697         struct bucket_mark m;
698         struct btree_iter *iter =
699                 bch2_trans_get_iter(trans, BTREE_ID_alloc,
700                                     POS(ca->dev_idx, b),
701                                     BTREE_ITER_CACHED|
702                                     BTREE_ITER_CACHED_NOFILL|
703                                     BTREE_ITER_INTENT);
704         int ret;
705
706         a = bch2_trans_kmalloc(trans, sizeof(*a));
707         ret = PTR_ERR_OR_ZERO(a);
708         if (ret)
709                 goto err;
710
711         ret = bch2_btree_iter_traverse(iter);
712         if (ret)
713                 goto err;
714
715         percpu_down_read(&c->mark_lock);
716         g = bucket(ca, b);
717         m = READ_ONCE(g->mark);
718         u = alloc_mem_to_key(iter, g, m);
719         percpu_up_read(&c->mark_lock);
720
721         u.gen++;
722         u.data_type     = 0;
723         u.dirty_sectors = 0;
724         u.cached_sectors = 0;
725         u.read_time     = atomic64_read(&c->io_clock[READ].now);
726         u.write_time    = atomic64_read(&c->io_clock[WRITE].now);
727
728         bch2_alloc_pack(c, a, u);
729         bch2_trans_update(trans, iter, &a->k, BTREE_TRIGGER_BUCKET_INVALIDATE);
730 err:
731         bch2_trans_iter_put(trans, iter);
732         return ret;
733 }
734
735 static int bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca,
736                                       u64 *journal_seq, unsigned flags)
737 {
738         struct bucket *g;
739         struct bucket_mark m;
740         size_t b;
741         int ret = 0;
742
743         BUG_ON(!ca->alloc_heap.used ||
744                !ca->alloc_heap.data[0].nr);
745         b = ca->alloc_heap.data[0].bucket;
746
747         /* first, put on free_inc and mark as owned by allocator: */
748         percpu_down_read(&c->mark_lock);
749         g = bucket(ca, b);
750         m = READ_ONCE(g->mark);
751
752         BUG_ON(m.dirty_sectors);
753
754         bch2_mark_alloc_bucket(c, ca, b, true);
755
756         spin_lock(&c->freelist_lock);
757         verify_not_on_freelist(c, ca, b);
758         BUG_ON(!fifo_push(&ca->free_inc, b));
759         spin_unlock(&c->freelist_lock);
760
761         /*
762          * If we're not invalidating cached data, we only increment the bucket
763          * gen in memory here, the incremented gen will be updated in the btree
764          * by bch2_trans_mark_pointer():
765          */
766         if (!m.cached_sectors &&
767             !bucket_needs_journal_commit(m, c->journal.last_seq_ondisk)) {
768                 BUG_ON(m.data_type);
769                 bucket_cmpxchg(g, m, m.gen++);
770                 percpu_up_read(&c->mark_lock);
771                 goto out;
772         }
773
774         percpu_up_read(&c->mark_lock);
775
776         /*
777          * If the read-only path is trying to shut down, we can't be generating
778          * new btree updates:
779          */
780         if (test_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags)) {
781                 ret = 1;
782                 goto out;
783         }
784
785         ret = bch2_trans_do(c, NULL, journal_seq,
786                             BTREE_INSERT_NOCHECK_RW|
787                             BTREE_INSERT_NOFAIL|
788                             BTREE_INSERT_JOURNAL_RESERVED|
789                             flags,
790                             bucket_invalidate_btree(&trans, ca, b));
791 out:
792         if (!ret) {
793                 /* remove from alloc_heap: */
794                 struct alloc_heap_entry e, *top = ca->alloc_heap.data;
795
796                 top->bucket++;
797                 top->nr--;
798
799                 if (!top->nr)
800                         heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
801
802                 /*
803                  * Make sure we flush the last journal entry that updated this
804                  * bucket (i.e. deleting the last reference) before writing to
805                  * this bucket again:
806                  */
807                 *journal_seq = max(*journal_seq, bucket_journal_seq(c, m));
808         } else {
809                 size_t b2;
810
811                 /* remove from free_inc: */
812                 percpu_down_read(&c->mark_lock);
813                 spin_lock(&c->freelist_lock);
814
815                 bch2_mark_alloc_bucket(c, ca, b, false);
816
817                 BUG_ON(!fifo_pop_back(&ca->free_inc, b2));
