]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/bcachefs_format.h
Update bcachefs sources to 2f4e24d856 bcachefs: Split out dev_buckets_free()
[bcachefs-tools-debian] / libbcachefs / bcachefs_format.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_FORMAT_H
3 #define _BCACHEFS_FORMAT_H
4
5 /*
6  * bcachefs on disk data structures
7  *
8  * OVERVIEW:
9  *
10  * There are three main types of on disk data structures in bcachefs (this is
11  * reduced from 5 in bcache)
12  *
13  *  - superblock
14  *  - journal
15  *  - btree
16  *
17  * The btree is the primary structure; most metadata exists as keys in the
18  * various btrees. There are only a small number of btrees, they're not
19  * sharded - we have one btree for extents, another for inodes, et cetera.
20  *
21  * SUPERBLOCK:
22  *
23  * The superblock contains the location of the journal, the list of devices in
24  * the filesystem, and in general any metadata we need in order to decide
25  * whether we can start a filesystem or prior to reading the journal/btree
26  * roots.
27  *
28  * The superblock is extensible, and most of the contents of the superblock are
29  * in variable length, type tagged fields; see struct bch_sb_field.
30  *
31  * Backup superblocks do not reside in a fixed location; also, superblocks do
32  * not have a fixed size. To locate backup superblocks we have struct
33  * bch_sb_layout; we store a copy of this inside every superblock, and also
34  * before the first superblock.
35  *
36  * JOURNAL:
37  *
38  * The journal primarily records btree updates in the order they occurred;
39  * journal replay consists of just iterating over all the keys in the open
40  * journal entries and re-inserting them into the btrees.
41  *
42  * The journal also contains entry types for the btree roots, and blacklisted
43  * journal sequence numbers (see journal_seq_blacklist.c).
44  *
45  * BTREE:
46  *
47  * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48  * 128k-256k) and log structured. We use struct btree_node for writing the first
49  * entry in a given node (offset 0), and struct btree_node_entry for all
50  * subsequent writes.
51  *
52  * After the header, btree node entries contain a list of keys in sorted order.
53  * Values are stored inline with the keys; since values are variable length (and
54  * keys effectively are variable length too, due to packing) we can't do random
55  * access without building up additional in memory tables in the btree node read
56  * path.
57  *
58  * BTREE KEYS (struct bkey):
59  *
60  * The various btrees share a common format for the key - so as to avoid
61  * switching in fastpath lookup/comparison code - but define their own
62  * structures for the key values.
63  *
64  * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65  * size is just under 2k. The common part also contains a type tag for the
66  * value, and a format field indicating whether the key is packed or not (and
67  * also meant to allow adding new key fields in the future, if desired).
68  *
69  * bkeys, when stored within a btree node, may also be packed. In that case, the
70  * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71  * be generous with field sizes in the common part of the key format (64 bit
72  * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73  */
74
75 #include <asm/types.h>
76 #include <asm/byteorder.h>
77 #include <linux/kernel.h>
78 #include <linux/uuid.h>
79 #include "vstructs.h"
80
81 #define BITMASK(name, type, field, offset, end)                         \
82 static const unsigned   name##_OFFSET = offset;                         \
83 static const unsigned   name##_BITS = (end - offset);                   \
84                                                                         \
85 static inline __u64 name(const type *k)                                 \
86 {                                                                       \
87         return (k->field >> offset) & ~(~0ULL << (end - offset));       \
88 }                                                                       \
89                                                                         \
90 static inline void SET_##name(type *k, __u64 v)                         \
91 {                                                                       \
92         k->field &= ~(~(~0ULL << (end - offset)) << offset);            \
93         k->field |= (v & ~(~0ULL << (end - offset))) << offset;         \
94 }
95
96 #define LE_BITMASK(_bits, name, type, field, offset, end)               \
97 static const unsigned   name##_OFFSET = offset;                         \
98 static const unsigned   name##_BITS = (end - offset);                   \
99 static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;      \
100                                                                         \
101 static inline __u64 name(const type *k)                                 \
102 {                                                                       \
103         return (__le##_bits##_to_cpu(k->field) >> offset) &             \
104                 ~(~0ULL << (end - offset));                             \
105 }                                                                       \
106                                                                         \
107 static inline void SET_##name(type *k, __u64 v)                         \
108 {                                                                       \
109         __u##_bits new = __le##_bits##_to_cpu(k->field);                \
110                                                                         \
111         new &= ~(~(~0ULL << (end - offset)) << offset);                 \
112         new |= (v & ~(~0ULL << (end - offset))) << offset;              \
113         k->field = __cpu_to_le##_bits(new);                             \
114 }
115
116 #define LE16_BITMASK(n, t, f, o, e)     LE_BITMASK(16, n, t, f, o, e)
117 #define LE32_BITMASK(n, t, f, o, e)     LE_BITMASK(32, n, t, f, o, e)
118 #define LE64_BITMASK(n, t, f, o, e)     LE_BITMASK(64, n, t, f, o, e)
119
120 struct bkey_format {
121         __u8            key_u64s;
122         __u8            nr_fields;
123         /* One unused slot for now: */
124         __u8            bits_per_field[6];
125         __le64          field_offset[6];
126 };
127
128 /* Btree keys - all units are in sectors */
129
130 struct bpos {
131         /*
132          * Word order matches machine byte order - btree code treats a bpos as a
133          * single large integer, for search/comparison purposes
134          *
135          * Note that wherever a bpos is embedded in another on disk data
136          * structure, it has to be byte swabbed when reading in metadata that
137          * wasn't written in native endian order:
138          */
139 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
140         __u32           snapshot;
141         __u64           offset;
142         __u64           inode;
143 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
144         __u64           inode;
145         __u64           offset;         /* Points to end of extent - sectors */
146         __u32           snapshot;
147 #else
148 #error edit for your odd byteorder.
149 #endif
150 } __attribute__((packed, aligned(4)));
151
152 #define KEY_INODE_MAX                   ((__u64)~0ULL)
153 #define KEY_OFFSET_MAX                  ((__u64)~0ULL)
154 #define KEY_SNAPSHOT_MAX                ((__u32)~0U)
155 #define KEY_SIZE_MAX                    ((__u32)~0U)
156
157 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
158 {
159         return (struct bpos) {
160                 .inode          = inode,
161                 .offset         = offset,
162                 .snapshot       = snapshot,
163         };
164 }
165
166 #define POS_MIN                         SPOS(0, 0, 0)
167 #define POS_MAX                         SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
168 #define SPOS_MAX                        SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
169 #define POS(_inode, _offset)            SPOS(_inode, _offset, 0)
170
171 /* Empty placeholder struct, for container_of() */
172 struct bch_val {
173         __u64           __nothing[0];
174 };
175
176 struct bversion {
177 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
178         __u64           lo;
179         __u32           hi;
180 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
181         __u32           hi;
182         __u64           lo;
183 #endif
184 } __attribute__((packed, aligned(4)));
185
186 struct bkey {
187         /* Size of combined key and value, in u64s */
188         __u8            u64s;
189
190         /* Format of key (0 for format local to btree node) */
191 #if defined(__LITTLE_ENDIAN_BITFIELD)
192         __u8            format:7,
193                         needs_whiteout:1;
194 #elif defined (__BIG_ENDIAN_BITFIELD)
195         __u8            needs_whiteout:1,
196                         format:7;
197 #else
198 #error edit for your odd byteorder.
199 #endif
200
201         /* Type of the value */
202         __u8            type;
203
204 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
205         __u8            pad[1];
206
207         struct bversion version;
208         __u32           size;           /* extent size, in sectors */
209         struct bpos     p;
210 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
211         struct bpos     p;
212         __u32           size;           /* extent size, in sectors */
213         struct bversion version;
214
215         __u8            pad[1];
216 #endif
217 } __attribute__((packed, aligned(8)));
218
219 struct bkey_packed {
220         __u64           _data[0];
221
222         /* Size of combined key and value, in u64s */
223         __u8            u64s;
224
225         /* Format of key (0 for format local to btree node) */
226
227         /*
228          * XXX: next incompat on disk format change, switch format and
229          * needs_whiteout - bkey_packed() will be cheaper if format is the high
230          * bits of the bitfield
231          */
232 #if defined(__LITTLE_ENDIAN_BITFIELD)
233         __u8            format:7,
234                         needs_whiteout:1;
235 #elif defined (__BIG_ENDIAN_BITFIELD)
236         __u8            needs_whiteout:1,
237                         format:7;
238 #endif
239
240         /* Type of the value */
241         __u8            type;
242         __u8            key_start[0];
243
244         /*
245          * We copy bkeys with struct assignment in various places, and while
246          * that shouldn't be done with packed bkeys we can't disallow it in C,
247          * and it's legal to cast a bkey to a bkey_packed  - so padding it out
248          * to the same size as struct bkey should hopefully be safest.
