]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/bcachefs_format.h
Update bcachefs sources to 171da96d76 bcachefs: Drop some anonymous structs, unions
[bcachefs-tools-debian] / libbcachefs / bcachefs_format.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_FORMAT_H
3 #define _BCACHEFS_FORMAT_H
4
5 /*
6  * bcachefs on disk data structures
7  *
8  * OVERVIEW:
9  *
10  * There are three main types of on disk data structures in bcachefs (this is
11  * reduced from 5 in bcache)
12  *
13  *  - superblock
14  *  - journal
15  *  - btree
16  *
17  * The btree is the primary structure; most metadata exists as keys in the
18  * various btrees. There are only a small number of btrees, they're not
19  * sharded - we have one btree for extents, another for inodes, et cetera.
20  *
21  * SUPERBLOCK:
22  *
23  * The superblock contains the location of the journal, the list of devices in
24  * the filesystem, and in general any metadata we need in order to decide
25  * whether we can start a filesystem or prior to reading the journal/btree
26  * roots.
27  *
28  * The superblock is extensible, and most of the contents of the superblock are
29  * in variable length, type tagged fields; see struct bch_sb_field.
30  *
31  * Backup superblocks do not reside in a fixed location; also, superblocks do
32  * not have a fixed size. To locate backup superblocks we have struct
33  * bch_sb_layout; we store a copy of this inside every superblock, and also
34  * before the first superblock.
35  *
36  * JOURNAL:
37  *
38  * The journal primarily records btree updates in the order they occurred;
39  * journal replay consists of just iterating over all the keys in the open
40  * journal entries and re-inserting them into the btrees.
41  *
42  * The journal also contains entry types for the btree roots, and blacklisted
43  * journal sequence numbers (see journal_seq_blacklist.c).
44  *
45  * BTREE:
46  *
47  * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48  * 128k-256k) and log structured. We use struct btree_node for writing the first
49  * entry in a given node (offset 0), and struct btree_node_entry for all
50  * subsequent writes.
51  *
52  * After the header, btree node entries contain a list of keys in sorted order.
53  * Values are stored inline with the keys; since values are variable length (and
54  * keys effectively are variable length too, due to packing) we can't do random
55  * access without building up additional in memory tables in the btree node read
56  * path.
57  *
58  * BTREE KEYS (struct bkey):
59  *
60  * The various btrees share a common format for the key - so as to avoid
61  * switching in fastpath lookup/comparison code - but define their own
62  * structures for the key values.
63  *
64  * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65  * size is just under 2k. The common part also contains a type tag for the
66  * value, and a format field indicating whether the key is packed or not (and
67  * also meant to allow adding new key fields in the future, if desired).
68  *
69  * bkeys, when stored within a btree node, may also be packed. In that case, the
70  * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71  * be generous with field sizes in the common part of the key format (64 bit
72  * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73  */
74
75 #include <asm/types.h>
76 #include <asm/byteorder.h>
77 #include <linux/kernel.h>
78 #include <linux/uuid.h>
79 #include "vstructs.h"
80
81 #define BITMASK(name, type, field, offset, end)                         \
82 static const unsigned   name##_OFFSET = offset;                         \
83 static const unsigned   name##_BITS = (end - offset);                   \
84                                                                         \
85 static inline __u64 name(const type *k)                                 \
86 {                                                                       \
87         return (k->field >> offset) & ~(~0ULL << (end - offset));       \
88 }                                                                       \
89                                                                         \
90 static inline void SET_##name(type *k, __u64 v)                         \
91 {                                                                       \
92         k->field &= ~(~(~0ULL << (end - offset)) << offset);            \
93         k->field |= (v & ~(~0ULL << (end - offset))) << offset;         \
94 }
95
96 #define LE_BITMASK(_bits, name, type, field, offset, end)               \
97 static const unsigned   name##_OFFSET = offset;                         \
98 static const unsigned   name##_BITS = (end - offset);                   \
99 static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;      \
100                                                                         \
101 static inline __u64 name(const type *k)                                 \
102 {                                                                       \
103         return (__le##_bits##_to_cpu(k->field) >> offset) &             \
104                 ~(~0ULL << (end - offset));                             \
105 }                                                                       \
106                                                                         \
107 static inline void SET_##name(type *k, __u64 v)                         \
108 {                                                                       \
109         __u##_bits new = __le##_bits##_to_cpu(k->field);                \
110                                                                         \
111         new &= ~(~(~0ULL << (end - offset)) << offset);                 \
112         new |= (v & ~(~0ULL << (end - offset))) << offset;              \
113         k->field = __cpu_to_le##_bits(new);                             \
114 }
115
116 #define LE16_BITMASK(n, t, f, o, e)     LE_BITMASK(16, n, t, f, o, e)
117 #define LE32_BITMASK(n, t, f, o, e)     LE_BITMASK(32, n, t, f, o, e)
118 #define LE64_BITMASK(n, t, f, o, e)     LE_BITMASK(64, n, t, f, o, e)
119
120 struct bkey_format {
121         __u8            key_u64s;
122         __u8            nr_fields;
123         /* One unused slot for now: */
124         __u8            bits_per_field[6];
125         __le64          field_offset[6];
126 };
127
128 /* Btree keys - all units are in sectors */
129
130 struct bpos {
131         /*
132          * Word order matches machine byte order - btree code treats a bpos as a
133          * single large integer, for search/comparison purposes
134          *
135          * Note that wherever a bpos is embedded in another on disk data
136          * structure, it has to be byte swabbed when reading in metadata that
137          * wasn't written in native endian order:
138          */
139 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
140         __u32           snapshot;
141         __u64           offset;
142         __u64           inode;
143 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
144         __u64           inode;
145         __u64           offset;         /* Points to end of extent - sectors */
146         __u32           snapshot;
147 #else
148 #error edit for your odd byteorder.
149 #endif
150 } __packed __aligned(4);
151
152 #define KEY_INODE_MAX                   ((__u64)~0ULL)
153 #define KEY_OFFSET_MAX                  ((__u64)~0ULL)
154 #define KEY_SNAPSHOT_MAX                ((__u32)~0U)
155 #define KEY_SIZE_MAX                    ((__u32)~0U)
156
157 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
158 {
159         return (struct bpos) {
160                 .inode          = inode,
161                 .offset         = offset,
162                 .snapshot       = snapshot,
163         };
164 }
165
166 #define POS_MIN                         SPOS(0, 0, 0)
167 #define POS_MAX                         SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
168 #define SPOS_MAX                        SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
169 #define POS(_inode, _offset)            SPOS(_inode, _offset, 0)
170
171 /* Empty placeholder struct, for container_of() */
172 struct bch_val {
173         __u64           __nothing[0];
174 };
175
176 struct bversion {
177 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
178         __u64           lo;
179         __u32           hi;
180 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
181         __u32           hi;
182         __u64           lo;
183 #endif
184 } __packed __aligned(4);
185
186 struct bkey {
187         /* Size of combined key and value, in u64s */
188         __u8            u64s;
189
190         /* Format of key (0 for format local to btree node) */
191 #if defined(__LITTLE_ENDIAN_BITFIELD)
192         __u8            format:7,
193                         needs_whiteout:1;
194 #elif defined (__BIG_ENDIAN_BITFIELD)
195         __u8            needs_whiteout:1,
196                         format:7;
197 #else
198 #error edit for your odd byteorder.
199 #endif
200
201         /* Type of the value */
202         __u8            type;
203
204 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
205         __u8            pad[1];
206
207         struct bversion version;
208         __u32           size;           /* extent size, in sectors */
209         struct bpos     p;
210 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
211         struct bpos     p;
212         __u32           size;           /* extent size, in sectors */
213         struct bversion version;
214
215         __u8            pad[1];
216 #endif
217 } __packed __aligned(8);
218
219 struct bkey_packed {
220         __u64           _data[0];
221
222         /* Size of combined key and value, in u64s */
223         __u8            u64s;
224
225         /* Format of key (0 for format local to btree node) */
226
227         /*
228          * XXX: next incompat on disk format change, switch format and
229          * needs_whiteout - bkey_packed() will be cheaper if format is the high
230          * bits of the bitfield
231          */
232 #if defined(__LITTLE_ENDIAN_BITFIELD)
233         __u8            format:7,
234                         needs_whiteout:1;
235 #elif defined (__BIG_ENDIAN_BITFIELD)
236         __u8            needs_whiteout:1,
237                         format:7;
238 #endif
239
240         /* Type of the value */
241         __u8            type;
242         __u8            key_start[0];
243
244         /*
245          * We copy bkeys with struct assignment in various places, and while
246          * that shouldn't be done with packed bkeys we can't disallow it in C,
247          * and it's legal to cast a bkey to a bkey_packed  - so padding it out
248          * to the same size as struct bkey should hopefully be safest.
249          */
250         __u8            pad[sizeof(struct bkey) - 3];
251 } __packed __aligned(8);
252
253 #define BKEY_U64s                       (sizeof(struct bkey) / sizeof(__u64))
254 #define BKEY_U64s_MAX                   U8_MAX
255 #define BKEY_VAL_U64s_MAX               (BKEY_U64s_MAX - BKEY_U64s)
256
257 #define KEY_PACKED_BITS_START           24
258
259 #define KEY_FORMAT_LOCAL_BTREE          0
260 #define KEY_FORMAT_CURRENT              1
261
262 enum bch_bkey_fields {
263         BKEY_FIELD_INODE,
264         BKEY_FIELD_OFFSET,
265         BKEY_FIELD_SNAPSHOT,
266         BKEY_FIELD_SIZE,
267         BKEY_FIELD_VERSION_HI,
268         BKEY_FIELD_VERSION_LO,
269         BKEY_NR_FIELDS,
270 };
271
272 #define bkey_format_field(name, field)                                  \
273         [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
274
275 #define BKEY_FORMAT_CURRENT                                             \
276 ((struct bkey_format) {                                                 \
277         .key_u64s       = BKEY_U64s,                                    \
278         .nr_fields      = BKEY_NR_FIELDS,                               \
279         .bits_per_field = {                                             \
280                 bkey_format_field(INODE,        p.inode),               \
281                 bkey_format_field(OFFSET,       p.offset),              \
282                 bkey_format_field(SNAPSHOT,     p.snapshot),            \
283                 bkey_format_field(SIZE,         size),                  \
284                 bkey_format_field(VERSION_HI,   version.hi),            \
285                 bkey_format_field(VERSION_LO,   version.lo),            \
286         },                                                              \
287 })
288
289 /* bkey with inline value */
290 struct bkey_i {
291         __u64                   _data[0];
292
293         struct bkey     k;
294         struct bch_val  v;
295 };
296
297 #define KEY(_inode, _offset, _size)                                     \
298 ((struct bkey) {                                                        \
299         .u64s           = BKEY_U64s,                                    \
300         .format         = KEY_FORMAT_CURRENT,                           \
301         .p              = POS(_inode, _offset),                         \
302         .size           = _size,                                        \
303 })
304
305 static inline void bkey_init(struct bkey *k)
306 {
307         *k = KEY(0, 0, 0);
308 }
309
310 #define bkey_bytes(_k)          ((_k)->u64s * sizeof(__u64))
311
312 #define __BKEY_PADDED(key, pad)                                 \
313         struct bkey_i key; __u64 key ## _pad[pad]
314
315 /*
316  * - DELETED keys are used internally to mark keys that should be ignored but
317  *   override keys in composition order.  Their version number is ignored.
