]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/bcachefs_format.h
Update bcachefs sources to f9c612bbf82d bcachefs: Fixes for building in userspace
[bcachefs-tools-debian] / libbcachefs / bcachefs_format.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_FORMAT_H
3 #define _BCACHEFS_FORMAT_H
4
5 /*
6  * bcachefs on disk data structures
7  *
8  * OVERVIEW:
9  *
10  * There are three main types of on disk data structures in bcachefs (this is
11  * reduced from 5 in bcache)
12  *
13  *  - superblock
14  *  - journal
15  *  - btree
16  *
17  * The btree is the primary structure; most metadata exists as keys in the
18  * various btrees. There are only a small number of btrees, they're not
19  * sharded - we have one btree for extents, another for inodes, et cetera.
20  *
21  * SUPERBLOCK:
22  *
23  * The superblock contains the location of the journal, the list of devices in
24  * the filesystem, and in general any metadata we need in order to decide
25  * whether we can start a filesystem or prior to reading the journal/btree
26  * roots.
27  *
28  * The superblock is extensible, and most of the contents of the superblock are
29  * in variable length, type tagged fields; see struct bch_sb_field.
30  *
31  * Backup superblocks do not reside in a fixed location; also, superblocks do
32  * not have a fixed size. To locate backup superblocks we have struct
33  * bch_sb_layout; we store a copy of this inside every superblock, and also
34  * before the first superblock.
35  *
36  * JOURNAL:
37  *
38  * The journal primarily records btree updates in the order they occurred;
39  * journal replay consists of just iterating over all the keys in the open
40  * journal entries and re-inserting them into the btrees.
41  *
42  * The journal also contains entry types for the btree roots, and blacklisted
43  * journal sequence numbers (see journal_seq_blacklist.c).
44  *
45  * BTREE:
46  *
47  * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48  * 128k-256k) and log structured. We use struct btree_node for writing the first
49  * entry in a given node (offset 0), and struct btree_node_entry for all
50  * subsequent writes.
51  *
52  * After the header, btree node entries contain a list of keys in sorted order.
53  * Values are stored inline with the keys; since values are variable length (and
54  * keys effectively are variable length too, due to packing) we can't do random
55  * access without building up additional in memory tables in the btree node read
56  * path.
57  *
58  * BTREE KEYS (struct bkey):
59  *
60  * The various btrees share a common format for the key - so as to avoid
61  * switching in fastpath lookup/comparison code - but define their own
62  * structures for the key values.
63  *
64  * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65  * size is just under 2k. The common part also contains a type tag for the
66  * value, and a format field indicating whether the key is packed or not (and
67  * also meant to allow adding new key fields in the future, if desired).
68  *
69  * bkeys, when stored within a btree node, may also be packed. In that case, the
70  * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71  * be generous with field sizes in the common part of the key format (64 bit
72  * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73  */
74
75 #include <asm/types.h>
76 #include <asm/byteorder.h>
77 #include <linux/kernel.h>
78 #include <linux/uuid.h>
79 #include "vstructs.h"
80
81 #ifdef __KERNEL__
82 typedef uuid_t __uuid_t;
83 #endif
84
85 #define BITMASK(name, type, field, offset, end)                         \
86 static const __maybe_unused unsigned    name##_OFFSET = offset;         \
87 static const __maybe_unused unsigned    name##_BITS = (end - offset);   \
88                                                                         \
89 static inline __u64 name(const type *k)                                 \
90 {                                                                       \
91         return (k->field >> offset) & ~(~0ULL << (end - offset));       \
92 }                                                                       \
93                                                                         \
94 static inline void SET_##name(type *k, __u64 v)                         \
95 {                                                                       \
96         k->field &= ~(~(~0ULL << (end - offset)) << offset);            \
97         k->field |= (v & ~(~0ULL << (end - offset))) << offset;         \
98 }
99
100 #define LE_BITMASK(_bits, name, type, field, offset, end)               \
101 static const __maybe_unused unsigned    name##_OFFSET = offset;         \
102 static const __maybe_unused unsigned    name##_BITS = (end - offset);   \
103 static const __maybe_unused __u##_bits  name##_MAX = (1ULL << (end - offset)) - 1;\
104                                                                         \
105 static inline __u64 name(const type *k)                                 \
106 {                                                                       \
107         return (__le##_bits##_to_cpu(k->field) >> offset) &             \
108                 ~(~0ULL << (end - offset));                             \
109 }                                                                       \
110                                                                         \
111 static inline void SET_##name(type *k, __u64 v)                         \
112 {                                                                       \
113         __u##_bits new = __le##_bits##_to_cpu(k->field);                \
114                                                                         \
115         new &= ~(~(~0ULL << (end - offset)) << offset);                 \
116         new |= (v & ~(~0ULL << (end - offset))) << offset;              \
117         k->field = __cpu_to_le##_bits(new);                             \
118 }
119
120 #define LE16_BITMASK(n, t, f, o, e)     LE_BITMASK(16, n, t, f, o, e)
121 #define LE32_BITMASK(n, t, f, o, e)     LE_BITMASK(32, n, t, f, o, e)
122 #define LE64_BITMASK(n, t, f, o, e)     LE_BITMASK(64, n, t, f, o, e)
123
124 struct bkey_format {
125         __u8            key_u64s;
126         __u8            nr_fields;
127         /* One unused slot for now: */
128         __u8            bits_per_field[6];
129         __le64          field_offset[6];
130 };
131
132 /* Btree keys - all units are in sectors */
133
134 struct bpos {
135         /*
136          * Word order matches machine byte order - btree code treats a bpos as a
137          * single large integer, for search/comparison purposes
138          *
139          * Note that wherever a bpos is embedded in another on disk data
140          * structure, it has to be byte swabbed when reading in metadata that
141          * wasn't written in native endian order:
142          */
143 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
144         __u32           snapshot;
145         __u64           offset;
146         __u64           inode;
147 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
148         __u64           inode;
149         __u64           offset;         /* Points to end of extent - sectors */
150         __u32           snapshot;
151 #else
152 #error edit for your odd byteorder.
153 #endif
154 } __packed __aligned(4);
155
156 #define KEY_INODE_MAX                   ((__u64)~0ULL)
157 #define KEY_OFFSET_MAX                  ((__u64)~0ULL)
158 #define KEY_SNAPSHOT_MAX                ((__u32)~0U)
159 #define KEY_SIZE_MAX                    ((__u32)~0U)
160
161 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
162 {
163         return (struct bpos) {
164                 .inode          = inode,
165                 .offset         = offset,
166                 .snapshot       = snapshot,
167         };
168 }
169
170 #define POS_MIN                         SPOS(0, 0, 0)
171 #define POS_MAX                         SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
172 #define SPOS_MAX                        SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
173 #define POS(_inode, _offset)            SPOS(_inode, _offset, 0)
174
175 /* Empty placeholder struct, for container_of() */
176 struct bch_val {
177         __u64           __nothing[0];
178 };
179
180 struct bversion {
181 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
182         __u64           lo;
183         __u32           hi;
184 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
185         __u32           hi;
186         __u64           lo;
187 #endif
188 } __packed __aligned(4);
189
190 struct bkey {
191         /* Size of combined key and value, in u64s */
192         __u8            u64s;
193
194         /* Format of key (0 for format local to btree node) */
195 #if defined(__LITTLE_ENDIAN_BITFIELD)
196         __u8            format:7,
197                         needs_whiteout:1;
198 #elif defined (__BIG_ENDIAN_BITFIELD)
199         __u8            needs_whiteout:1,
200                         format:7;
201 #else
202 #error edit for your odd byteorder.
203 #endif
204
205         /* Type of the value */
206         __u8            type;
207
208 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
209         __u8            pad[1];
210
211         struct bversion version;
212         __u32           size;           /* extent size, in sectors */
213         struct bpos     p;
214 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
215         struct bpos     p;
216         __u32           size;           /* extent size, in sectors */
217         struct bversion version;
218
219         __u8            pad[1];
220 #endif
221 } __packed __aligned(8);
222
223 struct bkey_packed {
224         __u64           _data[0];
225
226         /* Size of combined key and value, in u64s */
227         __u8            u64s;
228
229         /* Format of key (0 for format local to btree node) */
230
231         /*
232          * XXX: next incompat on disk format change, switch format and
233          * needs_whiteout - bkey_packed() will be cheaper if format is the high
234          * bits of the bitfield
235          */
236 #if defined(__LITTLE_ENDIAN_BITFIELD)
237         __u8            format:7,
238                         needs_whiteout:1;
239 #elif defined (__BIG_ENDIAN_BITFIELD)
240         __u8            needs_whiteout:1,
241                         format:7;
242 #endif
243
244         /* Type of the value */
245         __u8            type;
246         __u8            key_start[0];
247
248         /*
249          * We copy bkeys with struct assignment in various places, and while
250          * that shouldn't be done with packed bkeys we can't disallow it in C,
251          * and it's legal to cast a bkey to a bkey_packed  - so padding it out
252          * to the same size as struct bkey should hopefully be safest.
253          */
254         __u8            pad[sizeof(struct bkey) - 3];
255 } __packed __aligned(8);
256
257 typedef struct {
258         __le64                  lo;
259         __le64                  hi;
260 } bch_le128;
261
262 #define BKEY_U64s                       (sizeof(struct bkey) / sizeof(__u64))
263 #define BKEY_U64s_MAX                   U8_MAX
264 #define BKEY_VAL_U64s_MAX               (BKEY_U64s_MAX - BKEY_U64s)
265
266 #define KEY_PACKED_BITS_START           24
267
268 #define KEY_FORMAT_LOCAL_BTREE          0
269 #define KEY_FORMAT_CURRENT              1
270
271 enum bch_bkey_fields {
272         BKEY_FIELD_INODE,
273         BKEY_FIELD_OFFSET,
274         BKEY_FIELD_SNAPSHOT,
275         BKEY_FIELD_SIZE,
276         BKEY_FIELD_VERSION_HI,
277         BKEY_FIELD_VERSION_LO,
278         BKEY_NR_FIELDS,
279 };
280
281 #define bkey_format_field(name, field)                                  \
282         [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
283
284 #define BKEY_FORMAT_CURRENT                                             \
285 ((struct bkey_format) {                                                 \
286         .key_u64s       = BKEY_U64s,                                    \
287         .nr_fields      = BKEY_NR_FIELDS,                               \
288         .bits_per_field = {                                             \
289                 bkey_format_field(INODE,        p.inode),               \
290                 bkey_format_field(OFFSET,       p.offset),              \
291                 bkey_format_field(SNAPSHOT,     p.snapshot),            \
292                 bkey_format_field(SIZE,         size),                  \
293                 bkey_format_field(VERSION_HI,   version.hi),            \
294                 bkey_format_field(VERSION_LO,   version.lo),            \
295         },                                                              \
296 })
297
298 /* bkey with inline value */
299 struct bkey_i {
300         __u64                   _data[0];
301
302         struct bkey     k;
303         struct bch_val  v;
304 };
305
306 #define KEY(_inode, _offset, _size)                                     \
307 ((struct bkey) {                                                        \
308         .u64s           = BKEY_U64s,                                    \
309         .format         = KEY_FORMAT_CURRENT,                           \
310         .p              = POS(_inode, _offset),                         \
311         .size           = _size,                                        \
312 })
313
314 static inline void bkey_init(struct bkey *k)
315 {
316         *k = KEY(0, 0, 0);
317 }
318
319 #define bkey_bytes(_k)          ((_k)->u64s * sizeof(__u64))
320
321 #define __BKEY_PADDED(key, pad)                                 \
322         struct bkey_i key; __u64 key ## _pad[pad]
323
324 /*
325  * - DELETED keys are used internally to mark keys that should be ignored but
326  *   override keys in composition order.  Their version number is ignored.