249          */
250         __u8            pad[sizeof(struct bkey) - 3];
251 } __attribute__((packed, aligned(8)));
252
253 #define BKEY_U64s                       (sizeof(struct bkey) / sizeof(__u64))
254 #define BKEY_U64s_MAX                   U8_MAX
255 #define BKEY_VAL_U64s_MAX               (BKEY_U64s_MAX - BKEY_U64s)
256
257 #define KEY_PACKED_BITS_START           24
258
259 #define KEY_FORMAT_LOCAL_BTREE          0
260 #define KEY_FORMAT_CURRENT              1
261
262 enum bch_bkey_fields {
263         BKEY_FIELD_INODE,
264         BKEY_FIELD_OFFSET,
265         BKEY_FIELD_SNAPSHOT,
266         BKEY_FIELD_SIZE,
267         BKEY_FIELD_VERSION_HI,
268         BKEY_FIELD_VERSION_LO,
269         BKEY_NR_FIELDS,
270 };
271
272 #define bkey_format_field(name, field)                                  \
273         [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
274
275 #define BKEY_FORMAT_CURRENT                                             \
276 ((struct bkey_format) {                                                 \
277         .key_u64s       = BKEY_U64s,                                    \
278         .nr_fields      = BKEY_NR_FIELDS,                               \
279         .bits_per_field = {                                             \
280                 bkey_format_field(INODE,        p.inode),               \
281                 bkey_format_field(OFFSET,       p.offset),              \
282                 bkey_format_field(SNAPSHOT,     p.snapshot),            \
283                 bkey_format_field(SIZE,         size),                  \
284                 bkey_format_field(VERSION_HI,   version.hi),            \
285                 bkey_format_field(VERSION_LO,   version.lo),            \
286         },                                                              \
287 })
288
289 /* bkey with inline value */
290 struct bkey_i {
291         __u64                   _data[0];
292
293         union {
294         struct {
295                 /* Size of combined key and value, in u64s */
296                 __u8            u64s;
297         };
298         struct {
299                 struct bkey     k;
300                 struct bch_val  v;
301         };
302         };
303 };
304
305 #define KEY(_inode, _offset, _size)                                     \
306 ((struct bkey) {                                                        \
307         .u64s           = BKEY_U64s,                                    \
308         .format         = KEY_FORMAT_CURRENT,                           \
309         .p              = POS(_inode, _offset),                         \
310         .size           = _size,                                        \
311 })
312
313 static inline void bkey_init(struct bkey *k)
314 {
315         *k = KEY(0, 0, 0);
316 }
317
318 #define bkey_bytes(_k)          ((_k)->u64s * sizeof(__u64))
319
320 #define __BKEY_PADDED(key, pad)                                 \
321         struct { struct bkey_i key; __u64 key ## _pad[pad]; }
322
323 /*
324  * - DELETED keys are used internally to mark keys that should be ignored but
325  *   override keys in composition order.  Their version number is ignored.
326  *
327  * - DISCARDED keys indicate that the data is all 0s because it has been
328  *   discarded. DISCARDs may have a version; if the version is nonzero the key
329  *   will be persistent, otherwise the key will be dropped whenever the btree
330  *   node is rewritten (like DELETED keys).
331  *
332  * - ERROR: any read of the data returns a read error, as the data was lost due
333  *   to a failing device. Like DISCARDED keys, they can be removed (overridden)
334  *   by new writes or cluster-wide GC. Node repair can also overwrite them with
335  *   the same or a more recent version number, but not with an older version
336  *   number.
337  *
338  * - WHITEOUT: for hash table btrees
339 */
340 #define BCH_BKEY_TYPES()                                \
341         x(deleted,              0)                      \
342         x(whiteout,             1)                      \
343         x(error,                2)                      \
344         x(cookie,               3)                      \
345         x(hash_whiteout,        4)                      \
346         x(btree_ptr,            5)                      \
347         x(extent,               6)                      \
348         x(reservation,          7)                      \
349         x(inode,                8)                      \
350         x(inode_generation,     9)                      \
351         x(dirent,               10)                     \
352         x(xattr,                11)                     \
353         x(alloc,                12)                     \
354         x(quota,                13)                     \
355         x(stripe,               14)                     \
356         x(reflink_p,            15)                     \
357         x(reflink_v,            16)                     \
358         x(inline_data,          17)                     \
359         x(btree_ptr_v2,         18)                     \
360         x(indirect_inline_data, 19)                     \
361         x(alloc_v2,             20)                     \
362         x(subvolume,            21)                     \
363         x(snapshot,             22)                     \
364         x(inode_v2,             23)                     \
365         x(alloc_v3,             24)                     \
366         x(set,                  25)                     \
367         x(lru,                  26)                     \
368         x(alloc_v4,             27)                     \
369         x(backpointer,          28)
370
371 enum bch_bkey_type {
372 #define x(name, nr) KEY_TYPE_##name     = nr,
373         BCH_BKEY_TYPES()
374 #undef x
375         KEY_TYPE_MAX,
376 };
377
378 struct bch_deleted {
379         struct bch_val          v;
380 };
381
382 struct bch_whiteout {
383         struct bch_val          v;
384 };
385
386 struct bch_error {
387         struct bch_val          v;
388 };
389
390 struct bch_cookie {
391         struct bch_val          v;
392         __le64                  cookie;
393 };
394
395 struct bch_hash_whiteout {
396         struct bch_val          v;
397 };
398
399 struct bch_set {
400         struct bch_val          v;
401 };
402
403 /* Extents */
404
405 /*
406  * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
407  * preceded by checksum/compression information (bch_extent_crc32 or
408  * bch_extent_crc64).
409  *
410  * One major determining factor in the format of extents is how we handle and
411  * represent extents that have been partially overwritten and thus trimmed:
412  *
413  * If an extent is not checksummed or compressed, when the extent is trimmed we
414  * don't have to remember the extent we originally allocated and wrote: we can
415  * merely adjust ptr->offset to point to the start of the data that is currently
416  * live. The size field in struct bkey records the current (live) size of the
417  * extent, and is also used to mean "size of region on disk that we point to" in
418  * this case.
419  *
420  * Thus an extent that is not checksummed or compressed will consist only of a
421  * list of bch_extent_ptrs, with none of the fields in
422  * bch_extent_crc32/bch_extent_crc64.
423  *
424  * When an extent is checksummed or compressed, it's not possible to read only
425  * the data that is currently live: we have to read the entire extent that was
426  * originally written, and then return only the part of the extent that is
427  * currently live.
428  *
429  * Thus, in addition to the current size of the extent in struct bkey, we need
430  * to store the size of the originally allocated space - this is the
431  * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
432  * when the extent is trimmed, instead of modifying the offset field of the
433  * pointer, we keep a second smaller offset field - "offset into the original
434  * extent of the currently live region".
435  *
436  * The other major determining factor is replication and data migration:
437  *
438  * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
439  * write, we will initially write all the replicas in the same format, with the
440  * same checksum type and compression format - however, when copygc runs later (or
441  * tiering/cache promotion, anything that moves data), it is not in general
442  * going to rewrite all the pointers at once - one of the replicas may be in a
443  * bucket on one device that has very little fragmentation while another lives
444  * in a bucket that has become heavily fragmented, and thus is being rewritten
445  * sooner than the rest.
446  *
447  * Thus it will only move a subset of the pointers (or in the case of
448  * tiering/cache promotion perhaps add a single pointer without dropping any
449  * current pointers), and if the extent has been partially overwritten it must
450  * write only the currently live portion (or copygc would not be able to reduce
451  * fragmentation!) - which necessitates a different bch_extent_crc format for
452  * the new pointer.
453  *
454  * But in the interests of space efficiency, we don't want to store one
455  * bch_extent_crc for each pointer if we don't have to.
456  *
457  * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
458  * bch_extent_ptrs appended arbitrarily one after the other. We determine the
459  * type of a given entry with a scheme similar to utf8 (except we're encoding a
460  * type, not a size), encoding the type in the position of the first set bit:
461  *
462  * bch_extent_crc32     - 0b1
463  * bch_extent_ptr       - 0b10
464  * bch_extent_crc64     - 0b100
465  *
466  * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
467  * bch_extent_crc64 is the least constrained).
468  *
469  * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
470  * until the next bch_extent_crc32/64.
471  *
472  * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
473  * is neither checksummed nor compressed.