318  *
319  * - DISCARDED keys indicate that the data is all 0s because it has been
320  *   discarded. DISCARDs may have a version; if the version is nonzero the key
321  *   will be persistent, otherwise the key will be dropped whenever the btree
322  *   node is rewritten (like DELETED keys).
323  *
324  * - ERROR: any read of the data returns a read error, as the data was lost due
325  *   to a failing device. Like DISCARDED keys, they can be removed (overridden)
326  *   by new writes or cluster-wide GC. Node repair can also overwrite them with
327  *   the same or a more recent version number, but not with an older version
328  *   number.
329  *
330  * - WHITEOUT: for hash table btrees
331  */
332 #define BCH_BKEY_TYPES()                                \
333         x(deleted,              0)                      \
334         x(whiteout,             1)                      \
335         x(error,                2)                      \
336         x(cookie,               3)                      \
337         x(hash_whiteout,        4)                      \
338         x(btree_ptr,            5)                      \
339         x(extent,               6)                      \
340         x(reservation,          7)                      \
341         x(inode,                8)                      \
342         x(inode_generation,     9)                      \
343         x(dirent,               10)                     \
344         x(xattr,                11)                     \
345         x(alloc,                12)                     \
346         x(quota,                13)                     \
347         x(stripe,               14)                     \
348         x(reflink_p,            15)                     \
349         x(reflink_v,            16)                     \
350         x(inline_data,          17)                     \
351         x(btree_ptr_v2,         18)                     \
352         x(indirect_inline_data, 19)                     \
353         x(alloc_v2,             20)                     \
354         x(subvolume,            21)                     \
355         x(snapshot,             22)                     \
356         x(inode_v2,             23)                     \
357         x(alloc_v3,             24)                     \
358         x(set,                  25)                     \
359         x(lru,                  26)                     \
360         x(alloc_v4,             27)                     \
361         x(backpointer,          28)                     \
362         x(inode_v3,             29)                     \
363         x(bucket_gens,          30)
364
365 enum bch_bkey_type {
366 #define x(name, nr) KEY_TYPE_##name     = nr,
367         BCH_BKEY_TYPES()
368 #undef x
369         KEY_TYPE_MAX,
370 };
371
372 struct bch_deleted {
373         struct bch_val          v;
374 };
375
376 struct bch_whiteout {
377         struct bch_val          v;
378 };
379
380 struct bch_error {
381         struct bch_val          v;
382 };
383
384 struct bch_cookie {
385         struct bch_val          v;
386         __le64                  cookie;
387 };
388
389 struct bch_hash_whiteout {
390         struct bch_val          v;
391 };
392
393 struct bch_set {
394         struct bch_val          v;
395 };
396
397 /* Extents */
398
399 /*
400  * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
401  * preceded by checksum/compression information (bch_extent_crc32 or
402  * bch_extent_crc64).
403  *
404  * One major determining factor in the format of extents is how we handle and
405  * represent extents that have been partially overwritten and thus trimmed:
406  *
407  * If an extent is not checksummed or compressed, when the extent is trimmed we
408  * don't have to remember the extent we originally allocated and wrote: we can
409  * merely adjust ptr->offset to point to the start of the data that is currently
410  * live. The size field in struct bkey records the current (live) size of the
411  * extent, and is also used to mean "size of region on disk that we point to" in
412  * this case.
413  *
414  * Thus an extent that is not checksummed or compressed will consist only of a
415  * list of bch_extent_ptrs, with none of the fields in
416  * bch_extent_crc32/bch_extent_crc64.
417  *
418  * When an extent is checksummed or compressed, it's not possible to read only
419  * the data that is currently live: we have to read the entire extent that was
420  * originally written, and then return only the part of the extent that is
421  * currently live.
422  *
423  * Thus, in addition to the current size of the extent in struct bkey, we need
424  * to store the size of the originally allocated space - this is the
425  * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
426  * when the extent is trimmed, instead of modifying the offset field of the
427  * pointer, we keep a second smaller offset field - "offset into the original
428  * extent of the currently live region".
429  *
430  * The other major determining factor is replication and data migration:
431  *
432  * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
433  * write, we will initially write all the replicas in the same format, with the
434  * same checksum type and compression format - however, when copygc runs later (or
435  * tiering/cache promotion, anything that moves data), it is not in general
436  * going to rewrite all the pointers at once - one of the replicas may be in a
437  * bucket on one device that has very little fragmentation while another lives
438  * in a bucket that has become heavily fragmented, and thus is being rewritten
439  * sooner than the rest.
440  *
441  * Thus it will only move a subset of the pointers (or in the case of
442  * tiering/cache promotion perhaps add a single pointer without dropping any
443  * current pointers), and if the extent has been partially overwritten it must
444  * write only the currently live portion (or copygc would not be able to reduce
445  * fragmentation!) - which necessitates a different bch_extent_crc format for
446  * the new pointer.
447  *
448  * But in the interests of space efficiency, we don't want to store one
449  * bch_extent_crc for each pointer if we don't have to.
450  *
451  * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
452  * bch_extent_ptrs appended arbitrarily one after the other. We determine the
453  * type of a given entry with a scheme similar to utf8 (except we're encoding a
454  * type, not a size), encoding the type in the position of the first set bit:
455  *
456  * bch_extent_crc32     - 0b1
457  * bch_extent_ptr       - 0b10
458  * bch_extent_crc64     - 0b100
459  *
460  * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
461  * bch_extent_crc64 is the least constrained).
462  *
463  * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
464  * until the next bch_extent_crc32/64.
465  *
466  * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
467  * is neither checksummed nor compressed.
468  */
469
470 /* 128 bits, sufficient for cryptographic MACs: */
471 struct bch_csum {
472         __le64                  lo;
473         __le64                  hi;
474 } __packed __aligned(8);
475
476 #define BCH_EXTENT_ENTRY_TYPES()                \
477         x(ptr,                  0)              \
478         x(crc32,                1)              \
479         x(crc64,                2)              \
480         x(crc128,               3)              \
481         x(stripe_ptr,           4)
482 #define BCH_EXTENT_ENTRY_MAX    5
483
484 enum bch_extent_entry_type {
485 #define x(f, n) BCH_EXTENT_ENTRY_##f = n,
486         BCH_EXTENT_ENTRY_TYPES()
487 #undef x
488 };
489
490 /* Compressed/uncompressed size are stored biased by 1: */
491 struct bch_extent_crc32 {
492 #if defined(__LITTLE_ENDIAN_BITFIELD)
493         __u32                   type:2,
494                                 _compressed_size:7,
495                                 _uncompressed_size:7,
496                                 offset:7,
497                                 _unused:1,
498                                 csum_type:4,
499                                 compression_type:4;
500         __u32                   csum;
501 #elif defined (__BIG_ENDIAN_BITFIELD)
502         __u32                   csum;
503         __u32                   compression_type:4,
504                                 csum_type:4,
505                                 _unused:1,
506                                 offset:7,
507                                 _uncompressed_size:7,
508                                 _compressed_size:7,
509                                 type:2;
510 #endif
511 } __packed __aligned(8);
512
513 #define CRC32_SIZE_MAX          (1U << 7)
514 #define CRC32_NONCE_MAX         0
515
516 struct bch_extent_crc64 {
517 #if defined(__LITTLE_ENDIAN_BITFIELD)
518         __u64                   type:3,
519                                 _compressed_size:9,
520                                 _uncompressed_size:9,
521                                 offset:9,
522                                 nonce:10,
523                                 csum_type:4,
524                                 compression_type:4,
525                                 csum_hi:16;
526 #elif defined (__BIG_ENDIAN_BITFIELD)
527         __u64                   csum_hi:16,
528                                 compression_type:4,
529                                 csum_type:4,
530                                 nonce:10,
531                                 offset:9,
532                                 _uncompressed_size:9,
533                                 _compressed_size:9,
534                                 type:3;
535 #endif
536         __u64                   csum_lo;
537 } __packed __aligned(8);
538
539 #define CRC64_SIZE_MAX          (1U << 9)
540 #define CRC64_NONCE_MAX         ((1U << 10) - 1)
541
542 struct bch_extent_crc128 {
543 #if defined(__LITTLE_ENDIAN_BITFIELD)
544         __u64                   type:4,
545                                 _compressed_size:13,
546                                 _uncompressed_size:13,
547                                 offset:13,
548                                 nonce:13,
549                                 csum_type:4,
550                                 compression_type:4;
551 #elif defined (__BIG_ENDIAN_BITFIELD)
552         __u64                   compression_type:4,
553                                 csum_type:4,
554                                 nonce:13,
555                                 offset:13,
556                                 _uncompressed_size:13,
557                                 _compressed_size:13,
558                                 type:4;
559 #endif
560         struct bch_csum         csum;
561 } __packed __aligned(8);
562
563 #define CRC128_SIZE_MAX         (1U << 13)
564 #define CRC128_NONCE_MAX        ((1U << 13) - 1)
565
566 /*
567  * @reservation - pointer hasn't been written to, just reserved
568  */
569 struct bch_extent_ptr {
570 #if defined(__LITTLE_ENDIAN_BITFIELD)
571         __u64                   type:1,
572                                 cached:1,
573                                 unused:1,
574                                 unwritten:1,
575                                 offset:44, /* 8 petabytes */
576                                 dev:8,
577                                 gen:8;
578 #elif defined (__BIG_ENDIAN_BITFIELD)
579         __u64                   gen:8,
580                                 dev:8,
581                                 offset:44,
582                                 unwritten:1,
583                                 unused:1,
584                                 cached:1,
585                                 type:1;
586 #endif
587 } __packed __aligned(8);
588
589 struct bch_extent_stripe_ptr {
590 #if defined(__LITTLE_ENDIAN_BITFIELD)
591         __u64                   type:5,
592                                 block:8,
593                                 redundancy:4,
594                                 idx:47;
595 #elif defined (__BIG_ENDIAN_BITFIELD)
596         __u64                   idx:47,
597                                 redundancy:4,
598                                 block:8,
599                                 type:5;
600 #endif
601 };
602
603 struct bch_extent_reservation {
604 #if defined(__LITTLE_ENDIAN_BITFIELD)
605         __u64                   type:6,
606                                 unused:22,
607                                 replicas:4,
608                                 generation:32;
609 #elif defined (__BIG_ENDIAN_BITFIELD)
610         __u64                   generation:32,
611                                 replicas:4,
612                                 unused:22,
613                                 type:6;
614 #endif
615 };
616
617 union bch_extent_entry {
618 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ||  __BITS_PER_LONG == 64
619         unsigned long                   type;
620 #elif __BITS_PER_LONG == 32
621         struct {
622                 unsigned long           pad;
623                 unsigned long           type;
624         };
625 #else
626 #error edit for your odd byteorder.