327  *
328  * - DISCARDED keys indicate that the data is all 0s because it has been
329  *   discarded. DISCARDs may have a version; if the version is nonzero the key
330  *   will be persistent, otherwise the key will be dropped whenever the btree
331  *   node is rewritten (like DELETED keys).
332  *
333  * - ERROR: any read of the data returns a read error, as the data was lost due
334  *   to a failing device. Like DISCARDED keys, they can be removed (overridden)
335  *   by new writes or cluster-wide GC. Node repair can also overwrite them with
336  *   the same or a more recent version number, but not with an older version
337  *   number.
338  *
339  * - WHITEOUT: for hash table btrees
340  */
341 #define BCH_BKEY_TYPES()                                \
342         x(deleted,              0)                      \
343         x(whiteout,             1)                      \
344         x(error,                2)                      \
345         x(cookie,               3)                      \
346         x(hash_whiteout,        4)                      \
347         x(btree_ptr,            5)                      \
348         x(extent,               6)                      \
349         x(reservation,          7)                      \
350         x(inode,                8)                      \
351         x(inode_generation,     9)                      \
352         x(dirent,               10)                     \
353         x(xattr,                11)                     \
354         x(alloc,                12)                     \
355         x(quota,                13)                     \
356         x(stripe,               14)                     \
357         x(reflink_p,            15)                     \
358         x(reflink_v,            16)                     \
359         x(inline_data,          17)                     \
360         x(btree_ptr_v2,         18)                     \
361         x(indirect_inline_data, 19)                     \
362         x(alloc_v2,             20)                     \
363         x(subvolume,            21)                     \
364         x(snapshot,             22)                     \
365         x(inode_v2,             23)                     \
366         x(alloc_v3,             24)                     \
367         x(set,                  25)                     \
368         x(lru,                  26)                     \
369         x(alloc_v4,             27)                     \
370         x(backpointer,          28)                     \
371         x(inode_v3,             29)                     \
372         x(bucket_gens,          30)                     \
373         x(snapshot_tree,        31)                     \
374         x(logged_op_truncate,   32)                     \
375         x(logged_op_finsert,    33)
376
377 enum bch_bkey_type {
378 #define x(name, nr) KEY_TYPE_##name     = nr,
379         BCH_BKEY_TYPES()
380 #undef x
381         KEY_TYPE_MAX,
382 };
383
384 struct bch_deleted {
385         struct bch_val          v;
386 };
387
388 struct bch_whiteout {
389         struct bch_val          v;
390 };
391
392 struct bch_error {
393         struct bch_val          v;
394 };
395
396 struct bch_cookie {
397         struct bch_val          v;
398         __le64                  cookie;
399 };
400
401 struct bch_hash_whiteout {
402         struct bch_val          v;
403 };
404
405 struct bch_set {
406         struct bch_val          v;
407 };
408
409 /* Extents */
410
411 /*
412  * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
413  * preceded by checksum/compression information (bch_extent_crc32 or
414  * bch_extent_crc64).
415  *
416  * One major determining factor in the format of extents is how we handle and
417  * represent extents that have been partially overwritten and thus trimmed:
418  *
419  * If an extent is not checksummed or compressed, when the extent is trimmed we
420  * don't have to remember the extent we originally allocated and wrote: we can
421  * merely adjust ptr->offset to point to the start of the data that is currently
422  * live. The size field in struct bkey records the current (live) size of the
423  * extent, and is also used to mean "size of region on disk that we point to" in
424  * this case.
425  *
426  * Thus an extent that is not checksummed or compressed will consist only of a
427  * list of bch_extent_ptrs, with none of the fields in
428  * bch_extent_crc32/bch_extent_crc64.
429  *
430  * When an extent is checksummed or compressed, it's not possible to read only
431  * the data that is currently live: we have to read the entire extent that was
432  * originally written, and then return only the part of the extent that is
433  * currently live.
434  *
435  * Thus, in addition to the current size of the extent in struct bkey, we need
436  * to store the size of the originally allocated space - this is the
437  * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
438  * when the extent is trimmed, instead of modifying the offset field of the
439  * pointer, we keep a second smaller offset field - "offset into the original
440  * extent of the currently live region".
441  *
442  * The other major determining factor is replication and data migration:
443  *
444  * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
445  * write, we will initially write all the replicas in the same format, with the
446  * same checksum type and compression format - however, when copygc runs later (or
447  * tiering/cache promotion, anything that moves data), it is not in general
448  * going to rewrite all the pointers at once - one of the replicas may be in a
449  * bucket on one device that has very little fragmentation while another lives
450  * in a bucket that has become heavily fragmented, and thus is being rewritten
451  * sooner than the rest.
452  *
453  * Thus it will only move a subset of the pointers (or in the case of
454  * tiering/cache promotion perhaps add a single pointer without dropping any
455  * current pointers), and if the extent has been partially overwritten it must
456  * write only the currently live portion (or copygc would not be able to reduce
457  * fragmentation!) - which necessitates a different bch_extent_crc format for
458  * the new pointer.
459  *
460  * But in the interests of space efficiency, we don't want to store one
461  * bch_extent_crc for each pointer if we don't have to.
462  *
463  * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
464  * bch_extent_ptrs appended arbitrarily one after the other. We determine the
465  * type of a given entry with a scheme similar to utf8 (except we're encoding a
466  * type, not a size), encoding the type in the position of the first set bit:
467  *
468  * bch_extent_crc32     - 0b1
469  * bch_extent_ptr       - 0b10
470  * bch_extent_crc64     - 0b100
471  *
472  * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
473  * bch_extent_crc64 is the least constrained).
474  *
475  * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
476  * until the next bch_extent_crc32/64.
477  *
478  * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
479  * is neither checksummed nor compressed.
480  */
481
482 /* 128 bits, sufficient for cryptographic MACs: */
483 struct bch_csum {
484         __le64                  lo;
485         __le64                  hi;
486 } __packed __aligned(8);
487
488 #define BCH_EXTENT_ENTRY_TYPES()                \
489         x(ptr,                  0)              \
490         x(crc32,                1)              \
491         x(crc64,                2)              \
492         x(crc128,               3)              \
493         x(stripe_ptr,           4)              \
494         x(rebalance,            5)
495 #define BCH_EXTENT_ENTRY_MAX    6
496
497 enum bch_extent_entry_type {
498 #define x(f, n) BCH_EXTENT_ENTRY_##f = n,
499         BCH_EXTENT_ENTRY_TYPES()
500 #undef x
501 };
502
503 /* Compressed/uncompressed size are stored biased by 1: */
504 struct bch_extent_crc32 {
505 #if defined(__LITTLE_ENDIAN_BITFIELD)
506         __u32                   type:2,
507                                 _compressed_size:7,
508                                 _uncompressed_size:7,
509                                 offset:7,
510                                 _unused:1,
511                                 csum_type:4,
512                                 compression_type:4;
513         __u32                   csum;
514 #elif defined (__BIG_ENDIAN_BITFIELD)
515         __u32                   csum;
516         __u32                   compression_type:4,
517                                 csum_type:4,
518                                 _unused:1,
519                                 offset:7,
520                                 _uncompressed_size:7,
521                                 _compressed_size:7,
522                                 type:2;
523 #endif
524 } __packed __aligned(8);
525
526 #define CRC32_SIZE_MAX          (1U << 7)
527 #define CRC32_NONCE_MAX         0
528
529 struct bch_extent_crc64 {
530 #if defined(__LITTLE_ENDIAN_BITFIELD)
531         __u64                   type:3,
532                                 _compressed_size:9,
533                                 _uncompressed_size:9,
534                                 offset:9,
535                                 nonce:10,
536                                 csum_type:4,
537                                 compression_type:4,
538                                 csum_hi:16;
539 #elif defined (__BIG_ENDIAN_BITFIELD)
540         __u64                   csum_hi:16,
541                                 compression_type:4,
542                                 csum_type:4,
543                                 nonce:10,
544                                 offset:9,
545                                 _uncompressed_size:9,
546                                 _compressed_size:9,
547                                 type:3;
548 #endif
549         __u64                   csum_lo;
550 } __packed __aligned(8);
551
552 #define CRC64_SIZE_MAX          (1U << 9)
553 #define CRC64_NONCE_MAX         ((1U << 10) - 1)
554
555 struct bch_extent_crc128 {
556 #if defined(__LITTLE_ENDIAN_BITFIELD)
557         __u64                   type:4,
558                                 _compressed_size:13,
559                                 _uncompressed_size:13,
560                                 offset:13,
561                                 nonce:13,
562                                 csum_type:4,
563                                 compression_type:4;
564 #elif defined (__BIG_ENDIAN_BITFIELD)
565         __u64                   compression_type:4,
566                                 csum_type:4,
567                                 nonce:13,
568                                 offset:13,
569                                 _uncompressed_size:13,
570                                 _compressed_size:13,
571                                 type:4;
572 #endif
573         struct bch_csum         csum;
574 } __packed __aligned(8);
575
576 #define CRC128_SIZE_MAX         (1U << 13)
577 #define CRC128_NONCE_MAX        ((1U << 13) - 1)
578
579 /*
580  * @reservation - pointer hasn't been written to, just reserved
581  */
582 struct bch_extent_ptr {
583 #if defined(__LITTLE_ENDIAN_BITFIELD)
584         __u64                   type:1,
585                                 cached:1,
586                                 unused:1,
587                                 unwritten:1,
588                                 offset:44, /* 8 petabytes */
589                                 dev:8,
590                                 gen:8;
591 #elif defined (__BIG_ENDIAN_BITFIELD)
592         __u64                   gen:8,
593                                 dev:8,
594                                 offset:44,
595                                 unwritten:1,
596                                 unused:1,
597                                 cached:1,
598                                 type:1;
599 #endif
600 } __packed __aligned(8);
601
602 struct bch_extent_stripe_ptr {
603 #if defined(__LITTLE_ENDIAN_BITFIELD)
604         __u64                   type:5,
605                                 block:8,
606                                 redundancy:4,
607                                 idx:47;
608 #elif defined (__BIG_ENDIAN_BITFIELD)
609         __u64                   idx:47,
610                                 redundancy:4,
611                                 block:8,
612                                 type:5;
613 #endif
614 };
615
616 struct bch_extent_reservation {
617 #if defined(__LITTLE_ENDIAN_BITFIELD)
618         __u64                   type:6,
619                                 unused:22,
620                                 replicas:4,
621                                 generation:32;
622 #elif defined (__BIG_ENDIAN_BITFIELD)
623         __u64                   generation:32,
624                                 replicas:4,
625                                 unused:22,
626                                 type:6;
627 #endif
628 };
629
630 struct bch_extent_rebalance {
631 #if defined(__LITTLE_ENDIAN_BITFIELD)
632         __u64                   type:7,
633                                 unused:33,
634                                 compression:8,
635                                 target:16;
636 #elif defined (__BIG_ENDIAN_BITFIELD)
637         __u64                   target:16,
638                                 compression:8,
639                                 unused:33,
640                                 type:7;
641 #endif
642 };
643
644 union bch_extent_entry {
645 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ||  __BITS_PER_LONG == 64
646         unsigned long                   type;
647 #elif __BITS_PER_LONG == 32
648         struct {
649                 unsigned long           pad;
650                 unsigned long           type;
651         };
652 #else
653 #error edit for your odd byteorder.