474  */
475
476 /* 128 bits, sufficient for cryptographic MACs: */
477 struct bch_csum {
478         __le64                  lo;
479         __le64                  hi;
480 } __attribute__((packed, aligned(8)));
481
482 #define BCH_EXTENT_ENTRY_TYPES()                \
483         x(ptr,                  0)              \
484         x(crc32,                1)              \
485         x(crc64,                2)              \
486         x(crc128,               3)              \
487         x(stripe_ptr,           4)
488 #define BCH_EXTENT_ENTRY_MAX    5
489
490 enum bch_extent_entry_type {
491 #define x(f, n) BCH_EXTENT_ENTRY_##f = n,
492         BCH_EXTENT_ENTRY_TYPES()
493 #undef x
494 };
495
496 /* Compressed/uncompressed size are stored biased by 1: */
497 struct bch_extent_crc32 {
498 #if defined(__LITTLE_ENDIAN_BITFIELD)
499         __u32                   type:2,
500                                 _compressed_size:7,
501                                 _uncompressed_size:7,
502                                 offset:7,
503                                 _unused:1,
504                                 csum_type:4,
505                                 compression_type:4;
506         __u32                   csum;
507 #elif defined (__BIG_ENDIAN_BITFIELD)
508         __u32                   csum;
509         __u32                   compression_type:4,
510                                 csum_type:4,
511                                 _unused:1,
512                                 offset:7,
513                                 _uncompressed_size:7,
514                                 _compressed_size:7,
515                                 type:2;
516 #endif
517 } __attribute__((packed, aligned(8)));
518
519 #define CRC32_SIZE_MAX          (1U << 7)
520 #define CRC32_NONCE_MAX         0
521
522 struct bch_extent_crc64 {
523 #if defined(__LITTLE_ENDIAN_BITFIELD)
524         __u64                   type:3,
525                                 _compressed_size:9,
526                                 _uncompressed_size:9,
527                                 offset:9,
528                                 nonce:10,
529                                 csum_type:4,
530                                 compression_type:4,
531                                 csum_hi:16;
532 #elif defined (__BIG_ENDIAN_BITFIELD)
533         __u64                   csum_hi:16,
534                                 compression_type:4,
535                                 csum_type:4,
536                                 nonce:10,
537                                 offset:9,
538                                 _uncompressed_size:9,
539                                 _compressed_size:9,
540                                 type:3;
541 #endif
542         __u64                   csum_lo;
543 } __attribute__((packed, aligned(8)));
544
545 #define CRC64_SIZE_MAX          (1U << 9)
546 #define CRC64_NONCE_MAX         ((1U << 10) - 1)
547
548 struct bch_extent_crc128 {
549 #if defined(__LITTLE_ENDIAN_BITFIELD)
550         __u64                   type:4,
551                                 _compressed_size:13,
552                                 _uncompressed_size:13,
553                                 offset:13,
554                                 nonce:13,
555                                 csum_type:4,
556                                 compression_type:4;
557 #elif defined (__BIG_ENDIAN_BITFIELD)
558         __u64                   compression_type:4,
559                                 csum_type:4,
560                                 nonce:13,
561                                 offset:13,
562                                 _uncompressed_size:13,
563                                 _compressed_size:13,
564                                 type:4;
565 #endif
566         struct bch_csum         csum;
567 } __attribute__((packed, aligned(8)));
568
569 #define CRC128_SIZE_MAX         (1U << 13)
570 #define CRC128_NONCE_MAX        ((1U << 13) - 1)
571
572 /*
573  * @reservation - pointer hasn't been written to, just reserved
574  */
575 struct bch_extent_ptr {
576 #if defined(__LITTLE_ENDIAN_BITFIELD)
577         __u64                   type:1,
578                                 cached:1,
579                                 unused:1,
580                                 reservation:1,
581                                 offset:44, /* 8 petabytes */
582                                 dev:8,
583                                 gen:8;
584 #elif defined (__BIG_ENDIAN_BITFIELD)
585         __u64                   gen:8,
586                                 dev:8,
587                                 offset:44,
588                                 reservation:1,
589                                 unused:1,
590                                 cached:1,
591                                 type:1;
592 #endif
593 } __attribute__((packed, aligned(8)));
594
595 struct bch_extent_stripe_ptr {
596 #if defined(__LITTLE_ENDIAN_BITFIELD)
597         __u64                   type:5,
598                                 block:8,
599                                 redundancy:4,
600                                 idx:47;
601 #elif defined (__BIG_ENDIAN_BITFIELD)
602         __u64                   idx:47,
603                                 redundancy:4,
604                                 block:8,
605                                 type:5;
606 #endif
607 };
608
609 struct bch_extent_reservation {
610 #if defined(__LITTLE_ENDIAN_BITFIELD)
611         __u64                   type:6,
612                                 unused:22,
613                                 replicas:4,
614                                 generation:32;
615 #elif defined (__BIG_ENDIAN_BITFIELD)
616         __u64                   generation:32,
617                                 replicas:4,
618                                 unused:22,
619                                 type:6;
620 #endif
621 };
622
623 union bch_extent_entry {
624 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ||  __BITS_PER_LONG == 64
625         unsigned long                   type;
626 #elif __BITS_PER_LONG == 32
627         struct {
628                 unsigned long           pad;
629                 unsigned long           type;
630         };
631 #else
632 #error edit for your odd byteorder.
633 #endif
634
635 #define x(f, n) struct bch_extent_##f   f;
636         BCH_EXTENT_ENTRY_TYPES()
637 #undef x
638 };
639
640 struct bch_btree_ptr {
641         struct bch_val          v;
642
643         __u64                   _data[0];
644         struct bch_extent_ptr   start[];
645 } __attribute__((packed, aligned(8)));
646
647 struct bch_btree_ptr_v2 {
648         struct bch_val          v;
649
650         __u64                   mem_ptr;
651         __le64                  seq;
652         __le16                  sectors_written;
653         __le16                  flags;
654         struct bpos             min_key;
655         __u64                   _data[0];
656         struct bch_extent_ptr   start[];
657 } __attribute__((packed, aligned(8)));
658
659 LE16_BITMASK(BTREE_PTR_RANGE_UPDATED,   struct bch_btree_ptr_v2, flags, 0, 1);
660
661 struct bch_extent {
662         struct bch_val          v;
663
664         __u64                   _data[0];
665         union bch_extent_entry  start[];
666 } __attribute__((packed, aligned(8)));
667
668 struct bch_reservation {
669         struct bch_val          v;
670
671         __le32                  generation;
672         __u8                    nr_replicas;
673         __u8                    pad[3];
674 } __attribute__((packed, aligned(8)));
675
676 /* Maximum size (in u64s) a single pointer could be: */
677 #define BKEY_EXTENT_PTR_U64s_MAX\
678         ((sizeof(struct bch_extent_crc128) +                    \
679           sizeof(struct bch_extent_ptr)) / sizeof(u64))
680
681 /* Maximum possible size of an entire extent value: */
682 #define BKEY_EXTENT_VAL_U64s_MAX                                \
683         (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
684
685 /* * Maximum possible size of an entire extent, key + value: */
686 #define BKEY_EXTENT_U64s_MAX            (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
687
688 /* Btree pointers don't carry around checksums: */
689 #define BKEY_BTREE_PTR_VAL_U64s_MAX                             \
690         ((sizeof(struct bch_btree_ptr_v2) +                     \
691           sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64))
692 #define BKEY_BTREE_PTR_U64s_MAX                                 \
693         (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
694
695 /* Inodes */
696
697 #define BLOCKDEV_INODE_MAX      4096
698
699 #define BCACHEFS_ROOT_INO       4096
700
701 struct bch_inode {
702         struct bch_val          v;
703
704         __le64                  bi_hash_seed;
705         __le32                  bi_flags;
706         __le16                  bi_mode;
707         __u8                    fields[0];
708 } __attribute__((packed, aligned(8)));
709
710 struct bch_inode_v2 {
711         struct bch_val          v;
712
713         __le64                  bi_journal_seq;
714         __le64                  bi_hash_seed;
715         __le64                  bi_flags;
716         __le16                  bi_mode;
717         __u8                    fields[0];
718 } __attribute__((packed, aligned(8)));
719
720 struct bch_inode_generation {
721         struct bch_val          v;
722
723         __le32                  bi_generation;
724         __le32                  pad;
725 } __attribute__((packed, aligned(8)));
726
727 /*
728  * bi_subvol and bi_parent_subvol are only set for subvolume roots:
729  */
730
731 #define BCH_INODE_FIELDS()                      \
732         x(bi_atime,                     96)     \
733         x(bi_ctime,                     96)     \
734         x(bi_mtime,                     96)     \
735         x(bi_otime,                     96)     \
736         x(bi_size,                      64)     \
737         x(bi_sectors,                   64)     \
738         x(bi_uid,                       32)     \
739         x(bi_gid,                       32)     \
740         x(bi_nlink,                     32)     \
741         x(bi_generation,                32)     \
742         x(bi_dev,                       32)     \
743         x(bi_data_checksum,             8)      \
744         x(bi_compression,               8)      \
745         x(bi_project,                   32)     \
746         x(bi_background_compression,    8)      \
747         x(bi_data_replicas,             8)      \
748         x(bi_promote_target,            16)     \
749         x(bi_foreground_target,         16)     \
750         x(bi_background_target,         16)     \
751         x(bi_erasure_code,              16)     \
752         x(bi_fields_set,                16)     \
753         x(bi_dir,                       64)     \
754         x(bi_dir_offset,                64)     \
755         x(bi_subvol,                    32)     \
756         x(bi_parent_subvol,             32)
757
758 /* subset of BCH_INODE_FIELDS */
759 #define BCH_INODE_OPTS()                        \
760         x(data_checksum,                8)      \
761         x(compression,                  8)      \
762         x(project,                      32)     \
763         x(background_compression,       8)      \
764         x(data_replicas,                8)      \
765         x(promote_target,               16)     \
766         x(foreground_target,            16)     \
767         x(background_target,            16)     \
768         x(erasure_code,                 16)
769
770 enum inode_opt_id {
771 #define x(name, ...)                            \
772         Inode_opt_##name,
773         BCH_INODE_OPTS()
774 #undef  x
775         Inode_opt_nr,
776 };
777
778 enum {
779         /*
780          * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
781          * flags)
782          */
783         __BCH_INODE_SYNC        = 0,
784         __BCH_INODE_IMMUTABLE   = 1,
785         __BCH_INODE_APPEND      = 2,
786         __BCH_INODE_NODUMP      = 3,
787         __BCH_INODE_NOATIME     = 4,
788
789         __BCH_INODE_I_SIZE_DIRTY= 5,
790         __BCH_INODE_I_SECTORS_DIRTY= 6,
791         __BCH_INODE_UNLINKED    = 7,
792         __BCH_INODE_BACKPTR_UNTRUSTED = 8,
793
794         /* bits 20+ reserved for packed fields below: */
795 };
796
797 #define BCH_INODE_SYNC          (1 << __BCH_INODE_SYNC)
798 #define BCH_INODE_IMMUTABLE     (1 << __BCH_INODE_IMMUTABLE)
799 #define BCH_INODE_APPEND        (1 << __BCH_INODE_APPEND)
800 #define BCH_INODE_NODUMP        (1 << __BCH_INODE_NODUMP)
801 #define BCH_INODE_NOATIME       (1 << __BCH_INODE_NOATIME)
802 #define BCH_INODE_I_SIZE_DIRTY  (1 << __BCH_INODE_I_SIZE_DIRTY)
803 #define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
804 #define BCH_INODE_UNLINKED      (1 << __BCH_INODE_UNLINKED)
805 #define BCH_INODE_BACKPTR_UNTRUSTED (1 << __BCH_INODE_BACKPTR_UNTRUSTED)
806
807 LE32_BITMASK(INODE_STR_HASH,    struct bch_inode, bi_flags, 20, 24);
808 LE32_BITMASK(INODE_NR_FIELDS,   struct bch_inode, bi_flags, 24, 31);
809 LE32_BITMASK(INODE_NEW_VARINT,  struct bch_inode, bi_flags, 31, 32);
810
811 LE64_BITMASK(INODEv2_STR_HASH,  struct bch_inode_v2, bi_flags, 20, 24);
812 LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31);
813
814 /* Dirents */
815
816 /*
817  * Dirents (and xattrs) have to implement string lookups; since our b-tree
818  * doesn't support arbitrary length strings for the key, we instead index by a
819  * 64 bit hash (currently truncated sha1) of the string, stored in the offset
820  * field of the key - using linear probing to resolve hash collisions. This also
821  * provides us with the readdir cookie posix requires.