627 #endif
628
629 #define x(f, n) struct bch_extent_##f   f;
630         BCH_EXTENT_ENTRY_TYPES()
631 #undef x
632 };
633
634 struct bch_btree_ptr {
635         struct bch_val          v;
636
637         __u64                   _data[0];
638         struct bch_extent_ptr   start[];
639 } __packed __aligned(8);
640
641 struct bch_btree_ptr_v2 {
642         struct bch_val          v;
643
644         __u64                   mem_ptr;
645         __le64                  seq;
646         __le16                  sectors_written;
647         __le16                  flags;
648         struct bpos             min_key;
649         __u64                   _data[0];
650         struct bch_extent_ptr   start[];
651 } __packed __aligned(8);
652
653 LE16_BITMASK(BTREE_PTR_RANGE_UPDATED,   struct bch_btree_ptr_v2, flags, 0, 1);
654
655 struct bch_extent {
656         struct bch_val          v;
657
658         __u64                   _data[0];
659         union bch_extent_entry  start[];
660 } __packed __aligned(8);
661
662 struct bch_reservation {
663         struct bch_val          v;
664
665         __le32                  generation;
666         __u8                    nr_replicas;
667         __u8                    pad[3];
668 } __packed __aligned(8);
669
670 /* Maximum size (in u64s) a single pointer could be: */
671 #define BKEY_EXTENT_PTR_U64s_MAX\
672         ((sizeof(struct bch_extent_crc128) +                    \
673           sizeof(struct bch_extent_ptr)) / sizeof(u64))
674
675 /* Maximum possible size of an entire extent value: */
676 #define BKEY_EXTENT_VAL_U64s_MAX                                \
677         (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
678
679 /* * Maximum possible size of an entire extent, key + value: */
680 #define BKEY_EXTENT_U64s_MAX            (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
681
682 /* Btree pointers don't carry around checksums: */
683 #define BKEY_BTREE_PTR_VAL_U64s_MAX                             \
684         ((sizeof(struct bch_btree_ptr_v2) +                     \
685           sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64))
686 #define BKEY_BTREE_PTR_U64s_MAX                                 \
687         (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
688
689 /* Inodes */
690
691 #define BLOCKDEV_INODE_MAX      4096
692
693 #define BCACHEFS_ROOT_INO       4096
694
695 struct bch_inode {
696         struct bch_val          v;
697
698         __le64                  bi_hash_seed;
699         __le32                  bi_flags;
700         __le16                  bi_mode;
701         __u8                    fields[0];
702 } __packed __aligned(8);
703
704 struct bch_inode_v2 {
705         struct bch_val          v;
706
707         __le64                  bi_journal_seq;
708         __le64                  bi_hash_seed;
709         __le64                  bi_flags;
710         __le16                  bi_mode;
711         __u8                    fields[0];
712 } __packed __aligned(8);
713
714 struct bch_inode_v3 {
715         struct bch_val          v;
716
717         __le64                  bi_journal_seq;
718         __le64                  bi_hash_seed;
719         __le64                  bi_flags;
720         __le64                  bi_sectors;
721         __le64                  bi_size;
722         __le64                  bi_version;
723         __u8                    fields[0];
724 } __packed __aligned(8);
725
726 #define INODEv3_FIELDS_START_INITIAL    6
727 #define INODEv3_FIELDS_START_CUR        (offsetof(struct bch_inode_v3, fields) / sizeof(u64))
728
729 struct bch_inode_generation {
730         struct bch_val          v;
731
732         __le32                  bi_generation;
733         __le32                  pad;
734 } __packed __aligned(8);
735
736 /*
737  * bi_subvol and bi_parent_subvol are only set for subvolume roots:
738  */
739
740 #define BCH_INODE_FIELDS_v2()                   \
741         x(bi_atime,                     96)     \
742         x(bi_ctime,                     96)     \
743         x(bi_mtime,                     96)     \
744         x(bi_otime,                     96)     \
745         x(bi_size,                      64)     \
746         x(bi_sectors,                   64)     \
747         x(bi_uid,                       32)     \
748         x(bi_gid,                       32)     \
749         x(bi_nlink,                     32)     \
750         x(bi_generation,                32)     \
751         x(bi_dev,                       32)     \
752         x(bi_data_checksum,             8)      \
753         x(bi_compression,               8)      \
754         x(bi_project,                   32)     \
755         x(bi_background_compression,    8)      \
756         x(bi_data_replicas,             8)      \
757         x(bi_promote_target,            16)     \
758         x(bi_foreground_target,         16)     \
759         x(bi_background_target,         16)     \
760         x(bi_erasure_code,              16)     \
761         x(bi_fields_set,                16)     \
762         x(bi_dir,                       64)     \
763         x(bi_dir_offset,                64)     \
764         x(bi_subvol,                    32)     \
765         x(bi_parent_subvol,             32)
766
767 #define BCH_INODE_FIELDS_v3()                   \
768         x(bi_atime,                     96)     \
769         x(bi_ctime,                     96)     \
770         x(bi_mtime,                     96)     \
771         x(bi_otime,                     96)     \
772         x(bi_uid,                       32)     \
773         x(bi_gid,                       32)     \
774         x(bi_nlink,                     32)     \
775         x(bi_generation,                32)     \
776         x(bi_dev,                       32)     \
777         x(bi_data_checksum,             8)      \
778         x(bi_compression,               8)      \
779         x(bi_project,                   32)     \
780         x(bi_background_compression,    8)      \
781         x(bi_data_replicas,             8)      \
782         x(bi_promote_target,            16)     \
783         x(bi_foreground_target,         16)     \
784         x(bi_background_target,         16)     \
785         x(bi_erasure_code,              16)     \
786         x(bi_fields_set,                16)     \
787         x(bi_dir,                       64)     \
788         x(bi_dir_offset,                64)     \
789         x(bi_subvol,                    32)     \
790         x(bi_parent_subvol,             32)     \
791         x(bi_nocow,                     8)
792
793 /* subset of BCH_INODE_FIELDS */
794 #define BCH_INODE_OPTS()                        \
795         x(data_checksum,                8)      \
796         x(compression,                  8)      \
797         x(project,                      32)     \
798         x(background_compression,       8)      \
799         x(data_replicas,                8)      \
800         x(promote_target,               16)     \
801         x(foreground_target,            16)     \
802         x(background_target,            16)     \
803         x(erasure_code,                 16)     \
804         x(nocow,                        8)
805
806 enum inode_opt_id {
807 #define x(name, ...)                            \
808         Inode_opt_##name,
809         BCH_INODE_OPTS()
810 #undef  x
811         Inode_opt_nr,
812 };
813
814 enum {
815         /*
816          * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
817          * flags)
818          */
819         __BCH_INODE_SYNC                = 0,
820         __BCH_INODE_IMMUTABLE           = 1,
821         __BCH_INODE_APPEND              = 2,
822         __BCH_INODE_NODUMP              = 3,
823         __BCH_INODE_NOATIME             = 4,
824
825         __BCH_INODE_I_SIZE_DIRTY        = 5,
826         __BCH_INODE_I_SECTORS_DIRTY     = 6,
827         __BCH_INODE_UNLINKED            = 7,
828         __BCH_INODE_BACKPTR_UNTRUSTED   = 8,
829
830         /* bits 20+ reserved for packed fields below: */
831 };
832
833 #define BCH_INODE_SYNC          (1 << __BCH_INODE_SYNC)
834 #define BCH_INODE_IMMUTABLE     (1 << __BCH_INODE_IMMUTABLE)
835 #define BCH_INODE_APPEND        (1 << __BCH_INODE_APPEND)
836 #define BCH_INODE_NODUMP        (1 << __BCH_INODE_NODUMP)
837 #define BCH_INODE_NOATIME       (1 << __BCH_INODE_NOATIME)
838 #define BCH_INODE_I_SIZE_DIRTY  (1 << __BCH_INODE_I_SIZE_DIRTY)
839 #define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
840 #define BCH_INODE_UNLINKED      (1 << __BCH_INODE_UNLINKED)
841 #define BCH_INODE_BACKPTR_UNTRUSTED (1 << __BCH_INODE_BACKPTR_UNTRUSTED)
842
843 LE32_BITMASK(INODE_STR_HASH,    struct bch_inode, bi_flags, 20, 24);
844 LE32_BITMASK(INODE_NR_FIELDS,   struct bch_inode, bi_flags, 24, 31);
845 LE32_BITMASK(INODE_NEW_VARINT,  struct bch_inode, bi_flags, 31, 32);
846
847 LE64_BITMASK(INODEv2_STR_HASH,  struct bch_inode_v2, bi_flags, 20, 24);
848 LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31);
849
850 LE64_BITMASK(INODEv3_STR_HASH,  struct bch_inode_v3, bi_flags, 20, 24);
851 LE64_BITMASK(INODEv3_NR_FIELDS, struct bch_inode_v3, bi_flags, 24, 31);
852
853 LE64_BITMASK(INODEv3_FIELDS_START,
854                                 struct bch_inode_v3, bi_flags, 31, 36);
855 LE64_BITMASK(INODEv3_MODE,      struct bch_inode_v3, bi_flags, 36, 52);
856
857 /* Dirents */
858
859 /*
860  * Dirents (and xattrs) have to implement string lookups; since our b-tree
861  * doesn't support arbitrary length strings for the key, we instead index by a
862  * 64 bit hash (currently truncated sha1) of the string, stored in the offset
863  * field of the key - using linear probing to resolve hash collisions. This also
864  * provides us with the readdir cookie posix requires.