654 #endif
655
656 #define x(f, n) struct bch_extent_##f   f;
657         BCH_EXTENT_ENTRY_TYPES()
658 #undef x
659 };
660
661 struct bch_btree_ptr {
662         struct bch_val          v;
663
664         __u64                   _data[0];
665         struct bch_extent_ptr   start[];
666 } __packed __aligned(8);
667
668 struct bch_btree_ptr_v2 {
669         struct bch_val          v;
670
671         __u64                   mem_ptr;
672         __le64                  seq;
673         __le16                  sectors_written;
674         __le16                  flags;
675         struct bpos             min_key;
676         __u64                   _data[0];
677         struct bch_extent_ptr   start[];
678 } __packed __aligned(8);
679
680 LE16_BITMASK(BTREE_PTR_RANGE_UPDATED,   struct bch_btree_ptr_v2, flags, 0, 1);
681
682 struct bch_extent {
683         struct bch_val          v;
684
685         __u64                   _data[0];
686         union bch_extent_entry  start[];
687 } __packed __aligned(8);
688
689 struct bch_reservation {
690         struct bch_val          v;
691
692         __le32                  generation;
693         __u8                    nr_replicas;
694         __u8                    pad[3];
695 } __packed __aligned(8);
696
697 /* Maximum size (in u64s) a single pointer could be: */
698 #define BKEY_EXTENT_PTR_U64s_MAX\
699         ((sizeof(struct bch_extent_crc128) +                    \
700           sizeof(struct bch_extent_ptr)) / sizeof(__u64))
701
702 /* Maximum possible size of an entire extent value: */
703 #define BKEY_EXTENT_VAL_U64s_MAX                                \
704         (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
705
706 /* * Maximum possible size of an entire extent, key + value: */
707 #define BKEY_EXTENT_U64s_MAX            (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
708
709 /* Btree pointers don't carry around checksums: */
710 #define BKEY_BTREE_PTR_VAL_U64s_MAX                             \
711         ((sizeof(struct bch_btree_ptr_v2) +                     \
712           sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(__u64))
713 #define BKEY_BTREE_PTR_U64s_MAX                                 \
714         (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
715
716 /* Inodes */
717
718 #define BLOCKDEV_INODE_MAX      4096
719
720 #define BCACHEFS_ROOT_INO       4096
721
722 struct bch_inode {
723         struct bch_val          v;
724
725         __le64                  bi_hash_seed;
726         __le32                  bi_flags;
727         __le16                  bi_mode;
728         __u8                    fields[];
729 } __packed __aligned(8);
730
731 struct bch_inode_v2 {
732         struct bch_val          v;
733
734         __le64                  bi_journal_seq;
735         __le64                  bi_hash_seed;
736         __le64                  bi_flags;
737         __le16                  bi_mode;
738         __u8                    fields[];
739 } __packed __aligned(8);
740
741 struct bch_inode_v3 {
742         struct bch_val          v;
743
744         __le64                  bi_journal_seq;
745         __le64                  bi_hash_seed;
746         __le64                  bi_flags;
747         __le64                  bi_sectors;
748         __le64                  bi_size;
749         __le64                  bi_version;
750         __u8                    fields[];
751 } __packed __aligned(8);
752
753 #define INODEv3_FIELDS_START_INITIAL    6
754 #define INODEv3_FIELDS_START_CUR        (offsetof(struct bch_inode_v3, fields) / sizeof(__u64))
755
756 struct bch_inode_generation {
757         struct bch_val          v;
758
759         __le32                  bi_generation;
760         __le32                  pad;
761 } __packed __aligned(8);
762
763 /*
764  * bi_subvol and bi_parent_subvol are only set for subvolume roots:
765  */
766
767 #define BCH_INODE_FIELDS_v2()                   \
768         x(bi_atime,                     96)     \
769         x(bi_ctime,                     96)     \
770         x(bi_mtime,                     96)     \
771         x(bi_otime,                     96)     \
772         x(bi_size,                      64)     \
773         x(bi_sectors,                   64)     \
774         x(bi_uid,                       32)     \
775         x(bi_gid,                       32)     \
776         x(bi_nlink,                     32)     \
777         x(bi_generation,                32)     \
778         x(bi_dev,                       32)     \
779         x(bi_data_checksum,             8)      \
780         x(bi_compression,               8)      \
781         x(bi_project,                   32)     \
782         x(bi_background_compression,    8)      \
783         x(bi_data_replicas,             8)      \
784         x(bi_promote_target,            16)     \
785         x(bi_foreground_target,         16)     \
786         x(bi_background_target,         16)     \
787         x(bi_erasure_code,              16)     \
788         x(bi_fields_set,                16)     \
789         x(bi_dir,                       64)     \
790         x(bi_dir_offset,                64)     \
791         x(bi_subvol,                    32)     \
792         x(bi_parent_subvol,             32)
793
794 #define BCH_INODE_FIELDS_v3()                   \
795         x(bi_atime,                     96)     \
796         x(bi_ctime,                     96)     \
797         x(bi_mtime,                     96)     \
798         x(bi_otime,                     96)     \
799         x(bi_uid,                       32)     \
800         x(bi_gid,                       32)     \
801         x(bi_nlink,                     32)     \
802         x(bi_generation,                32)     \
803         x(bi_dev,                       32)     \
804         x(bi_data_checksum,             8)      \
805         x(bi_compression,               8)      \
806         x(bi_project,                   32)     \
807         x(bi_background_compression,    8)      \
808         x(bi_data_replicas,             8)      \
809         x(bi_promote_target,            16)     \
810         x(bi_foreground_target,         16)     \
811         x(bi_background_target,         16)     \
812         x(bi_erasure_code,              16)     \
813         x(bi_fields_set,                16)     \
814         x(bi_dir,                       64)     \
815         x(bi_dir_offset,                64)     \
816         x(bi_subvol,                    32)     \
817         x(bi_parent_subvol,             32)     \
818         x(bi_nocow,                     8)
819
820 /* subset of BCH_INODE_FIELDS */
821 #define BCH_INODE_OPTS()                        \
822         x(data_checksum,                8)      \
823         x(compression,                  8)      \
824         x(project,                      32)     \
825         x(background_compression,       8)      \
826         x(data_replicas,                8)      \
827         x(promote_target,               16)     \
828         x(foreground_target,            16)     \
829         x(background_target,            16)     \
830         x(erasure_code,                 16)     \
831         x(nocow,                        8)
832
833 enum inode_opt_id {
834 #define x(name, ...)                            \
835         Inode_opt_##name,
836         BCH_INODE_OPTS()
837 #undef  x
838         Inode_opt_nr,
839 };
840
841 enum {
842         /*
843          * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
844          * flags)
845          */
846         __BCH_INODE_SYNC                = 0,
847         __BCH_INODE_IMMUTABLE           = 1,
848         __BCH_INODE_APPEND              = 2,
849         __BCH_INODE_NODUMP              = 3,
850         __BCH_INODE_NOATIME             = 4,
851
852         __BCH_INODE_I_SIZE_DIRTY        = 5, /* obsolete */
853         __BCH_INODE_I_SECTORS_DIRTY     = 6, /* obsolete */
854         __BCH_INODE_UNLINKED            = 7,
855         __BCH_INODE_BACKPTR_UNTRUSTED   = 8,
856
857         /* bits 20+ reserved for packed fields below: */
858 };
859
860 #define BCH_INODE_SYNC          (1 << __BCH_INODE_SYNC)
861 #define BCH_INODE_IMMUTABLE     (1 << __BCH_INODE_IMMUTABLE)
862 #define BCH_INODE_APPEND        (1 << __BCH_INODE_APPEND)
863 #define BCH_INODE_NODUMP        (1 << __BCH_INODE_NODUMP)
864 #define BCH_INODE_NOATIME       (1 << __BCH_INODE_NOATIME)
865 #define BCH_INODE_I_SIZE_DIRTY  (1 << __BCH_INODE_I_SIZE_DIRTY)
866 #define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
867 #define BCH_INODE_UNLINKED      (1 << __BCH_INODE_UNLINKED)
868 #define BCH_INODE_BACKPTR_UNTRUSTED (1 << __BCH_INODE_BACKPTR_UNTRUSTED)
869
870 LE32_BITMASK(INODE_STR_HASH,    struct bch_inode, bi_flags, 20, 24);
871 LE32_BITMASK(INODE_NR_FIELDS,   struct bch_inode, bi_flags, 24, 31);
872 LE32_BITMASK(INODE_NEW_VARINT,  struct bch_inode, bi_flags, 31, 32);
873
874 LE64_BITMASK(INODEv2_STR_HASH,  struct bch_inode_v2, bi_flags, 20, 24);
875 LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31);
876
877 LE64_BITMASK(INODEv3_STR_HASH,  struct bch_inode_v3, bi_flags, 20, 24);
878 LE64_BITMASK(INODEv3_NR_FIELDS, struct bch_inode_v3, bi_flags, 24, 31);
879
880 LE64_BITMASK(INODEv3_FIELDS_START,
881                                 struct bch_inode_v3, bi_flags, 31, 36);
882 LE64_BITMASK(INODEv3_MODE,      struct bch_inode_v3, bi_flags, 36, 52);
883
884 /* Dirents */
885
886 /*
887  * Dirents (and xattrs) have to implement string lookups; since our b-tree
888  * doesn't support arbitrary length strings for the key, we instead index by a
889  * 64 bit hash (currently truncated sha1) of the string, stored in the offset
890  * field of the key - using linear probing to resolve hash collisions. This also
891  * provides us with the readdir cookie posix requires.