822  *
823  * Linear probing requires us to use whiteouts for deletions, in the event of a
824  * collision:
825  */
826
827 struct bch_dirent {
828         struct bch_val          v;
829
830         /* Target inode number: */
831         union {
832         __le64                  d_inum;
833         struct {                /* DT_SUBVOL */
834         __le32                  d_child_subvol;
835         __le32                  d_parent_subvol;
836         };
837         };
838
839         /*
840          * Copy of mode bits 12-15 from the target inode - so userspace can get
841          * the filetype without having to do a stat()
842          */
843         __u8                    d_type;
844
845         __u8                    d_name[];
846 } __attribute__((packed, aligned(8)));
847
848 #define DT_SUBVOL       16
849 #define BCH_DT_MAX      17
850
851 #define BCH_NAME_MAX    ((unsigned) (U8_MAX * sizeof(u64) -             \
852                          sizeof(struct bkey) -                          \
853                          offsetof(struct bch_dirent, d_name)))
854
855 /* Xattrs */
856
857 #define KEY_TYPE_XATTR_INDEX_USER                       0
858 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS   1
859 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT  2
860 #define KEY_TYPE_XATTR_INDEX_TRUSTED                    3
861 #define KEY_TYPE_XATTR_INDEX_SECURITY           4
862
863 struct bch_xattr {
864         struct bch_val          v;
865         __u8                    x_type;
866         __u8                    x_name_len;
867         __le16                  x_val_len;
868         __u8                    x_name[];
869 } __attribute__((packed, aligned(8)));
870
871 /* Bucket/allocation information: */
872
873 struct bch_alloc {
874         struct bch_val          v;
875         __u8                    fields;
876         __u8                    gen;
877         __u8                    data[];
878 } __attribute__((packed, aligned(8)));
879
880 #define BCH_ALLOC_FIELDS_V1()                   \
881         x(read_time,            16)             \
882         x(write_time,           16)             \
883         x(data_type,            8)              \
884         x(dirty_sectors,        16)             \
885         x(cached_sectors,       16)             \
886         x(oldest_gen,           8)              \
887         x(stripe,               32)             \
888         x(stripe_redundancy,    8)
889
890 enum {
891 #define x(name, _bits) BCH_ALLOC_FIELD_V1_##name,
892         BCH_ALLOC_FIELDS_V1()
893 #undef x
894 };
895
896 struct bch_alloc_v2 {
897         struct bch_val          v;
898         __u8                    nr_fields;
899         __u8                    gen;
900         __u8                    oldest_gen;
901         __u8                    data_type;
902         __u8                    data[];
903 } __attribute__((packed, aligned(8)));
904
905 #define BCH_ALLOC_FIELDS_V2()                   \
906         x(read_time,            64)             \
907         x(write_time,           64)             \
908         x(dirty_sectors,        32)             \
909         x(cached_sectors,       32)             \
910         x(stripe,               32)             \
911         x(stripe_redundancy,    8)
912
913 struct bch_alloc_v3 {
914         struct bch_val          v;
915         __le64                  journal_seq;
916         __le32                  flags;
917         __u8                    nr_fields;
918         __u8                    gen;
919         __u8                    oldest_gen;
920         __u8                    data_type;
921         __u8                    data[];
922 } __attribute__((packed, aligned(8)));
923
924 LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags,  0,  1)
925 LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags,  1,  2)
926
927 struct bch_alloc_v4 {
928         struct bch_val          v;
929         __u64                   journal_seq;
930         __u32                   flags;
931         __u8                    gen;
932         __u8                    oldest_gen;
933         __u8                    data_type;
934         __u8                    stripe_redundancy;
935         __u32                   dirty_sectors;
936         __u32                   cached_sectors;
937         __u64                   io_time[2];
938         __u32                   stripe;
939         __u32                   nr_external_backpointers;
940 } __attribute__((packed, aligned(8)));
941
942 #define BCH_ALLOC_V4_U64s_V0    6
943 #define BCH_ALLOC_V4_U64s       (sizeof(struct bch_alloc_v4) / sizeof(u64))
944
945 BITMASK(BCH_ALLOC_V4_NEED_DISCARD,      struct bch_alloc_v4, flags,  0,  1)
946 BITMASK(BCH_ALLOC_V4_NEED_INC_GEN,      struct bch_alloc_v4, flags,  1,  2)
947 BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags,  2,  8)
948 BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS,   struct bch_alloc_v4, flags,  8,  14)
949
950 #define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX        40
951
952 struct bch_backpointer {
953         struct bch_val          v;
954         __u8                    btree_id;
955         __u8                    level;
956         __u8                    data_type;
957         __u64                   bucket_offset:40;
958         __u32                   bucket_len;
959         struct bpos             pos;
960 } __attribute__((packed, aligned(8)));
961
962 /* Quotas: */
963
964 enum quota_types {
965         QTYP_USR                = 0,
966         QTYP_GRP                = 1,
967         QTYP_PRJ                = 2,
968         QTYP_NR                 = 3,
969 };
970
971 enum quota_counters {
972         Q_SPC                   = 0,
973         Q_INO                   = 1,
974         Q_COUNTERS              = 2,
975 };
976
977 struct bch_quota_counter {
978         __le64                  hardlimit;
979         __le64                  softlimit;
980 };
981
982 struct bch_quota {
983         struct bch_val          v;
984         struct bch_quota_counter c[Q_COUNTERS];
985 } __attribute__((packed, aligned(8)));
986
987 /* Erasure coding */
988
989 struct bch_stripe {
990         struct bch_val          v;
991         __le16                  sectors;
992         __u8                    algorithm;
993         __u8                    nr_blocks;
994         __u8                    nr_redundant;
995
996         __u8                    csum_granularity_bits;
997         __u8                    csum_type;
998         __u8                    pad;
999
1000         struct bch_extent_ptr   ptrs[];
1001 } __attribute__((packed, aligned(8)));
1002
1003 /* Reflink: */
1004
1005 struct bch_reflink_p {
1006         struct bch_val          v;
1007         __le64                  idx;
1008         /*
1009          * A reflink pointer might point to an indirect extent which is then
1010          * later split (by copygc or rebalance). If we only pointed to part of
1011          * the original indirect extent, and then one of the fragments is
1012          * outside the range we point to, we'd leak a refcount: so when creating
1013          * reflink pointers, we need to store pad values to remember the full
1014          * range we were taking a reference on.