865  *
866  * Linear probing requires us to use whiteouts for deletions, in the event of a
867  * collision:
868  */
869
870 struct bch_dirent {
871         struct bch_val          v;
872
873         /* Target inode number: */
874         union {
875         __le64                  d_inum;
876         struct {                /* DT_SUBVOL */
877         __le32                  d_child_subvol;
878         __le32                  d_parent_subvol;
879         };
880         };
881
882         /*
883          * Copy of mode bits 12-15 from the target inode - so userspace can get
884          * the filetype without having to do a stat()
885          */
886         __u8                    d_type;
887
888         __u8                    d_name[];
889 } __packed __aligned(8);
890
891 #define DT_SUBVOL       16
892 #define BCH_DT_MAX      17
893
894 #define BCH_NAME_MAX    ((unsigned) (U8_MAX * sizeof(u64) -             \
895                          sizeof(struct bkey) -                          \
896                          offsetof(struct bch_dirent, d_name)))
897
898 /* Xattrs */
899
900 #define KEY_TYPE_XATTR_INDEX_USER                       0
901 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS   1
902 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT  2
903 #define KEY_TYPE_XATTR_INDEX_TRUSTED                    3
904 #define KEY_TYPE_XATTR_INDEX_SECURITY           4
905
906 struct bch_xattr {
907         struct bch_val          v;
908         __u8                    x_type;
909         __u8                    x_name_len;
910         __le16                  x_val_len;
911         __u8                    x_name[];
912 } __packed __aligned(8);
913
914 /* Bucket/allocation information: */
915
916 struct bch_alloc {
917         struct bch_val          v;
918         __u8                    fields;
919         __u8                    gen;
920         __u8                    data[];
921 } __packed __aligned(8);
922
923 #define BCH_ALLOC_FIELDS_V1()                   \
924         x(read_time,            16)             \
925         x(write_time,           16)             \
926         x(data_type,            8)              \
927         x(dirty_sectors,        16)             \
928         x(cached_sectors,       16)             \
929         x(oldest_gen,           8)              \
930         x(stripe,               32)             \
931         x(stripe_redundancy,    8)
932
933 enum {
934 #define x(name, _bits) BCH_ALLOC_FIELD_V1_##name,
935         BCH_ALLOC_FIELDS_V1()
936 #undef x
937 };
938
939 struct bch_alloc_v2 {
940         struct bch_val          v;
941         __u8                    nr_fields;
942         __u8                    gen;
943         __u8                    oldest_gen;
944         __u8                    data_type;
945         __u8                    data[];
946 } __packed __aligned(8);
947
948 #define BCH_ALLOC_FIELDS_V2()                   \
949         x(read_time,            64)             \
950         x(write_time,           64)             \
951         x(dirty_sectors,        32)             \
952         x(cached_sectors,       32)             \
953         x(stripe,               32)             \
954         x(stripe_redundancy,    8)
955
956 struct bch_alloc_v3 {
957         struct bch_val          v;
958         __le64                  journal_seq;
959         __le32                  flags;
960         __u8                    nr_fields;
961         __u8                    gen;
962         __u8                    oldest_gen;
963         __u8                    data_type;
964         __u8                    data[];
965 } __packed __aligned(8);
966
967 LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags,  0,  1)
968 LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags,  1,  2)
969
970 struct bch_alloc_v4 {
971         struct bch_val          v;
972         __u64                   journal_seq;
973         __u32                   flags;
974         __u8                    gen;
975         __u8                    oldest_gen;
976         __u8                    data_type;
977         __u8                    stripe_redundancy;
978         __u32                   dirty_sectors;
979         __u32                   cached_sectors;
980         __u64                   io_time[2];
981         __u32                   stripe;
982         __u32                   nr_external_backpointers;
983         __u64                   fragmentation_lru;
984 } __packed __aligned(8);
985
986 #define BCH_ALLOC_V4_U64s_V0    6
987 #define BCH_ALLOC_V4_U64s       (sizeof(struct bch_alloc_v4) / sizeof(u64))
988
989 BITMASK(BCH_ALLOC_V4_NEED_DISCARD,      struct bch_alloc_v4, flags,  0,  1)
990 BITMASK(BCH_ALLOC_V4_NEED_INC_GEN,      struct bch_alloc_v4, flags,  1,  2)
991 BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags,  2,  8)
992 BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS,   struct bch_alloc_v4, flags,  8,  14)
993
994 #define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX        40
995
996 struct bch_backpointer {
997         struct bch_val          v;
998         __u8                    btree_id;
999         __u8                    level;
1000         __u8                    data_type;
1001         __u64                   bucket_offset:40;
1002         __u32                   bucket_len;
1003         struct bpos             pos;
1004 } __packed __aligned(8);
1005
1006 #define KEY_TYPE_BUCKET_GENS_BITS       8
1007 #define KEY_TYPE_BUCKET_GENS_NR         (1U << KEY_TYPE_BUCKET_GENS_BITS)
1008 #define KEY_TYPE_BUCKET_GENS_MASK       (KEY_TYPE_BUCKET_GENS_NR - 1)
1009
1010 struct bch_bucket_gens {
1011         struct bch_val          v;
1012         u8                      gens[KEY_TYPE_BUCKET_GENS_NR];
1013 } __packed __aligned(8);
1014
1015 /* Quotas: */
1016
1017 enum quota_types {
1018         QTYP_USR                = 0,
1019         QTYP_GRP                = 1,
1020         QTYP_PRJ                = 2,
1021         QTYP_NR                 = 3,
1022 };
1023
1024 enum quota_counters {
1025         Q_SPC                   = 0,
1026         Q_INO                   = 1,
1027         Q_COUNTERS              = 2,
1028 };
1029
1030 struct bch_quota_counter {
1031         __le64                  hardlimit;
1032         __le64                  softlimit;
1033 };
1034
1035 struct bch_quota {
1036         struct bch_val          v;
1037         struct bch_quota_counter c[Q_COUNTERS];
1038 } __packed __aligned(8);
1039
1040 /* Erasure coding */
1041
1042 struct bch_stripe {
1043         struct bch_val          v;
1044         __le16                  sectors;
1045         __u8                    algorithm;
1046         __u8                    nr_blocks;
1047         __u8                    nr_redundant;
1048
1049         __u8                    csum_granularity_bits;
1050         __u8                    csum_type;
1051         __u8                    pad;
1052
1053         struct bch_extent_ptr   ptrs[];
1054 } __packed __aligned(8);
1055
1056 /* Reflink: */
1057
1058 struct bch_reflink_p {
1059         struct bch_val          v;
1060         __le64                  idx;
1061         /*
1062          * A reflink pointer might point to an indirect extent which is then
1063          * later split (by copygc or rebalance). If we only pointed to part of
1064          * the original indirect extent, and then one of the fragments is
1065          * outside the range we point to, we'd leak a refcount: so when creating
1066          * reflink pointers, we need to store pad values to remember the full
1067          * range we were taking a reference on.