892  *
893  * Linear probing requires us to use whiteouts for deletions, in the event of a
894  * collision:
895  */
896
897 struct bch_dirent {
898         struct bch_val          v;
899
900         /* Target inode number: */
901         union {
902         __le64                  d_inum;
903         struct {                /* DT_SUBVOL */
904         __le32                  d_child_subvol;
905         __le32                  d_parent_subvol;
906         };
907         };
908
909         /*
910          * Copy of mode bits 12-15 from the target inode - so userspace can get
911          * the filetype without having to do a stat()
912          */
913         __u8                    d_type;
914
915         __u8                    d_name[];
916 } __packed __aligned(8);
917
918 #define DT_SUBVOL       16
919 #define BCH_DT_MAX      17
920
921 #define BCH_NAME_MAX    512
922
923 /* Xattrs */
924
925 #define KEY_TYPE_XATTR_INDEX_USER                       0
926 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS   1
927 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT  2
928 #define KEY_TYPE_XATTR_INDEX_TRUSTED                    3
929 #define KEY_TYPE_XATTR_INDEX_SECURITY           4
930
931 struct bch_xattr {
932         struct bch_val          v;
933         __u8                    x_type;
934         __u8                    x_name_len;
935         __le16                  x_val_len;
936         __u8                    x_name[];
937 } __packed __aligned(8);
938
939 /* Bucket/allocation information: */
940
941 struct bch_alloc {
942         struct bch_val          v;
943         __u8                    fields;
944         __u8                    gen;
945         __u8                    data[];
946 } __packed __aligned(8);
947
948 #define BCH_ALLOC_FIELDS_V1()                   \
949         x(read_time,            16)             \
950         x(write_time,           16)             \
951         x(data_type,            8)              \
952         x(dirty_sectors,        16)             \
953         x(cached_sectors,       16)             \
954         x(oldest_gen,           8)              \
955         x(stripe,               32)             \
956         x(stripe_redundancy,    8)
957
958 enum {
959 #define x(name, _bits) BCH_ALLOC_FIELD_V1_##name,
960         BCH_ALLOC_FIELDS_V1()
961 #undef x
962 };
963
964 struct bch_alloc_v2 {
965         struct bch_val          v;
966         __u8                    nr_fields;
967         __u8                    gen;
968         __u8                    oldest_gen;
969         __u8                    data_type;
970         __u8                    data[];
971 } __packed __aligned(8);
972
973 #define BCH_ALLOC_FIELDS_V2()                   \
974         x(read_time,            64)             \
975         x(write_time,           64)             \
976         x(dirty_sectors,        32)             \
977         x(cached_sectors,       32)             \
978         x(stripe,               32)             \
979         x(stripe_redundancy,    8)
980
981 struct bch_alloc_v3 {
982         struct bch_val          v;
983         __le64                  journal_seq;
984         __le32                  flags;
985         __u8                    nr_fields;
986         __u8                    gen;
987         __u8                    oldest_gen;
988         __u8                    data_type;
989         __u8                    data[];
990 } __packed __aligned(8);
991
992 LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags,  0,  1)
993 LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags,  1,  2)
994
995 struct bch_alloc_v4 {
996         struct bch_val          v;
997         __u64                   journal_seq;
998         __u32                   flags;
999         __u8                    gen;
1000         __u8                    oldest_gen;
1001         __u8                    data_type;
1002         __u8                    stripe_redundancy;
1003         __u32                   dirty_sectors;
1004         __u32                   cached_sectors;
1005         __u64                   io_time[2];
1006         __u32                   stripe;
1007         __u32                   nr_external_backpointers;
1008         __u64                   fragmentation_lru;
1009 } __packed __aligned(8);
1010
1011 #define BCH_ALLOC_V4_U64s_V0    6
1012 #define BCH_ALLOC_V4_U64s       (sizeof(struct bch_alloc_v4) / sizeof(__u64))
1013
1014 BITMASK(BCH_ALLOC_V4_NEED_DISCARD,      struct bch_alloc_v4, flags,  0,  1)
1015 BITMASK(BCH_ALLOC_V4_NEED_INC_GEN,      struct bch_alloc_v4, flags,  1,  2)
1016 BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags,  2,  8)
1017 BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS,   struct bch_alloc_v4, flags,  8,  14)
1018
1019 #define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX        40
1020
1021 struct bch_backpointer {
1022         struct bch_val          v;
1023         __u8                    btree_id;
1024         __u8                    level;
1025         __u8                    data_type;
1026         __u64                   bucket_offset:40;
1027         __u32                   bucket_len;
1028         struct bpos             pos;
1029 } __packed __aligned(8);
1030
1031 #define KEY_TYPE_BUCKET_GENS_BITS       8
1032 #define KEY_TYPE_BUCKET_GENS_NR         (1U << KEY_TYPE_BUCKET_GENS_BITS)
1033 #define KEY_TYPE_BUCKET_GENS_MASK       (KEY_TYPE_BUCKET_GENS_NR - 1)
1034
1035 struct bch_bucket_gens {
1036         struct bch_val          v;
1037         u8                      gens[KEY_TYPE_BUCKET_GENS_NR];
1038 } __packed __aligned(8);
1039
1040 /* Quotas: */
1041
1042 enum quota_types {
1043         QTYP_USR                = 0,
1044         QTYP_GRP                = 1,
1045         QTYP_PRJ                = 2,
1046         QTYP_NR                 = 3,
1047 };
1048
1049 enum quota_counters {
1050         Q_SPC                   = 0,
1051         Q_INO                   = 1,
1052         Q_COUNTERS              = 2,
1053 };
1054
1055 struct bch_quota_counter {
1056         __le64                  hardlimit;
1057         __le64                  softlimit;
1058 };
1059
1060 struct bch_quota {
1061         struct bch_val          v;
1062         struct bch_quota_counter c[Q_COUNTERS];
1063 } __packed __aligned(8);
1064
1065 /* Erasure coding */
1066
1067 struct bch_stripe {
1068         struct bch_val          v;
1069         __le16                  sectors;
1070         __u8                    algorithm;
1071         __u8                    nr_blocks;
1072         __u8                    nr_redundant;
1073
1074         __u8                    csum_granularity_bits;
1075         __u8                    csum_type;
1076         __u8                    pad;
1077
1078         struct bch_extent_ptr   ptrs[];
1079 } __packed __aligned(8);
1080
1081 /* Reflink: */
1082
1083 struct bch_reflink_p {
1084         struct bch_val          v;
1085         __le64                  idx;
1086         /*
1087          * A reflink pointer might point to an indirect extent which is then
1088          * later split (by copygc or rebalance). If we only pointed to part of
1089          * the original indirect extent, and then one of the fragments is
1090          * outside the range we point to, we'd leak a refcount: so when creating
1091          * reflink pointers, we need to store pad values to remember the full
1092          * range we were taking a reference on.
1093          */
1094         __le32                  front_pad;
1095         __le32                  back_pad;
1096 } __packed __aligned(8);
1097
1098 struct bch_reflink_v {
1099         struct bch_val          v;
1100         __le64                  refcount;
1101         union bch_extent_entry  start[0];
1102         __u64                   _data[];
1103 } __packed __aligned(8);
1104
1105 struct bch_indirect_inline_data {
1106         struct bch_val          v;
1107         __le64                  refcount;
1108         u8                      data[];
1109 };
1110
1111 /* Inline data */
1112
1113 struct bch_inline_data {
1114         struct bch_val          v;
1115         u8                      data[];
1116 };
1117
1118 /* Subvolumes: */
1119
1120 #define SUBVOL_POS_MIN          POS(0, 1)
1121 #define SUBVOL_POS_MAX          POS(0, S32_MAX)
1122 #define BCACHEFS_ROOT_SUBVOL    1
1123
1124 struct bch_subvolume {
1125         struct bch_val          v;
1126         __le32                  flags;
1127         __le32                  snapshot;
1128         __le64                  inode;
1129         /*
1130          * Snapshot subvolumes form a tree, separate from the snapshot nodes
1131          * tree - if this subvolume is a snapshot, this is the ID of the
1132          * subvolume it was created from:
1133          */
1134         __le32                  parent;
1135         __le32                  pad;
1136         bch_le128               otime;
1137 };
1138
1139 LE32_BITMASK(BCH_SUBVOLUME_RO,          struct bch_subvolume, flags,  0,  1)
1140 /*
1141  * We need to know whether a subvolume is a snapshot so we can know whether we
1142  * can delete it (or whether it should just be rm -rf'd)
1143  */
1144 LE32_BITMASK(BCH_SUBVOLUME_SNAP,        struct bch_subvolume, flags,  1,  2)
1145 LE32_BITMASK(BCH_SUBVOLUME_UNLINKED,    struct bch_subvolume, flags,  2,  3)
1146
1147 /* Snapshots */
1148
1149 struct bch_snapshot {
1150         struct bch_val          v;
1151         __le32                  flags;
1152         __le32                  parent;
1153         __le32                  children[2];
1154         __le32                  subvol;
1155         /* corresponds to a bch_snapshot_tree in BTREE_ID_snapshot_trees */
1156         __le32                  tree;
1157         __le32                  depth;
1158         __le32                  skip[3];
1159 };
1160
1161 LE32_BITMASK(BCH_SNAPSHOT_DELETED,      struct bch_snapshot, flags,  0,  1)
1162
1163 /* True if a subvolume points to this snapshot node: */
1164 LE32_BITMASK(BCH_SNAPSHOT_SUBVOL,       struct bch_snapshot, flags,  1,  2)
1165
1166 /*
1167  * Snapshot trees:
1168  *
1169  * The snapshot_trees btree gives us persistent indentifier for each tree of
1170  * bch_snapshot nodes, and allow us to record and easily find the root/master
1171  * subvolume that other snapshots were created from:
1172  */
1173 struct bch_snapshot_tree {
1174         struct bch_val          v;
1175         __le32                  master_subvol;
1176         __le32                  root_snapshot;
1177 };
1178
1179 /* LRU btree: */
1180
1181 struct bch_lru {
1182         struct bch_val          v;
1183         __le64                  idx;
1184 } __packed __aligned(8);
1185
1186 #define LRU_ID_STRIPES          (1U << 16)
1187
1188 /* Logged operations btree: */
1189
1190 struct bch_logged_op_truncate {
1191         struct bch_val          v;
1192         __le32                  subvol;
1193         __le32                  pad;
1194         __le64                  inum;
1195         __le64                  new_i_size;
1196 };
1197
1198 enum logged_op_finsert_state {
1199         LOGGED_OP_FINSERT_start,
1200         LOGGED_OP_FINSERT_shift_extents,
1201         LOGGED_OP_FINSERT_finish,
1202 };
1203
1204 struct bch_logged_op_finsert {
1205         struct bch_val          v;
1206         __u8                    state;
1207         __u8                    pad[3];
1208         __le32                  subvol;
1209         __le64                  inum;
1210         __le64                  dst_offset;
1211         __le64                  src_offset;
1212         __le64                  pos;
1213 };
1214
1215 /* Optional/variable size superblock sections: */
1216
1217 struct bch_sb_field {
1218         __u64                   _data[0];
1219         __le32                  u64s;
1220         __le32                  type;
1221 };
1222
1223 #define BCH_SB_FIELDS()                         \
1224         x(journal,      0)                      \
1225         x(members,      1)                      \
1226         x(crypt,        2)                      \
1227         x(replicas_v0,  3)                      \
1228         x(quota,        4)                      \
1229         x(disk_groups,  5)                      \
1230         x(clean,        6)                      \
1231         x(replicas,     7)                      \
1232         x(journal_seq_blacklist, 8)             \
1233         x(journal_v2,   9)                      \
1234         x(counters,     10)
1235
1236 enum bch_sb_field_type {
1237 #define x(f, nr)        BCH_SB_FIELD_##f = nr,
1238         BCH_SB_FIELDS()
1239 #undef x
1240         BCH_SB_FIELD_NR
1241 };
1242
1243 /*
1244  * Most superblock fields are replicated in all device's superblocks - a few are
1245  * not:
1246  */
1247 #define BCH_SINGLE_DEVICE_SB_FIELDS             \
1248         ((1U << BCH_SB_FIELD_journal)|          \
1249          (1U << BCH_SB_FIELD_journal_v2))
1250
1251 /* BCH_SB_FIELD_journal: */
1252
1253 struct bch_sb_field_journal {
1254         struct bch_sb_field     field;
1255         __le64                  buckets[];
1256 };
1257
1258 struct bch_sb_field_journal_v2 {
1259         struct bch_sb_field     field;
1260
1261         struct bch_sb_field_journal_v2_entry {
1262                 __le64          start;
1263                 __le64          nr;
1264         }                       d[];
1265 };
1266
1267 /* BCH_SB_FIELD_members: */
1268
1269 #define BCH_MIN_NR_NBUCKETS     (1 << 6)
1270
1271 struct bch_member {
1272         __uuid_t                uuid;
1273         __le64                  nbuckets;       /* device size */
1274         __le16                  first_bucket;   /* index of first bucket used */
1275         __le16                  bucket_size;    /* sectors */
1276         __le32                  pad;
1277         __le64                  last_mount;     /* time_t */
1278
1279         __le64                  flags[2];
1280 };
1281
1282 LE64_BITMASK(BCH_MEMBER_STATE,          struct bch_member, flags[0],  0,  4)
1283 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
1284 LE64_BITMASK(BCH_MEMBER_DISCARD,        struct bch_member, flags[0], 14, 15)
1285 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED,   struct bch_member, flags[0], 15, 20)
1286 LE64_BITMASK(BCH_MEMBER_GROUP,          struct bch_member, flags[0], 20, 28)
1287 LE64_BITMASK(BCH_MEMBER_DURABILITY,     struct bch_member, flags[0], 28, 30)
1288 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
1289                                         struct bch_member, flags[0], 30, 31)
1290
1291 #if 0
1292 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0,  20);
1293 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
1294 #endif
1295
1296 #define BCH_MEMBER_STATES()                     \
1297         x(rw,           0)                      \
1298         x(ro,           1)                      \
1299         x(failed,       2)                      \
1300         x(spare,        3)
1301
1302 enum bch_member_state {
1303 #define x(t, n) BCH_MEMBER_STATE_##t = n,
1304         BCH_MEMBER_STATES()
1305 #undef x
1306         BCH_MEMBER_STATE_NR
1307 };
1308
1309 struct bch_sb_field_members {
1310         struct bch_sb_field     field;
1311         struct bch_member       members[];
1312 };
1313
1314 /* BCH_SB_FIELD_crypt: */
1315
1316 struct nonce {
1317         __le32                  d[4];
1318 };
1319
1320 struct bch_key {
1321         __le64                  key[4];
1322 };
1323
1324 #define BCH_KEY_MAGIC                                   \
1325         (((__u64) 'b' <<  0)|((__u64) 'c' <<  8)|               \
1326          ((__u64) 'h' << 16)|((__u64) '*' << 24)|               \
1327          ((__u64) '*' << 32)|((__u64) 'k' << 40)|               \
1328          ((__u64) 'e' << 48)|((__u64) 'y' << 56))
1329
1330 struct bch_encrypted_key {
1331         __le64                  magic;
1332         struct bch_key          key;
1333 };
1334
1335 /*
1336  * If this field is present in the superblock, it stores an encryption key which
1337  * is used encrypt all other data/metadata. The key will normally be encrypted
1338  * with the key userspace provides, but if encryption has been turned off we'll
1339  * just store the master key unencrypted in the superblock so we can access the
1340  * previously encrypted data.