1015          */
1016         __le32                  front_pad;
1017         __le32                  back_pad;
1018 } __attribute__((packed, aligned(8)));
1019
1020 struct bch_reflink_v {
1021         struct bch_val          v;
1022         __le64                  refcount;
1023         union bch_extent_entry  start[0];
1024         __u64                   _data[0];
1025 } __attribute__((packed, aligned(8)));
1026
1027 struct bch_indirect_inline_data {
1028         struct bch_val          v;
1029         __le64                  refcount;
1030         u8                      data[0];
1031 };
1032
1033 /* Inline data */
1034
1035 struct bch_inline_data {
1036         struct bch_val          v;
1037         u8                      data[0];
1038 };
1039
1040 /* Subvolumes: */
1041
1042 #define SUBVOL_POS_MIN          POS(0, 1)
1043 #define SUBVOL_POS_MAX          POS(0, S32_MAX)
1044 #define BCACHEFS_ROOT_SUBVOL    1
1045
1046 struct bch_subvolume {
1047         struct bch_val          v;
1048         __le32                  flags;
1049         __le32                  snapshot;
1050         __le64                  inode;
1051 };
1052
1053 LE32_BITMASK(BCH_SUBVOLUME_RO,          struct bch_subvolume, flags,  0,  1)
1054 /*
1055  * We need to know whether a subvolume is a snapshot so we can know whether we
1056  * can delete it (or whether it should just be rm -rf'd)
1057  */
1058 LE32_BITMASK(BCH_SUBVOLUME_SNAP,        struct bch_subvolume, flags,  1,  2)
1059 LE32_BITMASK(BCH_SUBVOLUME_UNLINKED,    struct bch_subvolume, flags,  2,  3)
1060
1061 /* Snapshots */
1062
1063 struct bch_snapshot {
1064         struct bch_val          v;
1065         __le32                  flags;
1066         __le32                  parent;
1067         __le32                  children[2];
1068         __le32                  subvol;
1069         __le32                  pad;
1070 };
1071
1072 LE32_BITMASK(BCH_SNAPSHOT_DELETED,      struct bch_snapshot, flags,  0,  1)
1073
1074 /* True if a subvolume points to this snapshot node: */
1075 LE32_BITMASK(BCH_SNAPSHOT_SUBVOL,       struct bch_snapshot, flags,  1,  2)
1076
1077 /* LRU btree: */
1078
1079 struct bch_lru {
1080         struct bch_val          v;
1081         __le64                  idx;
1082 } __attribute__((packed, aligned(8)));
1083
1084 #define LRU_ID_STRIPES          (1U << 16)
1085
1086 /* Optional/variable size superblock sections: */
1087
1088 struct bch_sb_field {
1089         __u64                   _data[0];
1090         __le32                  u64s;
1091         __le32                  type;
1092 };
1093
1094 #define BCH_SB_FIELDS()                         \
1095         x(journal,      0)                      \
1096         x(members,      1)                      \
1097         x(crypt,        2)                      \
1098         x(replicas_v0,  3)                      \
1099         x(quota,        4)                      \
1100         x(disk_groups,  5)                      \
1101         x(clean,        6)                      \
1102         x(replicas,     7)                      \
1103         x(journal_seq_blacklist, 8)             \
1104         x(journal_v2,   9)                      \
1105         x(counters,     10)
1106
1107 enum bch_sb_field_type {
1108 #define x(f, nr)        BCH_SB_FIELD_##f = nr,
1109         BCH_SB_FIELDS()
1110 #undef x
1111         BCH_SB_FIELD_NR
1112 };
1113
1114 /*
1115  * Most superblock fields are replicated in all device's superblocks - a few are
1116  * not:
1117  */
1118 #define BCH_SINGLE_DEVICE_SB_FIELDS             \
1119         ((1U << BCH_SB_FIELD_journal)|          \
1120          (1U << BCH_SB_FIELD_journal_v2))
1121
1122 /* BCH_SB_FIELD_journal: */
1123
1124 struct bch_sb_field_journal {
1125         struct bch_sb_field     field;
1126         __le64                  buckets[0];
1127 };
1128
1129 struct bch_sb_field_journal_v2 {
1130         struct bch_sb_field     field;
1131
1132         struct bch_sb_field_journal_v2_entry {
1133                 __le64          start;
1134                 __le64          nr;
1135         }                       d[0];
1136 };
1137
1138 /* BCH_SB_FIELD_members: */
1139
1140 #define BCH_MIN_NR_NBUCKETS     (1 << 6)
1141
1142 struct bch_member {
1143         uuid_le                 uuid;
1144         __le64                  nbuckets;       /* device size */
1145         __le16                  first_bucket;   /* index of first bucket used */
1146         __le16                  bucket_size;    /* sectors */
1147         __le32                  pad;
1148         __le64                  last_mount;     /* time_t */
1149
1150         __le64                  flags[2];
1151 };
1152
1153 LE64_BITMASK(BCH_MEMBER_STATE,          struct bch_member, flags[0],  0,  4)
1154 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
1155 LE64_BITMASK(BCH_MEMBER_DISCARD,        struct bch_member, flags[0], 14, 15)
1156 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED,   struct bch_member, flags[0], 15, 20)
1157 LE64_BITMASK(BCH_MEMBER_GROUP,          struct bch_member, flags[0], 20, 28)
1158 LE64_BITMASK(BCH_MEMBER_DURABILITY,     struct bch_member, flags[0], 28, 30)
1159 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
1160                                         struct bch_member, flags[0], 30, 31)
1161
1162 #if 0
1163 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0,  20);
1164 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
1165 #endif
1166
1167 #define BCH_MEMBER_STATES()                     \
1168         x(rw,           0)                      \
1169         x(ro,           1)                      \
1170         x(failed,       2)                      \
1171         x(spare,        3)
1172
1173 enum bch_member_state {
1174 #define x(t, n) BCH_MEMBER_STATE_##t = n,
1175         BCH_MEMBER_STATES()
1176 #undef x
1177         BCH_MEMBER_STATE_NR
1178 };
1179
1180 struct bch_sb_field_members {
1181         struct bch_sb_field     field;
1182         struct bch_member       members[0];
1183 };
1184
1185 /* BCH_SB_FIELD_crypt: */
1186
1187 struct nonce {
1188         __le32                  d[4];
1189 };
1190
1191 struct bch_key {
1192         __le64                  key[4];
1193 };
1194
1195 #define BCH_KEY_MAGIC                                   \
1196         (((u64) 'b' <<  0)|((u64) 'c' <<  8)|           \
1197          ((u64) 'h' << 16)|((u64) '*' << 24)|           \
1198          ((u64) '*' << 32)|((u64) 'k' << 40)|           \
1199          ((u64) 'e' << 48)|((u64) 'y' << 56))
1200
1201 struct bch_encrypted_key {
1202         __le64                  magic;
1203         struct bch_key          key;
1204 };
1205
1206 /*
1207  * If this field is present in the superblock, it stores an encryption key which
1208  * is used encrypt all other data/metadata. The key will normally be encrypted
1209  * with the key userspace provides, but if encryption has been turned off we'll
1210  * just store the master key unencrypted in the superblock so we can access the
1211  * previously encrypted data.
1212  */
1213 struct bch_sb_field_crypt {
1214         struct bch_sb_field     field;
1215
1216         __le64                  flags;
1217         __le64                  kdf_flags;
1218         struct bch_encrypted_key key;
1219 };
1220
1221 LE64_BITMASK(BCH_CRYPT_KDF_TYPE,        struct bch_sb_field_crypt, flags, 0, 4);
1222
1223 enum bch_kdf_types {
1224         BCH_KDF_SCRYPT          = 0,
1225         BCH_KDF_NR              = 1,
1226 };
1227
1228 /* stored as base 2 log of scrypt params: */
1229 LE64_BITMASK(BCH_KDF_SCRYPT_N,  struct bch_sb_field_crypt, kdf_flags,  0, 16);
1230 LE64_BITMASK(BCH_KDF_SCRYPT_R,  struct bch_sb_field_crypt, kdf_flags, 16, 32);
1231 LE64_BITMASK(BCH_KDF_SCRYPT_P,  struct bch_sb_field_crypt, kdf_flags, 32, 48);
1232
1233 /* BCH_SB_FIELD_replicas: */
1234
1235 #define BCH_DATA_TYPES()                \
1236         x(free,         0)              \
1237         x(sb,           1)              \
1238         x(journal,      2)              \
1239         x(btree,        3)              \
1240         x(user,         4)              \
1241         x(cached,       5)              \
1242         x(parity,       6)              \
1243         x(stripe,       7)              \
1244         x(need_gc_gens, 8)              \
1245         x(need_discard, 9)
1246
1247 enum bch_data_type {
1248 #define x(t, n) BCH_DATA_##t,
1249         BCH_DATA_TYPES()
1250 #undef x
1251         BCH_DATA_NR
1252 };
1253
1254 static inline bool data_type_is_empty(enum bch_data_type type)
1255 {
1256         switch (type) {
1257         case BCH_DATA_free:
1258         case BCH_DATA_need_gc_gens:
1259         case BCH_DATA_need_discard:
1260                 return true;
1261         default:
1262                 return false;
1263         }
1264 }
1265
1266 static inline bool data_type_is_hidden(enum bch_data_type type)
1267 {
1268         switch (type) {
1269         case BCH_DATA_sb:
1270         case BCH_DATA_journal:
1271                 return true;
1272         default:
1273                 return false;
1274         }
1275 }
1276
1277 struct bch_replicas_entry_v0 {
1278         __u8                    data_type;
1279         __u8                    nr_devs;
1280         __u8                    devs[];
1281 } __attribute__((packed));
1282
1283 struct bch_sb_field_replicas_v0 {
1284         struct bch_sb_field     field;
1285         struct bch_replicas_entry_v0 entries[];
1286 } __attribute__((packed, aligned(8)));
1287
1288 struct bch_replicas_entry {
1289         __u8                    data_type;
1290         __u8                    nr_devs;
1291         __u8                    nr_required;
1292         __u8                    devs[];
1293 } __attribute__((packed));
1294
1295 #define replicas_entry_bytes(_i)                                        \
1296         (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
1297
1298 struct bch_sb_field_replicas {
1299         struct bch_sb_field     field;
1300         struct bch_replicas_entry entries[0];
1301 } __attribute__((packed, aligned(8)));
1302
1303 /* BCH_SB_FIELD_quota: */
1304
1305 struct bch_sb_quota_counter {
1306         __le32                          timelimit;
1307         __le32                          warnlimit;
1308 };
1309
1310 struct bch_sb_quota_type {