1068          */
1069         __le32                  front_pad;
1070         __le32                  back_pad;
1071 } __packed __aligned(8);
1072
1073 struct bch_reflink_v {
1074         struct bch_val          v;
1075         __le64                  refcount;
1076         union bch_extent_entry  start[0];
1077         __u64                   _data[0];
1078 } __packed __aligned(8);
1079
1080 struct bch_indirect_inline_data {
1081         struct bch_val          v;
1082         __le64                  refcount;
1083         u8                      data[0];
1084 };
1085
1086 /* Inline data */
1087
1088 struct bch_inline_data {
1089         struct bch_val          v;
1090         u8                      data[0];
1091 };
1092
1093 /* Subvolumes: */
1094
1095 #define SUBVOL_POS_MIN          POS(0, 1)
1096 #define SUBVOL_POS_MAX          POS(0, S32_MAX)
1097 #define BCACHEFS_ROOT_SUBVOL    1
1098
1099 struct bch_subvolume {
1100         struct bch_val          v;
1101         __le32                  flags;
1102         __le32                  snapshot;
1103         __le64                  inode;
1104 };
1105
1106 LE32_BITMASK(BCH_SUBVOLUME_RO,          struct bch_subvolume, flags,  0,  1)
1107 /*
1108  * We need to know whether a subvolume is a snapshot so we can know whether we
1109  * can delete it (or whether it should just be rm -rf'd)
1110  */
1111 LE32_BITMASK(BCH_SUBVOLUME_SNAP,        struct bch_subvolume, flags,  1,  2)
1112 LE32_BITMASK(BCH_SUBVOLUME_UNLINKED,    struct bch_subvolume, flags,  2,  3)
1113
1114 /* Snapshots */
1115
1116 struct bch_snapshot {
1117         struct bch_val          v;
1118         __le32                  flags;
1119         __le32                  parent;
1120         __le32                  children[2];
1121         __le32                  subvol;
1122         __le32                  pad;
1123 };
1124
1125 LE32_BITMASK(BCH_SNAPSHOT_DELETED,      struct bch_snapshot, flags,  0,  1)
1126
1127 /* True if a subvolume points to this snapshot node: */
1128 LE32_BITMASK(BCH_SNAPSHOT_SUBVOL,       struct bch_snapshot, flags,  1,  2)
1129
1130 /* LRU btree: */
1131
1132 struct bch_lru {
1133         struct bch_val          v;
1134         __le64                  idx;
1135 } __packed __aligned(8);
1136
1137 #define LRU_ID_STRIPES          (1U << 16)
1138
1139 /* Optional/variable size superblock sections: */
1140
1141 struct bch_sb_field {
1142         __u64                   _data[0];
1143         __le32                  u64s;
1144         __le32                  type;
1145 };
1146
1147 #define BCH_SB_FIELDS()                         \
1148         x(journal,      0)                      \
1149         x(members,      1)                      \
1150         x(crypt,        2)                      \
1151         x(replicas_v0,  3)                      \
1152         x(quota,        4)                      \
1153         x(disk_groups,  5)                      \
1154         x(clean,        6)                      \
1155         x(replicas,     7)                      \
1156         x(journal_seq_blacklist, 8)             \
1157         x(journal_v2,   9)                      \
1158         x(counters,     10)
1159
1160 enum bch_sb_field_type {
1161 #define x(f, nr)        BCH_SB_FIELD_##f = nr,
1162         BCH_SB_FIELDS()
1163 #undef x
1164         BCH_SB_FIELD_NR
1165 };
1166
1167 /*
1168  * Most superblock fields are replicated in all device's superblocks - a few are
1169  * not:
1170  */
1171 #define BCH_SINGLE_DEVICE_SB_FIELDS             \
1172         ((1U << BCH_SB_FIELD_journal)|          \
1173          (1U << BCH_SB_FIELD_journal_v2))
1174
1175 /* BCH_SB_FIELD_journal: */
1176
1177 struct bch_sb_field_journal {
1178         struct bch_sb_field     field;
1179         __le64                  buckets[0];
1180 };
1181
1182 struct bch_sb_field_journal_v2 {
1183         struct bch_sb_field     field;
1184
1185         struct bch_sb_field_journal_v2_entry {
1186                 __le64          start;
1187                 __le64          nr;
1188         }                       d[0];
1189 };
1190
1191 /* BCH_SB_FIELD_members: */
1192
1193 #define BCH_MIN_NR_NBUCKETS     (1 << 6)
1194
1195 struct bch_member {
1196         uuid_le                 uuid;
1197         __le64                  nbuckets;       /* device size */
1198         __le16                  first_bucket;   /* index of first bucket used */
1199         __le16                  bucket_size;    /* sectors */
1200         __le32                  pad;
1201         __le64                  last_mount;     /* time_t */
1202
1203         __le64                  flags[2];
1204 };
1205
1206 LE64_BITMASK(BCH_MEMBER_STATE,          struct bch_member, flags[0],  0,  4)
1207 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
1208 LE64_BITMASK(BCH_MEMBER_DISCARD,        struct bch_member, flags[0], 14, 15)
1209 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED,   struct bch_member, flags[0], 15, 20)
1210 LE64_BITMASK(BCH_MEMBER_GROUP,          struct bch_member, flags[0], 20, 28)
1211 LE64_BITMASK(BCH_MEMBER_DURABILITY,     struct bch_member, flags[0], 28, 30)
1212 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
1213                                         struct bch_member, flags[0], 30, 31)
1214
1215 #if 0
1216 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0,  20);
1217 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
1218 #endif
1219
1220 #define BCH_MEMBER_STATES()                     \
1221         x(rw,           0)                      \
1222         x(ro,           1)                      \
1223         x(failed,       2)                      \
1224         x(spare,        3)
1225
1226 enum bch_member_state {
1227 #define x(t, n) BCH_MEMBER_STATE_##t = n,
1228         BCH_MEMBER_STATES()
1229 #undef x
1230         BCH_MEMBER_STATE_NR
1231 };
1232
1233 struct bch_sb_field_members {
1234         struct bch_sb_field     field;
1235         struct bch_member       members[0];
1236 };
1237
1238 /* BCH_SB_FIELD_crypt: */
1239
1240 struct nonce {
1241         __le32                  d[4];
1242 };
1243
1244 struct bch_key {
1245         __le64                  key[4];
1246 };
1247
1248 #define BCH_KEY_MAGIC                                   \
1249         (((u64) 'b' <<  0)|((u64) 'c' <<  8)|           \
1250          ((u64) 'h' << 16)|((u64) '*' << 24)|           \
1251          ((u64) '*' << 32)|((u64) 'k' << 40)|           \
1252          ((u64) 'e' << 48)|((u64) 'y' << 56))
1253
1254 struct bch_encrypted_key {
1255         __le64                  magic;
1256         struct bch_key          key;
1257 };
1258
1259 /*
1260  * If this field is present in the superblock, it stores an encryption key which
1261  * is used encrypt all other data/metadata. The key will normally be encrypted
1262  * with the key userspace provides, but if encryption has been turned off we'll
1263  * just store the master key unencrypted in the superblock so we can access the
1264  * previously encrypted data.
1265  */
1266 struct bch_sb_field_crypt {
1267         struct bch_sb_field     field;
1268
1269         __le64                  flags;
1270         __le64                  kdf_flags;
1271         struct bch_encrypted_key key;
1272 };
1273
1274 LE64_BITMASK(BCH_CRYPT_KDF_TYPE,        struct bch_sb_field_crypt, flags, 0, 4);
1275
1276 enum bch_kdf_types {
1277         BCH_KDF_SCRYPT          = 0,
1278         BCH_KDF_NR              = 1,
1279 };
1280
1281 /* stored as base 2 log of scrypt params: */
1282 LE64_BITMASK(BCH_KDF_SCRYPT_N,  struct bch_sb_field_crypt, kdf_flags,  0, 16);
1283 LE64_BITMASK(BCH_KDF_SCRYPT_R,  struct bch_sb_field_crypt, kdf_flags, 16, 32);
1284 LE64_BITMASK(BCH_KDF_SCRYPT_P,  struct bch_sb_field_crypt, kdf_flags, 32, 48);
1285
1286 /* BCH_SB_FIELD_replicas: */
1287
1288 #define BCH_DATA_TYPES()                \
1289         x(free,         0)              \
1290         x(sb,           1)              \
1291         x(journal,      2)              \
1292         x(btree,        3)              \
1293         x(user,         4)              \
1294         x(cached,       5)              \
1295         x(parity,       6)              \
1296         x(stripe,       7)              \
1297         x(need_gc_gens, 8)              \
1298         x(need_discard, 9)
1299
1300 enum bch_data_type {
1301 #define x(t, n) BCH_DATA_##t,
1302         BCH_DATA_TYPES()
1303 #undef x
1304         BCH_DATA_NR
1305 };
1306
1307 static inline bool data_type_is_empty(enum bch_data_type type)
1308 {
1309         switch (type) {
1310         case BCH_DATA_free:
1311         case BCH_DATA_need_gc_gens:
1312         case BCH_DATA_need_discard:
1313                 return true;
1314         default:
1315                 return false;
1316         }
1317 }
1318
1319 static inline bool data_type_is_hidden(enum bch_data_type type)
1320 {
1321         switch (type) {
1322         case BCH_DATA_sb:
1323         case BCH_DATA_journal:
1324                 return true;
1325         default:
1326                 return false;
1327         }
1328 }
1329
1330 struct bch_replicas_entry_v0 {
1331         __u8                    data_type;
1332         __u8                    nr_devs;
1333         __u8                    devs[];
1334 } __packed;
1335
1336 struct bch_sb_field_replicas_v0 {
1337         struct bch_sb_field     field;
1338         struct bch_replicas_entry_v0 entries[];
1339 } __packed __aligned(8);
1340
1341 struct bch_replicas_entry {
1342         __u8                    data_type;
1343         __u8                    nr_devs;
1344         __u8                    nr_required;
1345         __u8                    devs[];
1346 } __packed;
1347
1348 #define replicas_entry_bytes(_i)                                        \
1349         (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
1350
1351 struct bch_sb_field_replicas {
1352         struct bch_sb_field     field;
1353         struct bch_replicas_entry entries[];
1354 } __packed __aligned(8);
1355
1356 /* BCH_SB_FIELD_quota: */
1357
1358 struct bch_sb_quota_counter {
1359         __le32                          timelimit;
1360         __le32                          warnlimit;
1361 };
1362
1363 struct bch_sb_quota_type {
1364         __le64                          flags;
1365         struct bch_sb_quota_counter     c[Q_COUNTERS];
1366 };
1367
1368 struct bch_sb_field_quota {
1369         struct bch_sb_field             field;
1370         struct bch_sb_quota_type        q[QTYP_NR];
1371 } __packed __aligned(8);
1372
1373 /* BCH_SB_FIELD_disk_groups: */
1374
1375 #define BCH_SB_LABEL_SIZE               32
1376
1377 struct bch_disk_group {
1378         __u8                    label[BCH_SB_LABEL_SIZE];
1379         __le64                  flags[2];
1380 } __packed __aligned(8);
1381
1382 LE64_BITMASK(BCH_GROUP_DELETED,         struct bch_disk_group, flags[0], 0,  1)
1383 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED,    struct bch_disk_group, flags[0], 1,  6)
1384 LE64_BITMASK(BCH_GROUP_PARENT,          struct bch_disk_group, flags[0], 6, 24)
1385
1386 struct bch_sb_field_disk_groups {
1387         struct bch_sb_field     field;
1388         struct bch_disk_group   entries[0];
1389 } __packed __aligned(8);
1390
1391 /* BCH_SB_FIELD_counters */
1392
1393 #define BCH_PERSISTENT_COUNTERS()                               \
1394         x(io_read,                                      0)      \
1395         x(io_write,                                     1)      \
1396         x(io_move,                                      2)      \
1397         x(bucket_invalidate,                            3)      \
1398         x(bucket_discard,                               4)      \
1399         x(bucket_alloc,                                 5)      \
1400         x(bucket_alloc_fail,                            6)      \
1401         x(btree_cache_scan,                             7)      \
1402         x(btree_cache_reap,                             8)      \
1403         x(btree_cache_cannibalize,                      9)      \
1404         x(btree_cache_cannibalize_lock,                 10)     \
1405         x(btree_cache_cannibalize_lock_fail,            11)     \