818                 BUG_ON(b != b2);
819
820                 spin_unlock(&c->freelist_lock);
821                 percpu_up_read(&c->mark_lock);
822         }
823
824         return ret < 0 ? ret : 0;
825 }
826
827 /*
828  * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc:
829  */
830 static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca)
831 {
832         u64 journal_seq = 0;
833         int ret = 0;
834
835         /* Only use nowait if we've already invalidated at least one bucket: */
836         while (!ret &&
837                !fifo_full(&ca->free_inc) &&
838                ca->alloc_heap.used) {
839                 ret = bch2_invalidate_one_bucket(c, ca, &journal_seq,
840                                 (!fifo_empty(&ca->free_inc)
841                                  ? BTREE_INSERT_NOWAIT : 0));
842                 /*
843                  * We only want to batch up invalidates when they're going to
844                  * require flushing the journal:
845                  */
846                 if (!journal_seq)
847                         break;
848         }
849
850         /* If we used NOWAIT, don't return the error: */
851         if (!fifo_empty(&ca->free_inc))
852                 ret = 0;
853         if (ret) {
854                 bch_err(ca, "error invalidating buckets: %i", ret);
855                 return ret;
856         }
857
858         if (journal_seq)
859                 ret = bch2_journal_flush_seq(&c->journal, journal_seq);
860         if (ret) {
861                 bch_err(ca, "journal error: %i", ret);
862                 return ret;
863         }
864
865         return 0;
866 }
867
868 static void alloc_thread_set_state(struct bch_dev *ca, unsigned new_state)
869 {
870         if (ca->allocator_state != new_state) {
871                 ca->allocator_state = new_state;
872                 closure_wake_up(&ca->fs->freelist_wait);
873         }
874 }
875
876 static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b)
877 {
878         unsigned i;
879         int ret = 0;
880
881         spin_lock(&c->freelist_lock);
882         for (i = 0; i < RESERVE_NR; i++) {
883                 /*
884                  * Don't strand buckets on the copygc freelist until
885                  * after recovery is finished:
886                  */
887                 if (i == RESERVE_MOVINGGC &&
888                     !test_bit(BCH_FS_STARTED, &c->flags))
889                         continue;
890
891                 if (fifo_push(&ca->free[i], b)) {
892                         fifo_pop(&ca->free_inc, b);
893                         ret = 1;
894                         break;
895                 }
896         }
897         spin_unlock(&c->freelist_lock);
898
899         ca->allocator_state = ret
900                 ? ALLOCATOR_running
901                 : ALLOCATOR_blocked_full;
902         closure_wake_up(&c->freelist_wait);
903         return ret;
904 }
905
906 static void discard_one_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b)
907 {
908         if (ca->mi.discard &&
909             blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev)))
910                 blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, b),
911                                      ca->mi.bucket_size, GFP_NOFS, 0);
912 }
913
914 static bool allocator_thread_running(struct bch_dev *ca)
915 {
916         unsigned state = ca->mi.state == BCH_MEMBER_STATE_rw &&
917                 test_bit(BCH_FS_ALLOCATOR_RUNNING, &ca->fs->flags)
918                 ? ALLOCATOR_running
919                 : ALLOCATOR_stopped;
920         alloc_thread_set_state(ca, state);
921         return state == ALLOCATOR_running;
922 }
923
924 static int buckets_available(struct bch_dev *ca, unsigned long gc_count)
925 {
926         s64 available = dev_buckets_reclaimable(ca) -
927                 (gc_count == ca->fs->gc_count ? ca->inc_gen_really_needs_gc : 0);
928         bool ret = available > 0;
929
930         alloc_thread_set_state(ca, ret
931                                ? ALLOCATOR_running
932                                : ALLOCATOR_blocked);
933         return ret;
934 }
935
936 /**
937  * bch_allocator_thread - move buckets from free_inc to reserves
938  *
939  * The free_inc FIFO is populated by find_reclaimable_buckets(), and
940  * the reserves are depleted by bucket allocation. When we run out
941  * of free_inc, try to invalidate some buckets and write out
942  * prios and gens.