1311         __le64                          flags;
1312         struct bch_sb_quota_counter     c[Q_COUNTERS];
1313 };
1314
1315 struct bch_sb_field_quota {
1316         struct bch_sb_field             field;
1317         struct bch_sb_quota_type        q[QTYP_NR];
1318 } __attribute__((packed, aligned(8)));
1319
1320 /* BCH_SB_FIELD_disk_groups: */
1321
1322 #define BCH_SB_LABEL_SIZE               32
1323
1324 struct bch_disk_group {
1325         __u8                    label[BCH_SB_LABEL_SIZE];
1326         __le64                  flags[2];
1327 } __attribute__((packed, aligned(8)));
1328
1329 LE64_BITMASK(BCH_GROUP_DELETED,         struct bch_disk_group, flags[0], 0,  1)
1330 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED,    struct bch_disk_group, flags[0], 1,  6)
1331 LE64_BITMASK(BCH_GROUP_PARENT,          struct bch_disk_group, flags[0], 6, 24)
1332
1333 struct bch_sb_field_disk_groups {
1334         struct bch_sb_field     field;
1335         struct bch_disk_group   entries[0];
1336 } __attribute__((packed, aligned(8)));
1337
1338 /* BCH_SB_FIELD_counters */
1339
1340 #define BCH_PERSISTENT_COUNTERS()                       \
1341         x(io_read,              0)                      \
1342         x(io_write,             1)                      \
1343         x(io_move,              2)                      \
1344         x(bucket_invalidate,    3)                      \
1345         x(bucket_discard,       4)
1346
1347 enum bch_persistent_counters {
1348 #define x(t, n, ...) BCH_COUNTER_##t,
1349         BCH_PERSISTENT_COUNTERS()
1350 #undef x
1351         BCH_COUNTER_NR
1352 };
1353
1354 struct bch_sb_field_counters {
1355         struct bch_sb_field     field;
1356         __le64                  d[0];
1357 };
1358
1359 /*
1360  * On clean shutdown, store btree roots and current journal sequence number in
1361  * the superblock:
1362  */
1363 struct jset_entry {
1364         __le16                  u64s;
1365         __u8                    btree_id;
1366         __u8                    level;
1367         __u8                    type; /* designates what this jset holds */
1368         __u8                    pad[3];
1369
1370         union {
1371                 struct bkey_i   start[0];
1372                 __u64           _data[0];
1373         };
1374 };
1375
1376 struct bch_sb_field_clean {
1377         struct bch_sb_field     field;
1378
1379         __le32                  flags;
1380         __le16                  _read_clock; /* no longer used */
1381         __le16                  _write_clock;
1382         __le64                  journal_seq;
1383
1384         union {
1385                 struct jset_entry start[0];
1386                 __u64           _data[0];
1387         };
1388 };
1389
1390 struct journal_seq_blacklist_entry {
1391         __le64                  start;
1392         __le64                  end;
1393 };
1394
1395 struct bch_sb_field_journal_seq_blacklist {
1396         struct bch_sb_field     field;
1397
1398         union {
1399                 struct journal_seq_blacklist_entry start[0];
1400                 __u64           _data[0];
1401         };
1402 };
1403
1404 /* Superblock: */
1405
1406 /*
1407  * New versioning scheme:
1408  * One common version number for all on disk data structures - superblock, btree
1409  * nodes, journal entries
1410  */
1411 #define BCH_JSET_VERSION_OLD                    2
1412 #define BCH_BSET_VERSION_OLD                    3
1413
1414 #define BCH_METADATA_VERSIONS()                         \
1415         x(bkey_renumber,                10)             \
1416         x(inode_btree_change,           11)             \
1417         x(snapshot,                     12)             \
1418         x(inode_backpointers,           13)             \
1419         x(btree_ptr_sectors_written,    14)             \
1420         x(snapshot_2,                   15)             \
1421         x(reflink_p_fix,                16)             \
1422         x(subvol_dirent,                17)             \
1423         x(inode_v2,                     18)             \
1424         x(freespace,                    19)             \
1425         x(alloc_v4,                     20)             \
1426         x(new_data_types,               21)             \
1427         x(backpointers,                 22)
1428
1429 enum bcachefs_metadata_version {
1430         bcachefs_metadata_version_min = 9,
1431 #define x(t, n) bcachefs_metadata_version_##t = n,
1432         BCH_METADATA_VERSIONS()
1433 #undef x
1434         bcachefs_metadata_version_max
1435 };
1436
1437 #define bcachefs_metadata_version_current       (bcachefs_metadata_version_max - 1)
1438
1439 #define BCH_SB_SECTOR                   8
1440 #define BCH_SB_MEMBERS_MAX              64 /* XXX kill */
1441
1442 struct bch_sb_layout {
1443         uuid_le                 magic;  /* bcachefs superblock UUID */
1444         __u8                    layout_type;
1445         __u8                    sb_max_size_bits; /* base 2 of 512 byte sectors */
1446         __u8                    nr_superblocks;
1447         __u8                    pad[5];
1448         __le64                  sb_offset[61];
1449 } __attribute__((packed, aligned(8)));
1450
1451 #define BCH_SB_LAYOUT_SECTOR    7
1452
1453 /*
1454  * @offset      - sector where this sb was written
1455  * @version     - on disk format version
1456  * @version_min - Oldest metadata version this filesystem contains; so we can
1457  *                safely drop compatibility code and refuse to mount filesystems
1458  *                we'd need it for
1459  * @magic       - identifies as a bcachefs superblock (BCACHE_MAGIC)
1460  * @seq         - incremented each time superblock is written
1461  * @uuid        - used for generating various magic numbers and identifying
1462  *                member devices, never changes
1463  * @user_uuid   - user visible UUID, may be changed
1464  * @label       - filesystem label
1465  * @seq         - identifies most recent superblock, incremented each time
1466  *                superblock is written
1467  * @features    - enabled incompatible features
1468  */
1469 struct bch_sb {
1470         struct bch_csum         csum;
1471         __le16                  version;
1472         __le16                  version_min;
1473         __le16                  pad[2];
1474         uuid_le                 magic;
1475         uuid_le                 uuid;
1476         uuid_le                 user_uuid;
1477         __u8                    label[BCH_SB_LABEL_SIZE];
1478         __le64                  offset;
1479         __le64                  seq;
1480
1481         __le16                  block_size;
1482         __u8                    dev_idx;
1483         __u8                    nr_devices;
1484         __le32                  u64s;
1485
1486         __le64                  time_base_lo;
1487         __le32                  time_base_hi;
1488         __le32                  time_precision;
1489
1490         __le64                  flags[8];
1491         __le64                  features[2];
1492         __le64                  compat[2];
1493
1494         struct bch_sb_layout    layout;
1495
1496         union {
1497                 struct bch_sb_field start[0];
1498                 __le64          _data[0];
1499         };
1500 } __attribute__((packed, aligned(8)));
1501
1502 /*
1503  * Flags:
1504  * BCH_SB_INITALIZED    - set on first mount
1505  * BCH_SB_CLEAN         - did we shut down cleanly? Just a hint, doesn't affect
1506  *                        behaviour of mount/recovery path:
1507  * BCH_SB_INODE_32BIT   - limit inode numbers to 32 bits
1508  * BCH_SB_128_BIT_MACS  - 128 bit macs instead of 80
1509  * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
1510  *                         DATA/META_CSUM_TYPE. Also indicates encryption
1511  *                         algorithm in use, if/when we get more than one
1512  */
1513
1514 LE16_BITMASK(BCH_SB_BLOCK_SIZE,         struct bch_sb, block_size, 0, 16);
1515
1516 LE64_BITMASK(BCH_SB_INITIALIZED,        struct bch_sb, flags[0],  0,  1);
1517 LE64_BITMASK(BCH_SB_CLEAN,              struct bch_sb, flags[0],  1,  2);
1518 LE64_BITMASK(BCH_SB_CSUM_TYPE,          struct bch_sb, flags[0],  2,  8);
1519 LE64_BITMASK(BCH_SB_ERROR_ACTION,       struct bch_sb, flags[0],  8, 12);
1520
1521 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE,    struct bch_sb, flags[0], 12, 28);
1522
1523 LE64_BITMASK(BCH_SB_GC_RESERVE,         struct bch_sb, flags[0], 28, 33);
1524 LE64_BITMASK(BCH_SB_ROOT_RESERVE,       struct bch_sb, flags[0], 33, 40);
1525
1526 LE64_BITMASK(BCH_SB_META_CSUM_TYPE,     struct bch_sb, flags[0], 40, 44);
1527 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE,     struct bch_sb, flags[0], 44, 48);
1528
1529 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
1530 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
1531
1532 LE64_BITMASK(BCH_SB_POSIX_ACL,          struct bch_sb, flags[0], 56, 57);
1533 LE64_BITMASK(BCH_SB_USRQUOTA,           struct bch_sb, flags[0], 57, 58);
1534 LE64_BITMASK(BCH_SB_GRPQUOTA,           struct bch_sb, flags[0], 58, 59);
1535 LE64_BITMASK(BCH_SB_PRJQUOTA,           struct bch_sb, flags[0], 59, 60);
1536
1537 LE64_BITMASK(BCH_SB_HAS_ERRORS,         struct bch_sb, flags[0], 60, 61);
1538 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
1539
1540 LE64_BITMASK(BCH_SB_BIG_ENDIAN,         struct bch_sb, flags[0], 62, 63);
1541
1542 LE64_BITMASK(BCH_SB_STR_HASH_TYPE,      struct bch_sb, flags[1],  0,  4);
1543 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE,   struct bch_sb, flags[1],  4,  8);
1544 LE64_BITMASK(BCH_SB_INODE_32BIT,        struct bch_sb, flags[1],  8,  9);
1545
1546 LE64_BITMASK(BCH_SB_128_BIT_MACS,       struct bch_sb, flags[1],  9, 10);
1547 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE,    struct bch_sb, flags[1], 10, 14);
1548
1549 /*
1550  * Max size of an extent that may require bouncing to read or write
1551  * (checksummed, compressed): 64k
1552  */
1553 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1554                                         struct bch_sb, flags[1], 14, 20);
1555
1556 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ,  struct bch_sb, flags[1], 20, 24);
1557 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ,  struct bch_sb, flags[1], 24, 28);