1406         x(btree_cache_cannibalize_unlock,               12)     \
1407         x(btree_node_write,                             13)     \
1408         x(btree_node_read,                              14)     \
1409         x(btree_node_compact,                           15)     \
1410         x(btree_node_merge,                             16)     \
1411         x(btree_node_split,                             17)     \
1412         x(btree_node_rewrite,                           18)     \
1413         x(btree_node_alloc,                             19)     \
1414         x(btree_node_free,                              20)     \
1415         x(btree_node_set_root,                          21)     \
1416         x(btree_path_relock_fail,                       22)     \
1417         x(btree_path_upgrade_fail,                      23)     \
1418         x(btree_reserve_get_fail,                       24)     \
1419         x(journal_entry_full,                           25)     \
1420         x(journal_full,                                 26)     \
1421         x(journal_reclaim_finish,                       27)     \
1422         x(journal_reclaim_start,                        28)     \
1423         x(journal_write,                                29)     \
1424         x(read_promote,                                 30)     \
1425         x(read_bounce,                                  31)     \
1426         x(read_split,                                   33)     \
1427         x(read_retry,                                   32)     \
1428         x(read_reuse_race,                              34)     \
1429         x(move_extent_read,                             35)     \
1430         x(move_extent_write,                            36)     \
1431         x(move_extent_finish,                           37)     \
1432         x(move_extent_fail,                             38)     \
1433         x(move_extent_alloc_mem_fail,                   39)     \
1434         x(copygc,                                       40)     \
1435         x(copygc_wait,                                  41)     \
1436         x(gc_gens_end,                                  42)     \
1437         x(gc_gens_start,                                43)     \
1438         x(trans_blocked_journal_reclaim,                44)     \
1439         x(trans_restart_btree_node_reused,              45)     \
1440         x(trans_restart_btree_node_split,               46)     \
1441         x(trans_restart_fault_inject,                   47)     \
1442         x(trans_restart_iter_upgrade,                   48)     \
1443         x(trans_restart_journal_preres_get,             49)     \
1444         x(trans_restart_journal_reclaim,                50)     \
1445         x(trans_restart_journal_res_get,                51)     \
1446         x(trans_restart_key_cache_key_realloced,        52)     \
1447         x(trans_restart_key_cache_raced,                53)     \
1448         x(trans_restart_mark_replicas,                  54)     \
1449         x(trans_restart_mem_realloced,                  55)     \
1450         x(trans_restart_memory_allocation_failure,      56)     \
1451         x(trans_restart_relock,                         57)     \
1452         x(trans_restart_relock_after_fill,              58)     \
1453         x(trans_restart_relock_key_cache_fill,          59)     \
1454         x(trans_restart_relock_next_node,               60)     \
1455         x(trans_restart_relock_parent_for_fill,         61)     \
1456         x(trans_restart_relock_path,                    62)     \
1457         x(trans_restart_relock_path_intent,             63)     \
1458         x(trans_restart_too_many_iters,                 64)     \
1459         x(trans_restart_traverse,                       65)     \
1460         x(trans_restart_upgrade,                        66)     \
1461         x(trans_restart_would_deadlock,                 67)     \
1462         x(trans_restart_would_deadlock_write,           68)     \
1463         x(trans_restart_injected,                       69)     \
1464         x(trans_restart_key_cache_upgrade,              70)     \
1465         x(trans_traverse_all,                           71)     \
1466         x(transaction_commit,                           72)     \
1467         x(write_super,                                  73)     \
1468         x(trans_restart_would_deadlock_recursion_limit, 74)     \
1469         x(trans_restart_write_buffer_flush,             75)     \
1470         x(trans_restart_split_race,                     76)
1471
1472 enum bch_persistent_counters {
1473 #define x(t, n, ...) BCH_COUNTER_##t,
1474         BCH_PERSISTENT_COUNTERS()
1475 #undef x
1476         BCH_COUNTER_NR
1477 };
1478
1479 struct bch_sb_field_counters {
1480         struct bch_sb_field     field;
1481         __le64                  d[0];
1482 };
1483
1484 /*
1485  * On clean shutdown, store btree roots and current journal sequence number in
1486  * the superblock:
1487  */
1488 struct jset_entry {
1489         __le16                  u64s;
1490         __u8                    btree_id;
1491         __u8                    level;
1492         __u8                    type; /* designates what this jset holds */
1493         __u8                    pad[3];
1494
1495         union {
1496                 struct bkey_i   start[0];
1497                 __u64           _data[0];
1498         };
1499 };
1500
1501 struct bch_sb_field_clean {
1502         struct bch_sb_field     field;
1503
1504         __le32                  flags;
1505         __le16                  _read_clock; /* no longer used */
1506         __le16                  _write_clock;
1507         __le64                  journal_seq;
1508
1509         union {
1510                 struct jset_entry start[0];
1511                 __u64           _data[0];
1512         };
1513 };
1514
1515 struct journal_seq_blacklist_entry {
1516         __le64                  start;
1517         __le64                  end;
1518 };
1519
1520 struct bch_sb_field_journal_seq_blacklist {
1521         struct bch_sb_field     field;
1522
1523         union {
1524                 struct journal_seq_blacklist_entry start[0];
1525                 __u64           _data[0];
1526         };
1527 };
1528
1529 /* Superblock: */
1530
1531 /*
1532  * New versioning scheme:
1533  * One common version number for all on disk data structures - superblock, btree
1534  * nodes, journal entries
1535  */
1536 #define BCH_JSET_VERSION_OLD                    2
1537 #define BCH_BSET_VERSION_OLD                    3
1538
1539 #define BCH_METADATA_VERSIONS()                         \
1540         x(bkey_renumber,                10)             \
1541         x(inode_btree_change,           11)             \
1542         x(snapshot,                     12)             \
1543         x(inode_backpointers,           13)             \
1544         x(btree_ptr_sectors_written,    14)             \
1545         x(snapshot_2,                   15)             \
1546         x(reflink_p_fix,                16)             \
1547         x(subvol_dirent,                17)             \
1548         x(inode_v2,                     18)             \
1549         x(freespace,                    19)             \
1550         x(alloc_v4,                     20)             \
1551         x(new_data_types,               21)             \
1552         x(backpointers,                 22)             \
1553         x(inode_v3,                     23)             \
1554         x(unwritten_extents,            24)             \
1555         x(bucket_gens,                  25)             \
1556         x(lru_v2,                       26)             \
1557         x(fragmentation_lru,            27)
1558
1559 enum bcachefs_metadata_version {
1560         bcachefs_metadata_version_min = 9,
1561 #define x(t, n) bcachefs_metadata_version_##t = n,
1562         BCH_METADATA_VERSIONS()
1563 #undef x
1564         bcachefs_metadata_version_max
1565 };
1566
1567 #define bcachefs_metadata_version_current       (bcachefs_metadata_version_max - 1)
1568
1569 #define BCH_SB_SECTOR                   8
1570 #define BCH_SB_MEMBERS_MAX              64 /* XXX kill */
1571
1572 struct bch_sb_layout {
1573         uuid_le                 magic;  /* bcachefs superblock UUID */
1574         __u8                    layout_type;
1575         __u8                    sb_max_size_bits; /* base 2 of 512 byte sectors */
1576         __u8                    nr_superblocks;
1577         __u8                    pad[5];
1578         __le64                  sb_offset[61];
1579 } __packed __aligned(8);
1580
1581 #define BCH_SB_LAYOUT_SECTOR    7
1582
1583 /*
1584  * @offset      - sector where this sb was written
1585  * @version     - on disk format version
1586  * @version_min - Oldest metadata version this filesystem contains; so we can
1587  *                safely drop compatibility code and refuse to mount filesystems
1588  *                we'd need it for
1589  * @magic       - identifies as a bcachefs superblock (BCHFS_MAGIC)
1590  * @seq         - incremented each time superblock is written
1591  * @uuid        - used for generating various magic numbers and identifying
1592  *                member devices, never changes
1593  * @user_uuid   - user visible UUID, may be changed
1594  * @label       - filesystem label
1595  * @seq         - identifies most recent superblock, incremented each time
1596  *                superblock is written
1597  * @features    - enabled incompatible features
1598  */
1599 struct bch_sb {
1600         struct bch_csum         csum;
1601         __le16                  version;
1602         __le16                  version_min;
1603         __le16                  pad[2];
1604         uuid_le                 magic;
1605         uuid_le                 uuid;
1606         uuid_le                 user_uuid;
1607         __u8                    label[BCH_SB_LABEL_SIZE];
1608         __le64                  offset;
1609         __le64                  seq;
1610
1611         __le16                  block_size;
1612         __u8                    dev_idx;
1613         __u8                    nr_devices;
1614         __le32                  u64s;
1615
1616         __le64                  time_base_lo;
1617         __le32                  time_base_hi;
1618         __le32                  time_precision;
1619
1620         __le64                  flags[8];
1621         __le64                  features[2];
1622         __le64                  compat[2];
1623
1624         struct bch_sb_layout    layout;
1625
1626         union {
1627                 struct bch_sb_field start[0];
1628                 __le64          _data[0];
1629         };
1630 } __packed __aligned(8);
1631
1632 /*
1633  * Flags:
1634  * BCH_SB_INITALIZED    - set on first mount
1635  * BCH_SB_CLEAN         - did we shut down cleanly? Just a hint, doesn't affect
1636  *                        behaviour of mount/recovery path:
1637  * BCH_SB_INODE_32BIT   - limit inode numbers to 32 bits
1638  * BCH_SB_128_BIT_MACS  - 128 bit macs instead of 80
1639  * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
1640  *                         DATA/META_CSUM_TYPE. Also indicates encryption
1641  *                         algorithm in use, if/when we get more than one
1642  */
1643
1644 LE16_BITMASK(BCH_SB_BLOCK_SIZE,         struct bch_sb, block_size, 0, 16);
1645
1646 LE64_BITMASK(BCH_SB_INITIALIZED,        struct bch_sb, flags[0],  0,  1);
1647 LE64_BITMASK(BCH_SB_CLEAN,              struct bch_sb, flags[0],  1,  2);
1648 LE64_BITMASK(BCH_SB_CSUM_TYPE,          struct bch_sb, flags[0],  2,  8);
1649 LE64_BITMASK(BCH_SB_ERROR_ACTION,       struct bch_sb, flags[0],  8, 12);
1650
1651 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE,    struct bch_sb, flags[0], 12, 28);
1652
1653 LE64_BITMASK(BCH_SB_GC_RESERVE,         struct bch_sb, flags[0], 28, 33);
1654 LE64_BITMASK(BCH_SB_ROOT_RESERVE,       struct bch_sb, flags[0], 33, 40);
1655
1656 LE64_BITMASK(BCH_SB_META_CSUM_TYPE,     struct bch_sb, flags[0], 40, 44);
1657 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE,     struct bch_sb, flags[0], 44, 48);
1658