1341  */
1342 struct bch_sb_field_crypt {
1343         struct bch_sb_field     field;
1344
1345         __le64                  flags;
1346         __le64                  kdf_flags;
1347         struct bch_encrypted_key key;
1348 };
1349
1350 LE64_BITMASK(BCH_CRYPT_KDF_TYPE,        struct bch_sb_field_crypt, flags, 0, 4);
1351
1352 enum bch_kdf_types {
1353         BCH_KDF_SCRYPT          = 0,
1354         BCH_KDF_NR              = 1,
1355 };
1356
1357 /* stored as base 2 log of scrypt params: */
1358 LE64_BITMASK(BCH_KDF_SCRYPT_N,  struct bch_sb_field_crypt, kdf_flags,  0, 16);
1359 LE64_BITMASK(BCH_KDF_SCRYPT_R,  struct bch_sb_field_crypt, kdf_flags, 16, 32);
1360 LE64_BITMASK(BCH_KDF_SCRYPT_P,  struct bch_sb_field_crypt, kdf_flags, 32, 48);
1361
1362 /* BCH_SB_FIELD_replicas: */
1363
1364 #define BCH_DATA_TYPES()                \
1365         x(free,         0)              \
1366         x(sb,           1)              \
1367         x(journal,      2)              \
1368         x(btree,        3)              \
1369         x(user,         4)              \
1370         x(cached,       5)              \
1371         x(parity,       6)              \
1372         x(stripe,       7)              \
1373         x(need_gc_gens, 8)              \
1374         x(need_discard, 9)
1375
1376 enum bch_data_type {
1377 #define x(t, n) BCH_DATA_##t,
1378         BCH_DATA_TYPES()
1379 #undef x
1380         BCH_DATA_NR
1381 };
1382
1383 static inline bool data_type_is_empty(enum bch_data_type type)
1384 {
1385         switch (type) {
1386         case BCH_DATA_free:
1387         case BCH_DATA_need_gc_gens:
1388         case BCH_DATA_need_discard:
1389                 return true;
1390         default:
1391                 return false;
1392         }
1393 }
1394
1395 static inline bool data_type_is_hidden(enum bch_data_type type)
1396 {
1397         switch (type) {
1398         case BCH_DATA_sb:
1399         case BCH_DATA_journal:
1400                 return true;
1401         default:
1402                 return false;
1403         }
1404 }
1405
1406 struct bch_replicas_entry_v0 {
1407         __u8                    data_type;
1408         __u8                    nr_devs;
1409         __u8                    devs[];
1410 } __packed;
1411
1412 struct bch_sb_field_replicas_v0 {
1413         struct bch_sb_field     field;
1414         struct bch_replicas_entry_v0 entries[];
1415 } __packed __aligned(8);
1416
1417 struct bch_replicas_entry {
1418         __u8                    data_type;
1419         __u8                    nr_devs;
1420         __u8                    nr_required;
1421         __u8                    devs[];
1422 } __packed;
1423
1424 #define replicas_entry_bytes(_i)                                        \
1425         (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
1426
1427 struct bch_sb_field_replicas {
1428         struct bch_sb_field     field;
1429         struct bch_replicas_entry entries[];
1430 } __packed __aligned(8);
1431
1432 /* BCH_SB_FIELD_quota: */
1433
1434 struct bch_sb_quota_counter {
1435         __le32                          timelimit;
1436         __le32                          warnlimit;
1437 };
1438
1439 struct bch_sb_quota_type {
1440         __le64                          flags;
1441         struct bch_sb_quota_counter     c[Q_COUNTERS];
1442 };
1443
1444 struct bch_sb_field_quota {
1445         struct bch_sb_field             field;
1446         struct bch_sb_quota_type        q[QTYP_NR];
1447 } __packed __aligned(8);
1448
1449 /* BCH_SB_FIELD_disk_groups: */
1450
1451 #define BCH_SB_LABEL_SIZE               32
1452
1453 struct bch_disk_group {
1454         __u8                    label[BCH_SB_LABEL_SIZE];
1455         __le64                  flags[2];
1456 } __packed __aligned(8);
1457
1458 LE64_BITMASK(BCH_GROUP_DELETED,         struct bch_disk_group, flags[0], 0,  1)
1459 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED,    struct bch_disk_group, flags[0], 1,  6)
1460 LE64_BITMASK(BCH_GROUP_PARENT,          struct bch_disk_group, flags[0], 6, 24)
1461
1462 struct bch_sb_field_disk_groups {
1463         struct bch_sb_field     field;
1464         struct bch_disk_group   entries[];
1465 } __packed __aligned(8);
1466
1467 /* BCH_SB_FIELD_counters */
1468
1469 #define BCH_PERSISTENT_COUNTERS()                               \
1470         x(io_read,                                      0)      \
1471         x(io_write,                                     1)      \
1472         x(io_move,                                      2)      \
1473         x(bucket_invalidate,                            3)      \
1474         x(bucket_discard,                               4)      \
1475         x(bucket_alloc,                                 5)      \
1476         x(bucket_alloc_fail,                            6)      \
1477         x(btree_cache_scan,                             7)      \
1478         x(btree_cache_reap,                             8)      \
1479         x(btree_cache_cannibalize,                      9)      \
1480         x(btree_cache_cannibalize_lock,                 10)     \
1481         x(btree_cache_cannibalize_lock_fail,            11)     \
1482         x(btree_cache_cannibalize_unlock,               12)     \
1483         x(btree_node_write,                             13)     \
1484         x(btree_node_read,                              14)     \
1485         x(btree_node_compact,                           15)     \
1486         x(btree_node_merge,                             16)     \
1487         x(btree_node_split,                             17)     \
1488         x(btree_node_rewrite,                           18)     \
1489         x(btree_node_alloc,                             19)     \
1490         x(btree_node_free,                              20)     \
1491         x(btree_node_set_root,                          21)     \
1492         x(btree_path_relock_fail,                       22)     \
1493         x(btree_path_upgrade_fail,                      23)     \
1494         x(btree_reserve_get_fail,                       24)     \
1495         x(journal_entry_full,                           25)     \
1496         x(journal_full,                                 26)     \
1497         x(journal_reclaim_finish,                       27)     \
1498         x(journal_reclaim_start,                        28)     \
1499         x(journal_write,                                29)     \
1500         x(read_promote,                                 30)     \
1501         x(read_bounce,                                  31)     \
1502         x(read_split,                                   33)     \
1503         x(read_retry,                                   32)     \
1504         x(read_reuse_race,                              34)     \
1505         x(move_extent_read,                             35)     \
1506         x(move_extent_write,                            36)     \
1507         x(move_extent_finish,                           37)     \
1508         x(move_extent_fail,                             38)     \
1509         x(move_extent_alloc_mem_fail,                   39)     \
1510         x(copygc,                                       40)     \
1511         x(copygc_wait,                                  41)     \
1512         x(gc_gens_end,                                  42)     \
1513         x(gc_gens_start,                                43)     \
1514         x(trans_blocked_journal_reclaim,                44)     \
1515         x(trans_restart_btree_node_reused,              45)     \
1516         x(trans_restart_btree_node_split,               46)     \
1517         x(trans_restart_fault_inject,                   47)     \
1518         x(trans_restart_iter_upgrade,                   48)     \
1519         x(trans_restart_journal_preres_get,             49)     \
1520         x(trans_restart_journal_reclaim,                50)     \
1521         x(trans_restart_journal_res_get,                51)     \
1522         x(trans_restart_key_cache_key_realloced,        52)     \
1523         x(trans_restart_key_cache_raced,                53)     \
1524         x(trans_restart_mark_replicas,                  54)     \
1525         x(trans_restart_mem_realloced,                  55)     \
1526         x(trans_restart_memory_allocation_failure,      56)     \
1527         x(trans_restart_relock,                         57)     \
1528         x(trans_restart_relock_after_fill,              58)     \
1529         x(trans_restart_relock_key_cache_fill,          59)     \
1530         x(trans_restart_relock_next_node,               60)     \
1531         x(trans_restart_relock_parent_for_fill,         61)     \
1532         x(trans_restart_relock_path,                    62)     \
1533         x(trans_restart_relock_path_intent,             63)     \
1534         x(trans_restart_too_many_iters,                 64)     \
1535         x(trans_restart_traverse,                       65)     \
1536         x(trans_restart_upgrade,                        66)     \
1537         x(trans_restart_would_deadlock,                 67)     \
1538         x(trans_restart_would_deadlock_write,           68)     \
1539         x(trans_restart_injected,                       69)     \
1540         x(trans_restart_key_cache_upgrade,              70)     \
1541         x(trans_traverse_all,                           71)     \
1542         x(transaction_commit,                           72)     \
1543         x(write_super,                                  73)     \
1544         x(trans_restart_would_deadlock_recursion_limit, 74)     \
1545         x(trans_restart_write_buffer_flush,             75)     \
1546         x(trans_restart_split_race,                     76)
1547
1548 enum bch_persistent_counters {
1549 #define x(t, n, ...) BCH_COUNTER_##t,
1550         BCH_PERSISTENT_COUNTERS()
1551 #undef x
1552         BCH_COUNTER_NR
1553 };
1554
1555 struct bch_sb_field_counters {
1556         struct bch_sb_field     field;
1557         __le64                  d[];
1558 };
1559
1560 /*
1561  * On clean shutdown, store btree roots and current journal sequence number in
1562  * the superblock:
1563  */
1564 struct jset_entry {
1565         __le16                  u64s;
1566         __u8                    btree_id;
1567         __u8                    level;
1568         __u8                    type; /* designates what this jset holds */
1569         __u8                    pad[3];
1570
1571         struct bkey_i           start[0];
1572         __u64                   _data[];
1573 };
1574
1575 struct bch_sb_field_clean {
1576         struct bch_sb_field     field;
1577
1578         __le32                  flags;
1579         __le16                  _read_clock; /* no longer used */
1580         __le16                  _write_clock;
1581         __le64                  journal_seq;
1582
1583         struct jset_entry       start[0];
1584         __u64                   _data[];
1585 };
1586
1587 struct journal_seq_blacklist_entry {
1588         __le64                  start;
1589         __le64                  end;
1590 };
1591
1592 struct bch_sb_field_journal_seq_blacklist {
1593         struct bch_sb_field     field;
1594
1595         struct journal_seq_blacklist_entry start[0];
1596         __u64                   _data[];
1597 };
1598