943  */
944 static int bch2_allocator_thread(void *arg)
945 {
946         struct bch_dev *ca = arg;
947         struct bch_fs *c = ca->fs;
948         unsigned long gc_count = c->gc_count;
949         size_t nr;
950         int ret;
951
952         set_freezable();
953
954         while (1) {
955                 ret = kthread_wait_freezable(allocator_thread_running(ca));
956                 if (ret)
957                         goto stop;
958
959                 while (!ca->alloc_heap.used) {
960                         cond_resched();
961
962                         ret = kthread_wait_freezable(buckets_available(ca, gc_count));
963                         if (ret)
964                                 goto stop;
965
966                         gc_count = c->gc_count;
967                         nr = find_reclaimable_buckets(c, ca);
968
969                         trace_alloc_scan(ca, nr, ca->inc_gen_needs_gc,
970                                          ca->inc_gen_really_needs_gc);
971
972                         if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) ||
973                              ca->inc_gen_really_needs_gc) &&
974                             c->gc_thread) {
975                                 atomic_inc(&c->kick_gc);
976                                 wake_up_process(c->gc_thread);
977                         }
978                 }
979
980                 ret = bch2_invalidate_buckets(c, ca);
981                 if (ret)
982                         goto stop;
983
984                 while (!fifo_empty(&ca->free_inc)) {
985                         u64 b = fifo_peek(&ca->free_inc);
986
987                         discard_one_bucket(c, ca, b);
988
989                         ret = kthread_wait_freezable(push_invalidated_bucket(c, ca, b));
990                         if (ret)
991                                 goto stop;
992                 }
993         }
994 stop:
995         alloc_thread_set_state(ca, ALLOCATOR_stopped);
996         return 0;
997 }
998
999 /* Startup/shutdown (ro/rw): */
1000
1001 void bch2_recalc_capacity(struct bch_fs *c)
1002 {
1003         struct bch_dev *ca;
1004         u64 capacity = 0, reserved_sectors = 0, gc_reserve;
1005         unsigned bucket_size_max = 0;
1006         unsigned long ra_pages = 0;
1007         unsigned i, j;
1008
1009         lockdep_assert_held(&c->state_lock);
1010
1011         for_each_online_member(ca, c, i) {
1012                 struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi;
1013
1014                 ra_pages += bdi->ra_pages;
1015         }
1016
1017         bch2_set_ra_pages(c, ra_pages);
1018
1019         for_each_rw_member(ca, c, i) {
1020                 u64 dev_reserve = 0;
1021
1022                 /*
1023                  * We need to reserve buckets (from the number
1024                  * of currently available buckets) against
1025                  * foreground writes so that mainly copygc can
1026                  * make forward progress.
1027                  *
1028                  * We need enough to refill the various reserves
1029                  * from scratch - copygc will use its entire
1030                  * reserve all at once, then run against when
1031                  * its reserve is refilled (from the formerly
1032                  * available buckets).
1033                  *
1034                  * This reserve is just used when considering if
1035                  * allocations for foreground writes must wait -
1036                  * not -ENOSPC calculations.
1037                  */
1038                 for (j = 0; j < RESERVE_NONE; j++)
1039                         dev_reserve += ca->free[j].size;
1040
1041                 dev_reserve += 1;       /* btree write point */
1042                 dev_reserve += 1;       /* copygc write point */
1043                 dev_reserve += 1;       /* rebalance write point */
1044
1045                 dev_reserve *= ca->mi.bucket_size;
1046
1047                 capacity += bucket_to_sector(ca, ca->mi.nbuckets -
1048                                              ca->mi.first_bucket);
1049
1050                 reserved_sectors += dev_reserve * 2;
1051
1052                 bucket_size_max = max_t(unsigned, bucket_size_max,
1053                                         ca->mi.bucket_size);
1054         }
1055
1056         gc_reserve = c->opts.gc_reserve_bytes
1057                 ? c->opts.gc_reserve_bytes >> 9
1058                 : div64_u64(capacity * c->opts.gc_reserve_percent, 100);
1059
1060         reserved_sectors = max(gc_reserve, reserved_sectors);
1061
1062         reserved_sectors = min(reserved_sectors, capacity);
1063
1064         c->capacity = capacity - reserved_sectors;
1065
1066         c->bucket_size_max = bucket_size_max;
1067
1068         /* Wake up case someone was waiting for buckets */
1069         closure_wake_up(&c->freelist_wait);
1070 }
1071
1072 static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
1073 {
1074         struct open_bucket *ob;
1075         bool ret = false;
1076
1077         for (ob = c->open_buckets;
1078              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
1079              ob++) {