1558
1559 LE64_BITMASK(BCH_SB_PROMOTE_TARGET,     struct bch_sb, flags[1], 28, 40);
1560 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET,  struct bch_sb, flags[1], 40, 52);
1561 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET,  struct bch_sb, flags[1], 52, 64);
1562
1563 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE,
1564                                         struct bch_sb, flags[2],  0,  4);
1565 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES,   struct bch_sb, flags[2],  4, 64);
1566
1567 LE64_BITMASK(BCH_SB_ERASURE_CODE,       struct bch_sb, flags[3],  0, 16);
1568 LE64_BITMASK(BCH_SB_METADATA_TARGET,    struct bch_sb, flags[3], 16, 28);
1569 LE64_BITMASK(BCH_SB_SHARD_INUMS,        struct bch_sb, flags[3], 28, 29);
1570 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
1571 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1572 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1573 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
1574 /* Obsolete, always enabled: */
1575 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
1576
1577 /*
1578  * Features:
1579  *
1580  * journal_seq_blacklist_v3:    gates BCH_SB_FIELD_journal_seq_blacklist
1581  * reflink:                     gates KEY_TYPE_reflink
1582  * inline_data:                 gates KEY_TYPE_inline_data
1583  * new_siphash:                 gates BCH_STR_HASH_siphash
1584  * new_extent_overwrite:        gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1585  */
1586 #define BCH_SB_FEATURES()                       \
1587         x(lz4,                          0)      \
1588         x(gzip,                         1)      \
1589         x(zstd,                         2)      \
1590         x(atomic_nlink,                 3)      \
1591         x(ec,                           4)      \
1592         x(journal_seq_blacklist_v3,     5)      \
1593         x(reflink,                      6)      \
1594         x(new_siphash,                  7)      \
1595         x(inline_data,                  8)      \
1596         x(new_extent_overwrite,         9)      \
1597         x(incompressible,               10)     \
1598         x(btree_ptr_v2,                 11)     \
1599         x(extents_above_btree_updates,  12)     \
1600         x(btree_updates_journalled,     13)     \
1601         x(reflink_inline_data,          14)     \
1602         x(new_varint,                   15)     \
1603         x(journal_no_flush,             16)     \
1604         x(alloc_v2,                     17)     \
1605         x(extents_across_btree_nodes,   18)
1606
1607 #define BCH_SB_FEATURES_ALWAYS                          \
1608         ((1ULL << BCH_FEATURE_new_extent_overwrite)|    \
1609          (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1610          (1ULL << BCH_FEATURE_btree_updates_journalled)|\
1611          (1ULL << BCH_FEATURE_alloc_v2)|\
1612          (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1613
1614 #define BCH_SB_FEATURES_ALL                             \
1615         (BCH_SB_FEATURES_ALWAYS|                        \
1616          (1ULL << BCH_FEATURE_new_siphash)|             \
1617          (1ULL << BCH_FEATURE_btree_ptr_v2)|            \
1618          (1ULL << BCH_FEATURE_new_varint)|              \
1619          (1ULL << BCH_FEATURE_journal_no_flush))
1620
1621 enum bch_sb_feature {
1622 #define x(f, n) BCH_FEATURE_##f,
1623         BCH_SB_FEATURES()
1624 #undef x
1625         BCH_FEATURE_NR,
1626 };
1627
1628 #define BCH_SB_COMPAT()                                 \
1629         x(alloc_info,                           0)      \
1630         x(alloc_metadata,                       1)      \
1631         x(extents_above_btree_updates_done,     2)      \
1632         x(bformat_overflow_done,                3)
1633
1634 enum bch_sb_compat {
1635 #define x(f, n) BCH_COMPAT_##f,
1636         BCH_SB_COMPAT()
1637 #undef x
1638         BCH_COMPAT_NR,
1639 };
1640
1641 /* options: */
1642
1643 #define BCH_REPLICAS_MAX                4U
1644
1645 #define BCH_BKEY_PTRS_MAX               16U
1646
1647 #define BCH_ERROR_ACTIONS()             \
1648         x(continue,             0)      \
1649         x(ro,                   1)      \
1650         x(panic,                2)
1651
1652 enum bch_error_actions {
1653 #define x(t, n) BCH_ON_ERROR_##t = n,
1654         BCH_ERROR_ACTIONS()
1655 #undef x
1656         BCH_ON_ERROR_NR
1657 };
1658
1659 #define BCH_STR_HASH_TYPES()            \
1660         x(crc32c,               0)      \
1661         x(crc64,                1)      \
1662         x(siphash_old,          2)      \
1663         x(siphash,              3)
1664
1665 enum bch_str_hash_type {
1666 #define x(t, n) BCH_STR_HASH_##t = n,
1667         BCH_STR_HASH_TYPES()
1668 #undef x
1669         BCH_STR_HASH_NR
1670 };
1671
1672 #define BCH_STR_HASH_OPTS()             \
1673         x(crc32c,               0)      \
1674         x(crc64,                1)      \
1675         x(siphash,              2)
1676
1677 enum bch_str_hash_opts {
1678 #define x(t, n) BCH_STR_HASH_OPT_##t = n,
1679         BCH_STR_HASH_OPTS()
1680 #undef x
1681         BCH_STR_HASH_OPT_NR
1682 };
1683
1684 #define BCH_CSUM_TYPES()                        \
1685         x(none,                         0)      \
1686         x(crc32c_nonzero,               1)      \
1687         x(crc64_nonzero,                2)      \
1688         x(chacha20_poly1305_80,         3)      \
1689         x(chacha20_poly1305_128,        4)      \
1690         x(crc32c,                       5)      \
1691         x(crc64,                        6)      \
1692         x(xxhash,                       7)
1693
1694 enum bch_csum_type {
1695 #define x(t, n) BCH_CSUM_##t = n,
1696         BCH_CSUM_TYPES()
1697 #undef x
1698         BCH_CSUM_NR
1699 };
1700
1701 static const unsigned bch_crc_bytes[] = {
1702         [BCH_CSUM_none]                         = 0,
1703         [BCH_CSUM_crc32c_nonzero]               = 4,
1704         [BCH_CSUM_crc32c]                       = 4,
1705         [BCH_CSUM_crc64_nonzero]                = 8,
1706         [BCH_CSUM_crc64]                        = 8,
1707         [BCH_CSUM_xxhash]                       = 8,
1708         [BCH_CSUM_chacha20_poly1305_80]         = 10,
1709         [BCH_CSUM_chacha20_poly1305_128]        = 16,
1710 };
1711
1712 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1713 {
1714         switch (type) {
1715         case BCH_CSUM_chacha20_poly1305_80:
1716         case BCH_CSUM_chacha20_poly1305_128:
1717                 return true;
1718         default:
1719                 return false;
1720         }
1721 }
1722
1723 #define BCH_CSUM_OPTS()                 \
1724         x(none,                 0)      \
1725         x(crc32c,               1)      \
1726         x(crc64,                2)      \
1727         x(xxhash,               3)
1728
1729 enum bch_csum_opts {
1730 #define x(t, n) BCH_CSUM_OPT_##t = n,
1731         BCH_CSUM_OPTS()
1732 #undef x
1733         BCH_CSUM_OPT_NR
1734 };
1735
1736 #define BCH_COMPRESSION_TYPES()         \
1737         x(none,                 0)      \
1738         x(lz4_old,              1)      \
1739         x(gzip,                 2)      \
1740         x(lz4,                  3)      \
1741         x(zstd,                 4)      \
1742         x(incompressible,       5)
1743
1744 enum bch_compression_type {
1745 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1746         BCH_COMPRESSION_TYPES()
1747 #undef x
1748         BCH_COMPRESSION_TYPE_NR
1749 };
1750
1751 #define BCH_COMPRESSION_OPTS()          \
1752         x(none,         0)              \
1753         x(lz4,          1)              \
1754         x(gzip,         2)              \
1755         x(zstd,         3)
1756
1757 enum bch_compression_opts {
1758 #define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1759         BCH_COMPRESSION_OPTS()
1760 #undef x
1761         BCH_COMPRESSION_OPT_NR
1762 };
1763
1764 /*
1765  * Magic numbers
1766  *
1767  * The various other data structures have their own magic numbers, which are
1768  * xored with the first part of the cache set's UUID
1769  */
1770
1771 #define BCACHE_MAGIC                                                    \
1772         UUID_LE(0xf67385c6, 0x1a4e, 0xca45,                             \
1773                 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1774
1775 #define BCACHEFS_STATFS_MAGIC           0xca451a4e
1776
1777 #define JSET_MAGIC              __cpu_to_le64(0x245235c1a3625032ULL)
1778 #define BSET_MAGIC              __cpu_to_le64(0x90135c78b99e07f5ULL)
1779
1780 static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
1781 {
1782         __le64 ret;
1783         memcpy(&ret, &sb->uuid, sizeof(ret));
1784         return ret;
1785 }
1786
1787 static inline __u64 __jset_magic(struct bch_sb *sb)
1788 {
1789         return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
1790 }
1791
1792 static inline __u64 __bset_magic(struct bch_sb *sb)
1793 {
1794         return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
1795 }
1796
1797 /* Journal */
1798
1799 #define JSET_KEYS_U64s  (sizeof(struct jset_entry) / sizeof(__u64))
1800
1801 #define BCH_JSET_ENTRY_TYPES()                  \
1802         x(btree_keys,           0)              \
1803         x(btree_root,           1)              \
1804         x(prio_ptrs,            2)              \
1805         x(blacklist,            3)              \
1806         x(blacklist_v2,         4)              \
1807         x(usage,                5)              \
1808         x(data_usage,           6)              \
1809         x(clock,                7)              \
1810         x(dev_usage,            8)              \
1811         x(log,                  9)              \
1812         x(overwrite,            10)
1813
1814 enum {
1815 #define x(f, nr)        BCH_JSET_ENTRY_##f      = nr,
1816         BCH_JSET_ENTRY_TYPES()
1817 #undef x
1818         BCH_JSET_ENTRY_NR
1819 };
1820
1821 /*
1822  * Journal sequence numbers can be blacklisted: bsets record the max sequence
1823  * number of all the journal entries they contain updates for, so that on
1824  * recovery we can ignore those bsets that contain index updates newer that what
1825  * made it into the journal.