1659 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
1660 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
1661
1662 LE64_BITMASK(BCH_SB_POSIX_ACL,          struct bch_sb, flags[0], 56, 57);
1663 LE64_BITMASK(BCH_SB_USRQUOTA,           struct bch_sb, flags[0], 57, 58);
1664 LE64_BITMASK(BCH_SB_GRPQUOTA,           struct bch_sb, flags[0], 58, 59);
1665 LE64_BITMASK(BCH_SB_PRJQUOTA,           struct bch_sb, flags[0], 59, 60);
1666
1667 LE64_BITMASK(BCH_SB_HAS_ERRORS,         struct bch_sb, flags[0], 60, 61);
1668 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
1669
1670 LE64_BITMASK(BCH_SB_BIG_ENDIAN,         struct bch_sb, flags[0], 62, 63);
1671
1672 LE64_BITMASK(BCH_SB_STR_HASH_TYPE,      struct bch_sb, flags[1],  0,  4);
1673 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE,   struct bch_sb, flags[1],  4,  8);
1674 LE64_BITMASK(BCH_SB_INODE_32BIT,        struct bch_sb, flags[1],  8,  9);
1675
1676 LE64_BITMASK(BCH_SB_128_BIT_MACS,       struct bch_sb, flags[1],  9, 10);
1677 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE,    struct bch_sb, flags[1], 10, 14);
1678
1679 /*
1680  * Max size of an extent that may require bouncing to read or write
1681  * (checksummed, compressed): 64k
1682  */
1683 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1684                                         struct bch_sb, flags[1], 14, 20);
1685
1686 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ,  struct bch_sb, flags[1], 20, 24);
1687 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ,  struct bch_sb, flags[1], 24, 28);
1688
1689 LE64_BITMASK(BCH_SB_PROMOTE_TARGET,     struct bch_sb, flags[1], 28, 40);
1690 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET,  struct bch_sb, flags[1], 40, 52);
1691 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET,  struct bch_sb, flags[1], 52, 64);
1692
1693 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE,
1694                                         struct bch_sb, flags[2],  0,  4);
1695 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES,   struct bch_sb, flags[2],  4, 64);
1696
1697 LE64_BITMASK(BCH_SB_ERASURE_CODE,       struct bch_sb, flags[3],  0, 16);
1698 LE64_BITMASK(BCH_SB_METADATA_TARGET,    struct bch_sb, flags[3], 16, 28);
1699 LE64_BITMASK(BCH_SB_SHARD_INUMS,        struct bch_sb, flags[3], 28, 29);
1700 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
1701 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1702 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1703 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
1704 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
1705 LE64_BITMASK(BCH_SB_NOCOW,              struct bch_sb, flags[4], 33, 34);
1706 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE,  struct bch_sb, flags[4], 34, 54);
1707
1708 /*
1709  * Features:
1710  *
1711  * journal_seq_blacklist_v3:    gates BCH_SB_FIELD_journal_seq_blacklist
1712  * reflink:                     gates KEY_TYPE_reflink
1713  * inline_data:                 gates KEY_TYPE_inline_data
1714  * new_siphash:                 gates BCH_STR_HASH_siphash
1715  * new_extent_overwrite:        gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1716  */
1717 #define BCH_SB_FEATURES()                       \
1718         x(lz4,                          0)      \
1719         x(gzip,                         1)      \
1720         x(zstd,                         2)      \
1721         x(atomic_nlink,                 3)      \
1722         x(ec,                           4)      \
1723         x(journal_seq_blacklist_v3,     5)      \
1724         x(reflink,                      6)      \
1725         x(new_siphash,                  7)      \
1726         x(inline_data,                  8)      \
1727         x(new_extent_overwrite,         9)      \
1728         x(incompressible,               10)     \
1729         x(btree_ptr_v2,                 11)     \
1730         x(extents_above_btree_updates,  12)     \
1731         x(btree_updates_journalled,     13)     \
1732         x(reflink_inline_data,          14)     \
1733         x(new_varint,                   15)     \
1734         x(journal_no_flush,             16)     \
1735         x(alloc_v2,                     17)     \
1736         x(extents_across_btree_nodes,   18)
1737
1738 #define BCH_SB_FEATURES_ALWAYS                          \
1739         ((1ULL << BCH_FEATURE_new_extent_overwrite)|    \
1740          (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1741          (1ULL << BCH_FEATURE_btree_updates_journalled)|\
1742          (1ULL << BCH_FEATURE_alloc_v2)|\
1743          (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1744
1745 #define BCH_SB_FEATURES_ALL                             \
1746         (BCH_SB_FEATURES_ALWAYS|                        \
1747          (1ULL << BCH_FEATURE_new_siphash)|             \
1748          (1ULL << BCH_FEATURE_btree_ptr_v2)|            \
1749          (1ULL << BCH_FEATURE_new_varint)|              \
1750          (1ULL << BCH_FEATURE_journal_no_flush))
1751
1752 enum bch_sb_feature {
1753 #define x(f, n) BCH_FEATURE_##f,
1754         BCH_SB_FEATURES()
1755 #undef x
1756         BCH_FEATURE_NR,
1757 };
1758
1759 #define BCH_SB_COMPAT()                                 \
1760         x(alloc_info,                           0)      \
1761         x(alloc_metadata,                       1)      \
1762         x(extents_above_btree_updates_done,     2)      \
1763         x(bformat_overflow_done,                3)
1764
1765 enum bch_sb_compat {
1766 #define x(f, n) BCH_COMPAT_##f,
1767         BCH_SB_COMPAT()
1768 #undef x
1769         BCH_COMPAT_NR,
1770 };
1771
1772 /* options: */
1773
1774 #define BCH_REPLICAS_MAX                4U
1775
1776 #define BCH_BKEY_PTRS_MAX               16U
1777
1778 #define BCH_ERROR_ACTIONS()             \
1779         x(continue,             0)      \
1780         x(ro,                   1)      \
1781         x(panic,                2)
1782
1783 enum bch_error_actions {
1784 #define x(t, n) BCH_ON_ERROR_##t = n,
1785         BCH_ERROR_ACTIONS()
1786 #undef x
1787         BCH_ON_ERROR_NR
1788 };
1789
1790 #define BCH_STR_HASH_TYPES()            \
1791         x(crc32c,               0)      \
1792         x(crc64,                1)      \
1793         x(siphash_old,          2)      \
1794         x(siphash,              3)
1795
1796 enum bch_str_hash_type {
1797 #define x(t, n) BCH_STR_HASH_##t = n,
1798         BCH_STR_HASH_TYPES()
1799 #undef x
1800         BCH_STR_HASH_NR
1801 };
1802
1803 #define BCH_STR_HASH_OPTS()             \
1804         x(crc32c,               0)      \
1805         x(crc64,                1)      \
1806         x(siphash,              2)
1807
1808 enum bch_str_hash_opts {
1809 #define x(t, n) BCH_STR_HASH_OPT_##t = n,
1810         BCH_STR_HASH_OPTS()
1811 #undef x
1812         BCH_STR_HASH_OPT_NR
1813 };
1814
1815 #define BCH_CSUM_TYPES()                        \
1816         x(none,                         0)      \
1817         x(crc32c_nonzero,               1)      \
1818         x(crc64_nonzero,                2)      \
1819         x(chacha20_poly1305_80,         3)      \
1820         x(chacha20_poly1305_128,        4)      \
1821         x(crc32c,                       5)      \
1822         x(crc64,                        6)      \
1823         x(xxhash,                       7)
1824
1825 enum bch_csum_type {
1826 #define x(t, n) BCH_CSUM_##t = n,
1827         BCH_CSUM_TYPES()
1828 #undef x
1829         BCH_CSUM_NR
1830 };
1831
1832 static const unsigned bch_crc_bytes[] = {
1833         [BCH_CSUM_none]                         = 0,
1834         [BCH_CSUM_crc32c_nonzero]               = 4,
1835         [BCH_CSUM_crc32c]                       = 4,
1836         [BCH_CSUM_crc64_nonzero]                = 8,
1837         [BCH_CSUM_crc64]                        = 8,
1838         [BCH_CSUM_xxhash]                       = 8,
1839         [BCH_CSUM_chacha20_poly1305_80]         = 10,
1840         [BCH_CSUM_chacha20_poly1305_128]        = 16,
1841 };
1842
1843 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1844 {
1845         switch (type) {
1846         case BCH_CSUM_chacha20_poly1305_80:
1847         case BCH_CSUM_chacha20_poly1305_128:
1848                 return true;
1849         default:
1850                 return false;
1851         }
1852 }
1853
1854 #define BCH_CSUM_OPTS()                 \
1855         x(none,                 0)      \
1856         x(crc32c,               1)      \
1857         x(crc64,                2)      \
1858         x(xxhash,               3)
1859
1860 enum bch_csum_opts {
1861 #define x(t, n) BCH_CSUM_OPT_##t = n,
1862         BCH_CSUM_OPTS()
1863 #undef x
1864         BCH_CSUM_OPT_NR
1865 };
1866
1867 #define BCH_COMPRESSION_TYPES()         \
1868         x(none,                 0)      \
1869         x(lz4_old,              1)      \
1870         x(gzip,                 2)      \
1871         x(lz4,                  3)      \
1872         x(zstd,                 4)      \
1873         x(incompressible,       5)
1874
1875 enum bch_compression_type {
1876 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1877         BCH_COMPRESSION_TYPES()
1878 #undef x
1879         BCH_COMPRESSION_TYPE_NR
1880 };
1881
1882 #define BCH_COMPRESSION_OPTS()          \
1883         x(none,         0)              \
1884         x(lz4,          1)              \
1885         x(gzip,         2)              \
1886         x(zstd,         3)
1887
1888 enum bch_compression_opts {
1889 #define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1890         BCH_COMPRESSION_OPTS()
1891 #undef x
1892         BCH_COMPRESSION_OPT_NR
1893 };
1894
1895 /*
1896  * Magic numbers
1897  *
1898  * The various other data structures have their own magic numbers, which are
1899  * xored with the first part of the cache set's UUID
1900  */
1901
1902 #define BCACHE_MAGIC                                                    \
1903         UUID_LE(0xf67385c6, 0x1a4e, 0xca45,                             \
1904                 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1905 #define BCHFS_MAGIC                                                     \
1906         UUID_LE(0xf67385c6, 0xce66, 0xa990,                             \
1907                 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
1908
1909 #define BCACHEFS_STATFS_MAGIC           0xca451a4e
1910
1911 #define JSET_MAGIC              __cpu_to_le64(0x245235c1a3625032ULL)
1912 #define BSET_MAGIC              __cpu_to_le64(0x90135c78b99e07f5ULL)
1913
1914 static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
1915 {
1916         __le64 ret;
1917
1918         memcpy(&ret, &sb->uuid, sizeof(ret));
1919         return ret;
1920 }
1921
1922 static inline __u64 __jset_magic(struct bch_sb *sb)
1923 {
1924         return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
1925 }
1926
1927 static inline __u64 __bset_magic(struct bch_sb *sb)
1928 {
1929         return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
1930 }
1931
1932 /* Journal */
1933
1934 #define JSET_KEYS_U64s  (sizeof(struct jset_entry) / sizeof(__u64))
1935
1936 #define BCH_JSET_ENTRY_TYPES()                  \
1937         x(btree_keys,           0)              \
1938         x(btree_root,           1)              \
1939         x(prio_ptrs,            2)              \
1940         x(blacklist,            3)              \
1941         x(blacklist_v2,         4)              \
1942         x(usage,                5)              \
1943         x(data_usage,           6)              \
1944         x(clock,                7)              \
1945         x(dev_usage,            8)              \
1946         x(log,                  9)              \
1947         x(overwrite,            10)
1948
1949 enum {
1950 #define x(f, nr)        BCH_JSET_ENTRY_##f      = nr,
1951         BCH_JSET_ENTRY_TYPES()
1952 #undef x
1953         BCH_JSET_ENTRY_NR
1954 };
1955
1956 /*
1957  * Journal sequence numbers can be blacklisted: bsets record the max sequence
1958  * number of all the journal entries they contain updates for, so that on
1959  * recovery we can ignore those bsets that contain index updates newer that what
1960  * made it into the journal.