1599 /* Superblock: */
1600
1601 /*
1602  * New versioning scheme:
1603  * One common version number for all on disk data structures - superblock, btree
1604  * nodes, journal entries
1605  */
1606 #define BCH_VERSION_MAJOR(_v)           ((__u16) ((_v) >> 10))
1607 #define BCH_VERSION_MINOR(_v)           ((__u16) ((_v) & ~(~0U << 10)))
1608 #define BCH_VERSION(_major, _minor)     (((_major) << 10)|(_minor) << 0)
1609
1610 #define RECOVERY_PASS_ALL_FSCK          (1ULL << 63)
1611
1612 #define BCH_METADATA_VERSIONS()                                         \
1613         x(bkey_renumber,                BCH_VERSION(0, 10),             \
1614           RECOVERY_PASS_ALL_FSCK)                                       \
1615         x(inode_btree_change,           BCH_VERSION(0, 11),             \
1616           RECOVERY_PASS_ALL_FSCK)                                       \
1617         x(snapshot,                     BCH_VERSION(0, 12),             \
1618           RECOVERY_PASS_ALL_FSCK)                                       \
1619         x(inode_backpointers,           BCH_VERSION(0, 13),             \
1620           RECOVERY_PASS_ALL_FSCK)                                       \
1621         x(btree_ptr_sectors_written,    BCH_VERSION(0, 14),             \
1622           RECOVERY_PASS_ALL_FSCK)                                       \
1623         x(snapshot_2,                   BCH_VERSION(0, 15),             \
1624           BIT_ULL(BCH_RECOVERY_PASS_fs_upgrade_for_subvolumes)|         \
1625           BIT_ULL(BCH_RECOVERY_PASS_initialize_subvolumes)|             \
1626           RECOVERY_PASS_ALL_FSCK)                                       \
1627         x(reflink_p_fix,                BCH_VERSION(0, 16),             \
1628           BIT_ULL(BCH_RECOVERY_PASS_fix_reflink_p))                     \
1629         x(subvol_dirent,                BCH_VERSION(0, 17),             \
1630           RECOVERY_PASS_ALL_FSCK)                                       \
1631         x(inode_v2,                     BCH_VERSION(0, 18),             \
1632           RECOVERY_PASS_ALL_FSCK)                                       \
1633         x(freespace,                    BCH_VERSION(0, 19),             \
1634           RECOVERY_PASS_ALL_FSCK)                                       \
1635         x(alloc_v4,                     BCH_VERSION(0, 20),             \
1636           RECOVERY_PASS_ALL_FSCK)                                       \
1637         x(new_data_types,               BCH_VERSION(0, 21),             \
1638           RECOVERY_PASS_ALL_FSCK)                                       \
1639         x(backpointers,                 BCH_VERSION(0, 22),             \
1640           RECOVERY_PASS_ALL_FSCK)                                       \
1641         x(inode_v3,                     BCH_VERSION(0, 23),             \
1642           RECOVERY_PASS_ALL_FSCK)                                       \
1643         x(unwritten_extents,            BCH_VERSION(0, 24),             \
1644           RECOVERY_PASS_ALL_FSCK)                                       \
1645         x(bucket_gens,                  BCH_VERSION(0, 25),             \
1646           BIT_ULL(BCH_RECOVERY_PASS_bucket_gens_init)|                  \
1647           RECOVERY_PASS_ALL_FSCK)                                       \
1648         x(lru_v2,                       BCH_VERSION(0, 26),             \
1649           RECOVERY_PASS_ALL_FSCK)                                       \
1650         x(fragmentation_lru,            BCH_VERSION(0, 27),             \
1651           RECOVERY_PASS_ALL_FSCK)                                       \
1652         x(no_bps_in_alloc_keys,         BCH_VERSION(0, 28),             \
1653           RECOVERY_PASS_ALL_FSCK)                                       \
1654         x(snapshot_trees,               BCH_VERSION(0, 29),             \
1655           RECOVERY_PASS_ALL_FSCK)                                       \
1656         x(major_minor,                  BCH_VERSION(1,  0),             \
1657           0)                                                            \
1658         x(snapshot_skiplists,           BCH_VERSION(1,  1),             \
1659           BIT_ULL(BCH_RECOVERY_PASS_check_snapshots))                   \
1660         x(deleted_inodes,               BCH_VERSION(1,  2),             \
1661           BIT_ULL(BCH_RECOVERY_PASS_check_inodes))
1662
1663 enum bcachefs_metadata_version {
1664         bcachefs_metadata_version_min = 9,
1665 #define x(t, n, upgrade_passes) bcachefs_metadata_version_##t = n,
1666         BCH_METADATA_VERSIONS()
1667 #undef x
1668         bcachefs_metadata_version_max
1669 };
1670
1671 static const __maybe_unused
1672 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_major_minor;
1673
1674 #define bcachefs_metadata_version_current       (bcachefs_metadata_version_max - 1)
1675
1676 #define BCH_SB_SECTOR                   8
1677 #define BCH_SB_MEMBERS_MAX              64 /* XXX kill */
1678
1679 struct bch_sb_layout {
1680         __uuid_t                magic;  /* bcachefs superblock UUID */
1681         __u8                    layout_type;
1682         __u8                    sb_max_size_bits; /* base 2 of 512 byte sectors */
1683         __u8                    nr_superblocks;
1684         __u8                    pad[5];
1685         __le64                  sb_offset[61];
1686 } __packed __aligned(8);
1687
1688 #define BCH_SB_LAYOUT_SECTOR    7
1689
1690 /*
1691  * @offset      - sector where this sb was written
1692  * @version     - on disk format version
1693  * @version_min - Oldest metadata version this filesystem contains; so we can
1694  *                safely drop compatibility code and refuse to mount filesystems
1695  *                we'd need it for
1696  * @magic       - identifies as a bcachefs superblock (BCHFS_MAGIC)
1697  * @seq         - incremented each time superblock is written
1698  * @uuid        - used for generating various magic numbers and identifying
1699  *                member devices, never changes
1700  * @user_uuid   - user visible UUID, may be changed
1701  * @label       - filesystem label
1702  * @seq         - identifies most recent superblock, incremented each time
1703  *                superblock is written
1704  * @features    - enabled incompatible features
1705  */
1706 struct bch_sb {
1707         struct bch_csum         csum;
1708         __le16                  version;
1709         __le16                  version_min;
1710         __le16                  pad[2];
1711         __uuid_t                magic;
1712         __uuid_t                uuid;
1713         __uuid_t                user_uuid;
1714         __u8                    label[BCH_SB_LABEL_SIZE];
1715         __le64                  offset;
1716         __le64                  seq;
1717
1718         __le16                  block_size;
1719         __u8                    dev_idx;
1720         __u8                    nr_devices;
1721         __le32                  u64s;
1722
1723         __le64                  time_base_lo;
1724         __le32                  time_base_hi;
1725         __le32                  time_precision;
1726
1727         __le64                  flags[8];
1728         __le64                  features[2];
1729         __le64                  compat[2];
1730
1731         struct bch_sb_layout    layout;
1732
1733         struct bch_sb_field     start[0];
1734         __le64                  _data[];
1735 } __packed __aligned(8);
1736
1737 /*
1738  * Flags:
1739  * BCH_SB_INITALIZED    - set on first mount
1740  * BCH_SB_CLEAN         - did we shut down cleanly? Just a hint, doesn't affect
1741  *                        behaviour of mount/recovery path:
1742  * BCH_SB_INODE_32BIT   - limit inode numbers to 32 bits
1743  * BCH_SB_128_BIT_MACS  - 128 bit macs instead of 80
1744  * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
1745  *                         DATA/META_CSUM_TYPE. Also indicates encryption
1746  *                         algorithm in use, if/when we get more than one
1747  */
1748
1749 LE16_BITMASK(BCH_SB_BLOCK_SIZE,         struct bch_sb, block_size, 0, 16);
1750
1751 LE64_BITMASK(BCH_SB_INITIALIZED,        struct bch_sb, flags[0],  0,  1);
1752 LE64_BITMASK(BCH_SB_CLEAN,              struct bch_sb, flags[0],  1,  2);
1753 LE64_BITMASK(BCH_SB_CSUM_TYPE,          struct bch_sb, flags[0],  2,  8);
1754 LE64_BITMASK(BCH_SB_ERROR_ACTION,       struct bch_sb, flags[0],  8, 12);
1755
1756 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE,    struct bch_sb, flags[0], 12, 28);
1757
1758 LE64_BITMASK(BCH_SB_GC_RESERVE,         struct bch_sb, flags[0], 28, 33);
1759 LE64_BITMASK(BCH_SB_ROOT_RESERVE,       struct bch_sb, flags[0], 33, 40);
1760
1761 LE64_BITMASK(BCH_SB_META_CSUM_TYPE,     struct bch_sb, flags[0], 40, 44);
1762 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE,     struct bch_sb, flags[0], 44, 48);
1763
1764 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
1765 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
1766
1767 LE64_BITMASK(BCH_SB_POSIX_ACL,          struct bch_sb, flags[0], 56, 57);
1768 LE64_BITMASK(BCH_SB_USRQUOTA,           struct bch_sb, flags[0], 57, 58);
1769 LE64_BITMASK(BCH_SB_GRPQUOTA,           struct bch_sb, flags[0], 58, 59);
1770 LE64_BITMASK(BCH_SB_PRJQUOTA,           struct bch_sb, flags[0], 59, 60);
1771
1772 LE64_BITMASK(BCH_SB_HAS_ERRORS,         struct bch_sb, flags[0], 60, 61);
1773 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
1774
1775 LE64_BITMASK(BCH_SB_BIG_ENDIAN,         struct bch_sb, flags[0], 62, 63);
1776
1777 LE64_BITMASK(BCH_SB_STR_HASH_TYPE,      struct bch_sb, flags[1],  0,  4);
1778 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1],  4,  8);
1779 LE64_BITMASK(BCH_SB_INODE_32BIT,        struct bch_sb, flags[1],  8,  9);
1780
1781 LE64_BITMASK(BCH_SB_128_BIT_MACS,       struct bch_sb, flags[1],  9, 10);
1782 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE,    struct bch_sb, flags[1], 10, 14);
1783
1784 /*
1785  * Max size of an extent that may require bouncing to read or write
1786  * (checksummed, compressed): 64k
1787  */
1788 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1789                                         struct bch_sb, flags[1], 14, 20);
1790
1791 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ,  struct bch_sb, flags[1], 20, 24);
1792 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ,  struct bch_sb, flags[1], 24, 28);
1793
1794 LE64_BITMASK(BCH_SB_PROMOTE_TARGET,     struct bch_sb, flags[1], 28, 40);
1795 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET,  struct bch_sb, flags[1], 40, 52);
1796 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET,  struct bch_sb, flags[1], 52, 64);
1797
1798 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO,
1799                                         struct bch_sb, flags[2],  0,  4);
1800 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES,   struct bch_sb, flags[2],  4, 64);
1801
1802 LE64_BITMASK(BCH_SB_ERASURE_CODE,       struct bch_sb, flags[3],  0, 16);
1803 LE64_BITMASK(BCH_SB_METADATA_TARGET,    struct bch_sb, flags[3], 16, 28);
1804 LE64_BITMASK(BCH_SB_SHARD_INUMS,        struct bch_sb, flags[3], 28, 29);
1805 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
1806 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1807 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1808 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