1826  *
1827  * This means that we can't reuse that journal_seq - we have to skip it, and
1828  * then record that we skipped it so that the next time we crash and recover we
1829  * don't think there was a missing journal entry.
1830  */
1831 struct jset_entry_blacklist {
1832         struct jset_entry       entry;
1833         __le64                  seq;
1834 };
1835
1836 struct jset_entry_blacklist_v2 {
1837         struct jset_entry       entry;
1838         __le64                  start;
1839         __le64                  end;
1840 };
1841
1842 #define BCH_FS_USAGE_TYPES()                    \
1843         x(reserved,             0)              \
1844         x(inodes,               1)              \
1845         x(key_version,          2)
1846
1847 enum {
1848 #define x(f, nr)        BCH_FS_USAGE_##f        = nr,
1849         BCH_FS_USAGE_TYPES()
1850 #undef x
1851         BCH_FS_USAGE_NR
1852 };
1853
1854 struct jset_entry_usage {
1855         struct jset_entry       entry;
1856         __le64                  v;
1857 } __attribute__((packed));
1858
1859 struct jset_entry_data_usage {
1860         struct jset_entry       entry;
1861         __le64                  v;
1862         struct bch_replicas_entry r;
1863 } __attribute__((packed));
1864
1865 struct jset_entry_clock {
1866         struct jset_entry       entry;
1867         __u8                    rw;
1868         __u8                    pad[7];
1869         __le64                  time;
1870 } __attribute__((packed));
1871
1872 struct jset_entry_dev_usage_type {
1873         __le64                  buckets;
1874         __le64                  sectors;
1875         __le64                  fragmented;
1876 } __attribute__((packed));
1877
1878 struct jset_entry_dev_usage {
1879         struct jset_entry       entry;
1880         __le32                  dev;
1881         __u32                   pad;
1882
1883         __le64                  buckets_ec;
1884         __le64                  _buckets_unavailable; /* No longer used */
1885
1886         struct jset_entry_dev_usage_type d[];
1887 } __attribute__((packed));
1888
1889 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
1890 {
1891         return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
1892                 sizeof(struct jset_entry_dev_usage_type);
1893 }
1894
1895 struct jset_entry_log {
1896         struct jset_entry       entry;
1897         u8                      d[];
1898 } __attribute__((packed));
1899
1900 /*
1901  * On disk format for a journal entry:
1902  * seq is monotonically increasing; every journal entry has its own unique
1903  * sequence number.
1904  *
1905  * last_seq is the oldest journal entry that still has keys the btree hasn't
1906  * flushed to disk yet.
1907  *
1908  * version is for on disk format changes.
1909  */
1910 struct jset {
1911         struct bch_csum         csum;
1912
1913         __le64                  magic;
1914         __le64                  seq;
1915         __le32                  version;
1916         __le32                  flags;
1917
1918         __le32                  u64s; /* size of d[] in u64s */
1919
1920         __u8                    encrypted_start[0];
1921
1922         __le16                  _read_clock; /* no longer used */
1923         __le16                  _write_clock;
1924
1925         /* Sequence number of oldest dirty journal entry */
1926         __le64                  last_seq;
1927
1928
1929         union {
1930                 struct jset_entry start[0];
1931                 __u64           _data[0];
1932         };
1933 } __attribute__((packed, aligned(8)));
1934
1935 LE32_BITMASK(JSET_CSUM_TYPE,    struct jset, flags, 0, 4);
1936 LE32_BITMASK(JSET_BIG_ENDIAN,   struct jset, flags, 4, 5);
1937 LE32_BITMASK(JSET_NO_FLUSH,     struct jset, flags, 5, 6);
1938
1939 #define BCH_JOURNAL_BUCKETS_MIN         8
1940
1941 /* Btree: */
1942
1943 #define BCH_BTREE_IDS()                         \
1944         x(extents,      0)                      \
1945         x(inodes,       1)                      \
1946         x(dirents,      2)                      \
1947         x(xattrs,       3)                      \
1948         x(alloc,        4)                      \
1949         x(quotas,       5)                      \
1950         x(stripes,      6)                      \
1951         x(reflink,      7)                      \
1952         x(subvolumes,   8)                      \
1953         x(snapshots,    9)                      \
1954         x(lru,          10)                     \
1955         x(freespace,    11)                     \
1956         x(need_discard, 12)                     \
1957         x(backpointers, 13)
1958
1959 enum btree_id {
1960 #define x(kwd, val) BTREE_ID_##kwd = val,
1961         BCH_BTREE_IDS()
1962 #undef x
1963         BTREE_ID_NR
1964 };
1965
1966 #define BTREE_MAX_DEPTH         4U
1967
1968 /* Btree nodes */
1969
1970 /*
1971  * Btree nodes
1972  *
1973  * On disk a btree node is a list/log of these; within each set the keys are
1974  * sorted
1975  */
1976 struct bset {
1977         __le64                  seq;
1978
1979         /*
1980          * Highest journal entry this bset contains keys for.
1981          * If on recovery we don't see that journal entry, this bset is ignored:
1982          * this allows us to preserve the order of all index updates after a
1983          * crash, since the journal records a total order of all index updates
1984          * and anything that didn't make it to the journal doesn't get used.
1985          */
1986         __le64                  journal_seq;
1987
1988         __le32                  flags;
1989         __le16                  version;
1990         __le16                  u64s; /* count of d[] in u64s */
1991
1992         union {
1993                 struct bkey_packed start[0];
1994                 __u64           _data[0];
1995         };
1996 } __attribute__((packed, aligned(8)));
1997
1998 LE32_BITMASK(BSET_CSUM_TYPE,    struct bset, flags, 0, 4);
1999
2000 LE32_BITMASK(BSET_BIG_ENDIAN,   struct bset, flags, 4, 5);
2001 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
2002                                 struct bset, flags, 5, 6);
2003
2004 /* Sector offset within the btree node: */
2005 LE32_BITMASK(BSET_OFFSET,       struct bset, flags, 16, 32);
2006
2007 struct btree_node {
2008         struct bch_csum         csum;
2009         __le64                  magic;
2010
2011         /* this flags field is encrypted, unlike bset->flags: */
2012         __le64                  flags;
2013
2014         /* Closed interval: */
2015         struct bpos             min_key;
2016         struct bpos             max_key;
2017         struct bch_extent_ptr   _ptr; /* not used anymore */
2018         struct bkey_format      format;
2019
2020         union {
2021         struct bset             keys;
2022         struct {
2023                 __u8            pad[22];
2024                 __le16          u64s;
2025                 __u64           _data[0];
2026
2027         };
2028         };
2029 } __attribute__((packed, aligned(8)));
2030
2031 LE64_BITMASK(BTREE_NODE_ID,     struct btree_node, flags,  0,  4);
2032 LE64_BITMASK(BTREE_NODE_LEVEL,  struct btree_node, flags,  4,  8);
2033 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
2034                                 struct btree_node, flags,  8,  9);
2035 /* 9-32 unused */
2036 LE64_BITMASK(BTREE_NODE_SEQ,    struct btree_node, flags, 32, 64);
2037
2038 struct btree_node_entry {
2039         struct bch_csum         csum;
2040
2041         union {
2042         struct bset             keys;
2043         struct {
2044                 __u8            pad[22];
2045                 __le16          u64s;
2046                 __u64           _data[0];
2047
2048         };
2049         };
2050 } __attribute__((packed, aligned(8)));
2051
2052 #endif /* _BCACHEFS_FORMAT_H */