1961  *
1962  * This means that we can't reuse that journal_seq - we have to skip it, and
1963  * then record that we skipped it so that the next time we crash and recover we
1964  * don't think there was a missing journal entry.
1965  */
1966 struct jset_entry_blacklist {
1967         struct jset_entry       entry;
1968         __le64                  seq;
1969 };
1970
1971 struct jset_entry_blacklist_v2 {
1972         struct jset_entry       entry;
1973         __le64                  start;
1974         __le64                  end;
1975 };
1976
1977 #define BCH_FS_USAGE_TYPES()                    \
1978         x(reserved,             0)              \
1979         x(inodes,               1)              \
1980         x(key_version,          2)
1981
1982 enum {
1983 #define x(f, nr)        BCH_FS_USAGE_##f        = nr,
1984         BCH_FS_USAGE_TYPES()
1985 #undef x
1986         BCH_FS_USAGE_NR
1987 };
1988
1989 struct jset_entry_usage {
1990         struct jset_entry       entry;
1991         __le64                  v;
1992 } __packed;
1993
1994 struct jset_entry_data_usage {
1995         struct jset_entry       entry;
1996         __le64                  v;
1997         struct bch_replicas_entry r;
1998 } __packed;
1999
2000 struct jset_entry_clock {
2001         struct jset_entry       entry;
2002         __u8                    rw;
2003         __u8                    pad[7];
2004         __le64                  time;
2005 } __packed;
2006
2007 struct jset_entry_dev_usage_type {
2008         __le64                  buckets;
2009         __le64                  sectors;
2010         __le64                  fragmented;
2011 } __packed;
2012
2013 struct jset_entry_dev_usage {
2014         struct jset_entry       entry;
2015         __le32                  dev;
2016         __u32                   pad;
2017
2018         __le64                  buckets_ec;
2019         __le64                  _buckets_unavailable; /* No longer used */
2020
2021         struct jset_entry_dev_usage_type d[];
2022 } __packed;
2023
2024 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
2025 {
2026         return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
2027                 sizeof(struct jset_entry_dev_usage_type);
2028 }
2029
2030 struct jset_entry_log {
2031         struct jset_entry       entry;
2032         u8                      d[];
2033 } __packed;
2034
2035 /*
2036  * On disk format for a journal entry:
2037  * seq is monotonically increasing; every journal entry has its own unique
2038  * sequence number.
2039  *
2040  * last_seq is the oldest journal entry that still has keys the btree hasn't
2041  * flushed to disk yet.
2042  *
2043  * version is for on disk format changes.
2044  */
2045 struct jset {
2046         struct bch_csum         csum;
2047
2048         __le64                  magic;
2049         __le64                  seq;
2050         __le32                  version;
2051         __le32                  flags;
2052
2053         __le32                  u64s; /* size of d[] in u64s */
2054
2055         __u8                    encrypted_start[0];
2056
2057         __le16                  _read_clock; /* no longer used */
2058         __le16                  _write_clock;
2059
2060         /* Sequence number of oldest dirty journal entry */
2061         __le64                  last_seq;
2062
2063
2064         union {
2065                 struct jset_entry start[0];
2066                 __u64           _data[0];
2067         };
2068 } __packed __aligned(8);
2069
2070 LE32_BITMASK(JSET_CSUM_TYPE,    struct jset, flags, 0, 4);
2071 LE32_BITMASK(JSET_BIG_ENDIAN,   struct jset, flags, 4, 5);
2072 LE32_BITMASK(JSET_NO_FLUSH,     struct jset, flags, 5, 6);
2073
2074 #define BCH_JOURNAL_BUCKETS_MIN         8
2075
2076 /* Btree: */
2077
2078 #define BCH_BTREE_IDS()                         \
2079         x(extents,              0)              \
2080         x(inodes,               1)              \
2081         x(dirents,              2)              \
2082         x(xattrs,               3)              \
2083         x(alloc,                4)              \
2084         x(quotas,               5)              \
2085         x(stripes,              6)              \
2086         x(reflink,              7)              \
2087         x(subvolumes,           8)              \
2088         x(snapshots,            9)              \
2089         x(lru,                  10)             \
2090         x(freespace,            11)             \
2091         x(need_discard,         12)             \
2092         x(backpointers,         13)             \
2093         x(bucket_gens,          14)
2094
2095 enum btree_id {
2096 #define x(kwd, val) BTREE_ID_##kwd = val,
2097         BCH_BTREE_IDS()
2098 #undef x
2099         BTREE_ID_NR
2100 };
2101
2102 #define BTREE_MAX_DEPTH         4U
2103
2104 /* Btree nodes */
2105
2106 /*
2107  * Btree nodes
2108  *
2109  * On disk a btree node is a list/log of these; within each set the keys are
2110  * sorted
2111  */
2112 struct bset {
2113         __le64                  seq;
2114
2115         /*
2116          * Highest journal entry this bset contains keys for.
2117          * If on recovery we don't see that journal entry, this bset is ignored:
2118          * this allows us to preserve the order of all index updates after a
2119          * crash, since the journal records a total order of all index updates
2120          * and anything that didn't make it to the journal doesn't get used.
2121          */
2122         __le64                  journal_seq;
2123
2124         __le32                  flags;
2125         __le16                  version;
2126         __le16                  u64s; /* count of d[] in u64s */
2127
2128         union {
2129                 struct bkey_packed start[0];
2130                 __u64           _data[0];
2131         };
2132 } __packed __aligned(8);
2133
2134 LE32_BITMASK(BSET_CSUM_TYPE,    struct bset, flags, 0, 4);
2135
2136 LE32_BITMASK(BSET_BIG_ENDIAN,   struct bset, flags, 4, 5);
2137 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
2138                                 struct bset, flags, 5, 6);
2139
2140 /* Sector offset within the btree node: */
2141 LE32_BITMASK(BSET_OFFSET,       struct bset, flags, 16, 32);
2142
2143 struct btree_node {
2144         struct bch_csum         csum;
2145         __le64                  magic;
2146
2147         /* this flags field is encrypted, unlike bset->flags: */
2148         __le64                  flags;
2149
2150         /* Closed interval: */
2151         struct bpos             min_key;
2152         struct bpos             max_key;
2153         struct bch_extent_ptr   _ptr; /* not used anymore */
2154         struct bkey_format      format;
2155
2156         union {
2157         struct bset             keys;
2158         struct {
2159                 __u8            pad[22];
2160                 __le16          u64s;
2161                 __u64           _data[0];
2162
2163         };
2164         };
2165 } __packed __aligned(8);
2166
2167 LE64_BITMASK(BTREE_NODE_ID,     struct btree_node, flags,  0,  4);
2168 LE64_BITMASK(BTREE_NODE_LEVEL,  struct btree_node, flags,  4,  8);
2169 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
2170                                 struct btree_node, flags,  8,  9);
2171 /* 9-32 unused */
2172 LE64_BITMASK(BTREE_NODE_SEQ,    struct btree_node, flags, 32, 64);
2173
2174 struct btree_node_entry {
2175         struct bch_csum         csum;
2176
2177         union {
2178         struct bset             keys;
2179         struct {
2180                 __u8            pad[22];
2181                 __le16          u64s;
2182                 __u64           _data[0];
2183
2184         };
2185         };
2186 } __packed __aligned(8);
2187
2188 #endif /* _BCACHEFS_FORMAT_H */