1809 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
1810 LE64_BITMASK(BCH_SB_NOCOW,              struct bch_sb, flags[4], 33, 34);
1811 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE,  struct bch_sb, flags[4], 34, 54);
1812 LE64_BITMASK(BCH_SB_VERSION_UPGRADE,    struct bch_sb, flags[4], 54, 56);
1813
1814 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60);
1815 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI,
1816                                         struct bch_sb, flags[4], 60, 64);
1817
1818 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
1819                                         struct bch_sb, flags[5],  0, 16);
1820
1821 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb)
1822 {
1823         return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4);
1824 }
1825
1826 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1827 {
1828         SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v);
1829         SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4);
1830 }
1831
1832 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb)
1833 {
1834         return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) |
1835                 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4);
1836 }
1837
1838 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1839 {
1840         SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v);
1841         SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4);
1842 }
1843
1844 /*
1845  * Features:
1846  *
1847  * journal_seq_blacklist_v3:    gates BCH_SB_FIELD_journal_seq_blacklist
1848  * reflink:                     gates KEY_TYPE_reflink
1849  * inline_data:                 gates KEY_TYPE_inline_data
1850  * new_siphash:                 gates BCH_STR_HASH_siphash
1851  * new_extent_overwrite:        gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1852  */
1853 #define BCH_SB_FEATURES()                       \
1854         x(lz4,                          0)      \
1855         x(gzip,                         1)      \
1856         x(zstd,                         2)      \
1857         x(atomic_nlink,                 3)      \
1858         x(ec,                           4)      \
1859         x(journal_seq_blacklist_v3,     5)      \
1860         x(reflink,                      6)      \
1861         x(new_siphash,                  7)      \
1862         x(inline_data,                  8)      \
1863         x(new_extent_overwrite,         9)      \
1864         x(incompressible,               10)     \
1865         x(btree_ptr_v2,                 11)     \
1866         x(extents_above_btree_updates,  12)     \
1867         x(btree_updates_journalled,     13)     \
1868         x(reflink_inline_data,          14)     \
1869         x(new_varint,                   15)     \
1870         x(journal_no_flush,             16)     \
1871         x(alloc_v2,                     17)     \
1872         x(extents_across_btree_nodes,   18)
1873
1874 #define BCH_SB_FEATURES_ALWAYS                          \
1875         ((1ULL << BCH_FEATURE_new_extent_overwrite)|    \
1876          (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1877          (1ULL << BCH_FEATURE_btree_updates_journalled)|\
1878          (1ULL << BCH_FEATURE_alloc_v2)|\
1879          (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1880
1881 #define BCH_SB_FEATURES_ALL                             \
1882         (BCH_SB_FEATURES_ALWAYS|                        \
1883          (1ULL << BCH_FEATURE_new_siphash)|             \
1884          (1ULL << BCH_FEATURE_btree_ptr_v2)|            \
1885          (1ULL << BCH_FEATURE_new_varint)|              \
1886          (1ULL << BCH_FEATURE_journal_no_flush))
1887
1888 enum bch_sb_feature {
1889 #define x(f, n) BCH_FEATURE_##f,
1890         BCH_SB_FEATURES()
1891 #undef x
1892         BCH_FEATURE_NR,
1893 };
1894
1895 #define BCH_SB_COMPAT()                                 \
1896         x(alloc_info,                           0)      \
1897         x(alloc_metadata,                       1)      \
1898         x(extents_above_btree_updates_done,     2)      \
1899         x(bformat_overflow_done,                3)
1900
1901 enum bch_sb_compat {
1902 #define x(f, n) BCH_COMPAT_##f,
1903         BCH_SB_COMPAT()
1904 #undef x
1905         BCH_COMPAT_NR,
1906 };
1907
1908 /* options: */
1909
1910 #define BCH_VERSION_UPGRADE_OPTS()      \
1911         x(compatible,           0)      \
1912         x(incompatible,         1)      \
1913         x(none,                 2)
1914
1915 enum bch_version_upgrade_opts {
1916 #define x(t, n) BCH_VERSION_UPGRADE_##t = n,
1917         BCH_VERSION_UPGRADE_OPTS()
1918 #undef x
1919 };
1920
1921 #define BCH_REPLICAS_MAX                4U
1922
1923 #define BCH_BKEY_PTRS_MAX               16U
1924
1925 #define BCH_ERROR_ACTIONS()             \
1926         x(continue,             0)      \
1927         x(ro,                   1)      \
1928         x(panic,                2)
1929
1930 enum bch_error_actions {
1931 #define x(t, n) BCH_ON_ERROR_##t = n,
1932         BCH_ERROR_ACTIONS()
1933 #undef x
1934         BCH_ON_ERROR_NR
1935 };
1936
1937 #define BCH_STR_HASH_TYPES()            \
1938         x(crc32c,               0)      \
1939         x(crc64,                1)      \
1940         x(siphash_old,          2)      \
1941         x(siphash,              3)
1942
1943 enum bch_str_hash_type {
1944 #define x(t, n) BCH_STR_HASH_##t = n,
1945         BCH_STR_HASH_TYPES()
1946 #undef x
1947         BCH_STR_HASH_NR
1948 };
1949
1950 #define BCH_STR_HASH_OPTS()             \
1951         x(crc32c,               0)      \
1952         x(crc64,                1)      \
1953         x(siphash,              2)
1954
1955 enum bch_str_hash_opts {
1956 #define x(t, n) BCH_STR_HASH_OPT_##t = n,
1957         BCH_STR_HASH_OPTS()
1958 #undef x
1959         BCH_STR_HASH_OPT_NR
1960 };
1961
1962 #define BCH_CSUM_TYPES()                        \
1963         x(none,                         0)      \
1964         x(crc32c_nonzero,               1)      \
1965         x(crc64_nonzero,                2)      \
1966         x(chacha20_poly1305_80,         3)      \
1967         x(chacha20_poly1305_128,        4)      \
1968         x(crc32c,                       5)      \
1969         x(crc64,                        6)      \
1970         x(xxhash,                       7)
1971
1972 enum bch_csum_type {
1973 #define x(t, n) BCH_CSUM_##t = n,
1974         BCH_CSUM_TYPES()
1975 #undef x
1976         BCH_CSUM_NR
1977 };
1978
1979 static const __maybe_unused unsigned bch_crc_bytes[] = {
1980         [BCH_CSUM_none]                         = 0,
1981         [BCH_CSUM_crc32c_nonzero]               = 4,
1982         [BCH_CSUM_crc32c]                       = 4,
1983         [BCH_CSUM_crc64_nonzero]                = 8,
1984         [BCH_CSUM_crc64]                        = 8,
1985         [BCH_CSUM_xxhash]                       = 8,
1986         [BCH_CSUM_chacha20_poly1305_80]         = 10,
1987         [BCH_CSUM_chacha20_poly1305_128]        = 16,
1988 };
1989
1990 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1991 {
1992         switch (type) {
1993         case BCH_CSUM_chacha20_poly1305_80:
1994         case BCH_CSUM_chacha20_poly1305_128:
1995                 return true;
1996         default:
1997                 return false;
1998         }
1999 }
2000
2001 #define BCH_CSUM_OPTS()                 \
2002         x(none,                 0)      \
2003         x(crc32c,               1)      \
2004         x(crc64,                2)      \
2005         x(xxhash,               3)
2006
2007 enum bch_csum_opts {
2008 #define x(t, n) BCH_CSUM_OPT_##t = n,
2009         BCH_CSUM_OPTS()
2010 #undef x
2011         BCH_CSUM_OPT_NR
2012 };
2013
2014 #define BCH_COMPRESSION_TYPES()         \
2015         x(none,                 0)      \
2016         x(lz4_old,              1)      \
2017         x(gzip,                 2)      \
2018         x(lz4,                  3)      \
2019         x(zstd,                 4)      \
2020         x(incompressible,       5)
2021
2022 enum bch_compression_type {
2023 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
2024         BCH_COMPRESSION_TYPES()
2025 #undef x
2026         BCH_COMPRESSION_TYPE_NR
2027 };
2028
2029 #define BCH_COMPRESSION_OPTS()          \
2030         x(none,         0)              \
2031         x(lz4,          1)              \
2032         x(gzip,         2)              \
2033         x(zstd,         3)
2034
2035 enum bch_compression_opts {
2036 #define x(t, n) BCH_COMPRESSION_OPT_##t = n,
2037         BCH_COMPRESSION_OPTS()
2038 #undef x
2039         BCH_COMPRESSION_OPT_NR
2040 };
2041
2042 /*
2043  * Magic numbers
2044  *
2045  * The various other data structures have their own magic numbers, which are
2046  * xored with the first part of the cache set's UUID
2047  */
2048
2049 #define BCACHE_MAGIC                                                    \
2050         UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca,                           \
2051                   0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
2052 #define BCHFS_MAGIC                                                     \
2053         UUID_INIT(0xc68573f6, 0x66ce, 0x90a9,                           \
2054                   0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
2055
2056 #define BCACHEFS_STATFS_MAGIC           0xca451a4e
2057
2058 #define JSET_MAGIC              __cpu_to_le64(0x245235c1a3625032ULL)
2059 #define BSET_MAGIC              __cpu_to_le64(0x90135c78b99e07f5ULL)
2060
2061 static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
2062 {
2063         __le64 ret;
2064
2065         memcpy(&ret, &sb->uuid, sizeof(ret));
2066         return ret;
2067 }
2068
2069 static inline __u64 __jset_magic(struct bch_sb *sb)
2070 {
2071         return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
2072 }
2073
2074 static inline __u64 __bset_magic(struct bch_sb *sb)
2075 {
2076         return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
2077 }
2078
2079 /* Journal */
2080
2081 #define JSET_KEYS_U64s  (sizeof(struct jset_entry) / sizeof(__u64))
2082
2083 #define BCH_JSET_ENTRY_TYPES()                  \
2084         x(btree_keys,           0)              \
2085         x(btree_root,           1)              \
2086         x(prio_ptrs,            2)              \
2087         x(blacklist,            3)              \
2088         x(blacklist_v2,         4)              \
2089         x(usage,                5)              \
2090         x(data_usage,           6)              \
2091         x(clock,                7)              \
2092         x(dev_usage,            8)              \
2093         x(log,                  9)              \
2094         x(overwrite,            10)
2095
2096 enum {
2097 #define x(f, nr)        BCH_JSET_ENTRY_##f      = nr,
2098         BCH_JSET_ENTRY_TYPES()
2099 #undef x
2100         BCH_JSET_ENTRY_NR
2101 };
2102
2103 /*
2104  * Journal sequence numbers can be blacklisted: bsets record the max sequence
2105  * number of all the journal entries they contain updates for, so that on
2106  * recovery we can ignore those bsets that contain index updates newer that what
2107  * made it into the journal.