1080                 spin_lock(&ob->lock);
1081                 if (ob->valid && !ob->on_partial_list &&
1082                     ob->ptr.dev == ca->dev_idx)
1083                         ret = true;
1084                 spin_unlock(&ob->lock);
1085         }
1086
1087         return ret;
1088 }
1089
1090 /* device goes ro: */
1091 void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
1092 {
1093         unsigned i;
1094
1095         BUG_ON(ca->alloc_thread);
1096
1097         /* First, remove device from allocation groups: */
1098
1099         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1100                 clear_bit(ca->dev_idx, c->rw_devs[i].d);
1101
1102         /*
1103          * Capacity is calculated based off of devices in allocation groups:
1104          */
1105         bch2_recalc_capacity(c);
1106
1107         /* Next, close write points that point to this device... */
1108         for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
1109                 bch2_writepoint_stop(c, ca, &c->write_points[i]);
1110
1111         bch2_writepoint_stop(c, ca, &c->copygc_write_point);
1112         bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
1113         bch2_writepoint_stop(c, ca, &c->btree_write_point);
1114
1115         mutex_lock(&c->btree_reserve_cache_lock);
1116         while (c->btree_reserve_cache_nr) {
1117                 struct btree_alloc *a =
1118                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
1119
1120                 bch2_open_buckets_put(c, &a->ob);
1121         }
1122         mutex_unlock(&c->btree_reserve_cache_lock);
1123
1124         while (1) {
1125                 struct open_bucket *ob;
1126
1127                 spin_lock(&c->freelist_lock);
1128                 if (!ca->open_buckets_partial_nr) {
1129                         spin_unlock(&c->freelist_lock);
1130                         break;
1131                 }
1132                 ob = c->open_buckets +
1133                         ca->open_buckets_partial[--ca->open_buckets_partial_nr];
1134                 ob->on_partial_list = false;
1135                 spin_unlock(&c->freelist_lock);
1136
1137                 bch2_open_bucket_put(c, ob);
1138         }
1139
1140         bch2_ec_stop_dev(c, ca);
1141
1142         /*
1143          * Wake up threads that were blocked on allocation, so they can notice
1144          * the device can no longer be removed and the capacity has changed:
1145          */
1146         closure_wake_up(&c->freelist_wait);
1147
1148         /*
1149          * journal_res_get() can block waiting for free space in the journal -
1150          * it needs to notice there may not be devices to allocate from anymore:
1151          */
1152         wake_up(&c->journal.wait);
1153
1154         /* Now wait for any in flight writes: */
1155
1156         closure_wait_event(&c->open_buckets_wait,
1157                            !bch2_dev_has_open_write_point(c, ca));
1158 }
1159
1160 /* device goes rw: */
1161 void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
1162 {
1163         unsigned i;
1164
1165         for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
1166                 if (ca->mi.data_allowed & (1 << i))
1167                         set_bit(ca->dev_idx, c->rw_devs[i].d);
1168 }
1169
1170 void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca)
1171 {
1172         if (ca->alloc_thread)
1173                 closure_wait_event(&c->freelist_wait,
1174                                    ca->allocator_state != ALLOCATOR_running);
1175 }
1176
1177 /* stop allocator thread: */
1178 void bch2_dev_allocator_stop(struct bch_dev *ca)
1179 {
1180         struct task_struct *p;
1181
1182         p = rcu_dereference_protected(ca->alloc_thread, 1);
1183         ca->alloc_thread = NULL;
1184
1185         /*
1186          * We need an rcu barrier between setting ca->alloc_thread = NULL and
1187          * the thread shutting down to avoid bch2_wake_allocator() racing:
1188          *
1189          * XXX: it would be better to have the rcu barrier be asynchronous
1190          * instead of blocking us here
1191          */
1192         synchronize_rcu();
1193
1194         if (p) {
1195                 kthread_stop(p);
1196                 put_task_struct(p);
1197         }
1198 }
1199
1200 /* start allocator thread: */
1201 int bch2_dev_allocator_start(struct bch_dev *ca)
1202 {
1203         struct task_struct *p;
1204
1205         /*
1206          * allocator thread already started?
1207          */
1208         if (ca->alloc_thread)
1209                 return 0;
1210
1211         p = kthread_create(bch2_allocator_thread, ca,
1212                            "bch-alloc/%s", ca->name);
1213         if (IS_ERR(p)) {
1214                 bch_err(ca->fs, "error creating allocator thread: %li",
1215                         PTR_ERR(p));
1216                 return PTR_ERR(p);
1217         }
1218
1219         get_task_struct(p);
1220         rcu_assign_pointer(ca->alloc_thread, p);
1221         wake_up_process(p);
1222         return 0;
1223 }
1224
1225 void bch2_fs_allocator_background_init(struct bch_fs *c)
1226 {
1227         spin_lock_init(&c->freelist_lock);
1228 }