2108  *
2109  * This means that we can't reuse that journal_seq - we have to skip it, and
2110  * then record that we skipped it so that the next time we crash and recover we
2111  * don't think there was a missing journal entry.
2112  */
2113 struct jset_entry_blacklist {
2114         struct jset_entry       entry;
2115         __le64                  seq;
2116 };
2117
2118 struct jset_entry_blacklist_v2 {
2119         struct jset_entry       entry;
2120         __le64                  start;
2121         __le64                  end;
2122 };
2123
2124 #define BCH_FS_USAGE_TYPES()                    \
2125         x(reserved,             0)              \
2126         x(inodes,               1)              \
2127         x(key_version,          2)
2128
2129 enum {
2130 #define x(f, nr)        BCH_FS_USAGE_##f        = nr,
2131         BCH_FS_USAGE_TYPES()
2132 #undef x
2133         BCH_FS_USAGE_NR
2134 };
2135
2136 struct jset_entry_usage {
2137         struct jset_entry       entry;
2138         __le64                  v;
2139 } __packed;
2140
2141 struct jset_entry_data_usage {
2142         struct jset_entry       entry;
2143         __le64                  v;
2144         struct bch_replicas_entry r;
2145 } __packed;
2146
2147 struct jset_entry_clock {
2148         struct jset_entry       entry;
2149         __u8                    rw;
2150         __u8                    pad[7];
2151         __le64                  time;
2152 } __packed;
2153
2154 struct jset_entry_dev_usage_type {
2155         __le64                  buckets;
2156         __le64                  sectors;
2157         __le64                  fragmented;
2158 } __packed;
2159
2160 struct jset_entry_dev_usage {
2161         struct jset_entry       entry;
2162         __le32                  dev;
2163         __u32                   pad;
2164
2165         __le64                  buckets_ec;
2166         __le64                  _buckets_unavailable; /* No longer used */
2167
2168         struct jset_entry_dev_usage_type d[];
2169 };
2170
2171 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
2172 {
2173         return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
2174                 sizeof(struct jset_entry_dev_usage_type);
2175 }
2176
2177 struct jset_entry_log {
2178         struct jset_entry       entry;
2179         u8                      d[];
2180 } __packed;
2181
2182 /*
2183  * On disk format for a journal entry:
2184  * seq is monotonically increasing; every journal entry has its own unique
2185  * sequence number.
2186  *
2187  * last_seq is the oldest journal entry that still has keys the btree hasn't
2188  * flushed to disk yet.
2189  *
2190  * version is for on disk format changes.
2191  */
2192 struct jset {
2193         struct bch_csum         csum;
2194
2195         __le64                  magic;
2196         __le64                  seq;
2197         __le32                  version;
2198         __le32                  flags;
2199
2200         __le32                  u64s; /* size of d[] in u64s */
2201
2202         __u8                    encrypted_start[0];
2203
2204         __le16                  _read_clock; /* no longer used */
2205         __le16                  _write_clock;
2206
2207         /* Sequence number of oldest dirty journal entry */
2208         __le64                  last_seq;
2209
2210
2211         struct jset_entry       start[0];
2212         __u64                   _data[];
2213 } __packed __aligned(8);
2214
2215 LE32_BITMASK(JSET_CSUM_TYPE,    struct jset, flags, 0, 4);
2216 LE32_BITMASK(JSET_BIG_ENDIAN,   struct jset, flags, 4, 5);
2217 LE32_BITMASK(JSET_NO_FLUSH,     struct jset, flags, 5, 6);
2218
2219 #define BCH_JOURNAL_BUCKETS_MIN         8
2220
2221 /* Btree: */
2222
2223 enum btree_id_flags {
2224         BTREE_ID_EXTENTS        = BIT(0),
2225         BTREE_ID_SNAPSHOTS      = BIT(1),
2226         BTREE_ID_DATA           = BIT(2),
2227 };
2228
2229 #define BCH_BTREE_IDS()                                                         \
2230         x(extents,              0,      BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\
2231           BIT_ULL(KEY_TYPE_whiteout)|                                           \
2232           BIT_ULL(KEY_TYPE_error)|                                              \
2233           BIT_ULL(KEY_TYPE_cookie)|                                             \
2234           BIT_ULL(KEY_TYPE_extent)|                                             \
2235           BIT_ULL(KEY_TYPE_reservation)|                                        \
2236           BIT_ULL(KEY_TYPE_reflink_p)|                                          \
2237           BIT_ULL(KEY_TYPE_inline_data))                                        \
2238         x(inodes,               1,      BTREE_ID_SNAPSHOTS,                     \
2239           BIT_ULL(KEY_TYPE_whiteout)|                                           \
2240           BIT_ULL(KEY_TYPE_inode)|                                              \
2241           BIT_ULL(KEY_TYPE_inode_v2)|                                           \
2242           BIT_ULL(KEY_TYPE_inode_v3)|                                           \
2243           BIT_ULL(KEY_TYPE_inode_generation))                                   \
2244         x(dirents,              2,      BTREE_ID_SNAPSHOTS,                     \
2245           BIT_ULL(KEY_TYPE_whiteout)|                                           \
2246           BIT_ULL(KEY_TYPE_hash_whiteout)|                                      \
2247           BIT_ULL(KEY_TYPE_dirent))                                             \
2248         x(xattrs,               3,      BTREE_ID_SNAPSHOTS,                     \
2249           BIT_ULL(KEY_TYPE_whiteout)|                                           \
2250           BIT_ULL(KEY_TYPE_cookie)|                                             \
2251           BIT_ULL(KEY_TYPE_hash_whiteout)|                                      \
2252           BIT_ULL(KEY_TYPE_xattr))                                              \
2253         x(alloc,                4,      0,                                      \
2254           BIT_ULL(KEY_TYPE_alloc)|                                              \
2255           BIT_ULL(KEY_TYPE_alloc_v2)|                                           \
2256           BIT_ULL(KEY_TYPE_alloc_v3)|                                           \
2257           BIT_ULL(KEY_TYPE_alloc_v4))                                           \
2258         x(quotas,               5,      0,                                      \
2259           BIT_ULL(KEY_TYPE_quota))                                              \
2260         x(stripes,              6,      0,                                      \
2261           BIT_ULL(KEY_TYPE_stripe))                                             \
2262         x(reflink,              7,      BTREE_ID_EXTENTS|BTREE_ID_DATA,         \
2263           BIT_ULL(KEY_TYPE_reflink_v)|                                          \
2264           BIT_ULL(KEY_TYPE_indirect_inline_data))                               \
2265         x(subvolumes,           8,      0,                                      \
2266           BIT_ULL(KEY_TYPE_subvolume))                                          \
2267         x(snapshots,            9,      0,                                      \
2268           BIT_ULL(KEY_TYPE_snapshot))                                           \
2269         x(lru,                  10,     0,                                      \
2270           BIT_ULL(KEY_TYPE_set))                                                \
2271         x(freespace,            11,     BTREE_ID_EXTENTS,                       \
2272           BIT_ULL(KEY_TYPE_set))                                                \
2273         x(need_discard,         12,     0,                                      \
2274           BIT_ULL(KEY_TYPE_set))                                                \
2275         x(backpointers,         13,     0,                                      \
2276           BIT_ULL(KEY_TYPE_backpointer))                                        \
2277         x(bucket_gens,          14,     0,                                      \
2278           BIT_ULL(KEY_TYPE_bucket_gens))                                        \
2279         x(snapshot_trees,       15,     0,                                      \
2280           BIT_ULL(KEY_TYPE_snapshot_tree))                                      \
2281         x(deleted_inodes,       16,     BTREE_ID_SNAPSHOTS,                     \
2282           BIT_ULL(KEY_TYPE_set))                                                \
2283         x(logged_ops,           17,     0,                                      \
2284           BIT_ULL(KEY_TYPE_logged_op_truncate)|                                 \
2285           BIT_ULL(KEY_TYPE_logged_op_finsert))
2286
2287 enum btree_id {
2288 #define x(name, nr, ...) BTREE_ID_##name = nr,
2289         BCH_BTREE_IDS()
2290 #undef x
2291         BTREE_ID_NR
2292 };
2293
2294 #define BTREE_MAX_DEPTH         4U
2295
2296 /* Btree nodes */
2297
2298 /*
2299  * Btree nodes
2300  *
2301  * On disk a btree node is a list/log of these; within each set the keys are
2302  * sorted
2303  */
2304 struct bset {
2305         __le64                  seq;
2306
2307         /*
2308          * Highest journal entry this bset contains keys for.
2309          * If on recovery we don't see that journal entry, this bset is ignored:
2310          * this allows us to preserve the order of all index updates after a
2311          * crash, since the journal records a total order of all index updates
2312          * and anything that didn't make it to the journal doesn't get used.
2313          */
2314         __le64                  journal_seq;
2315
2316         __le32                  flags;
2317         __le16                  version;
2318         __le16                  u64s; /* count of d[] in u64s */
2319
2320         struct bkey_packed      start[0];
2321         __u64                   _data[];
2322 } __packed __aligned(8);
2323
2324 LE32_BITMASK(BSET_CSUM_TYPE,    struct bset, flags, 0, 4);
2325
2326 LE32_BITMASK(BSET_BIG_ENDIAN,   struct bset, flags, 4, 5);
2327 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
2328                                 struct bset, flags, 5, 6);
2329
2330 /* Sector offset within the btree node: */
2331 LE32_BITMASK(BSET_OFFSET,       struct bset, flags, 16, 32);
2332
2333 struct btree_node {
2334         struct bch_csum         csum;
2335         __le64                  magic;
2336
2337         /* this flags field is encrypted, unlike bset->flags: */
2338         __le64                  flags;
2339
2340         /* Closed interval: */
2341         struct bpos             min_key;
2342         struct bpos             max_key;
2343         struct bch_extent_ptr   _ptr; /* not used anymore */
2344         struct bkey_format      format;
2345
2346         union {
2347         struct bset             keys;
2348         struct {
2349                 __u8            pad[22];
2350                 __le16          u64s;
2351                 __u64           _data[0];
2352
2353         };
2354         };
2355 } __packed __aligned(8);
2356
2357 LE64_BITMASK(BTREE_NODE_ID_LO,  struct btree_node, flags,  0,  4);
2358 LE64_BITMASK(BTREE_NODE_LEVEL,  struct btree_node, flags,  4,  8);
2359 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
2360                                 struct btree_node, flags,  8,  9);
2361 LE64_BITMASK(BTREE_NODE_ID_HI,  struct btree_node, flags,  9, 25);
2362 /* 25-32 unused */
2363 LE64_BITMASK(BTREE_NODE_SEQ,    struct btree_node, flags, 32, 64);
2364
2365 static inline __u64 BTREE_NODE_ID(struct btree_node *n)
2366 {
2367         return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4);
2368 }
2369
2370 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v)
2371 {
2372         SET_BTREE_NODE_ID_LO(n, v);
2373         SET_BTREE_NODE_ID_HI(n, v >> 4);
2374 }
2375
2376 struct btree_node_entry {
2377         struct bch_csum         csum;
2378
2379         union {
2380         struct bset             keys;
2381         struct {
2382                 __u8            pad[22];
2383                 __le16          u64s;
2384                 __u64           _data[0];
2385         };
2386         };
2387 } __packed __aligned(8);
2388
2389 #endif /* _BCACHEFS_FORMAT_H */