]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/bcachefs_format.h
Update bcachefs sources to 8e1519ccb6 bcachefs: Add tracepoint & counter for btree...
[bcachefs-tools-debian] / libbcachefs / bcachefs_format.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_FORMAT_H
3 #define _BCACHEFS_FORMAT_H
4
5 /*
6  * bcachefs on disk data structures
7  *
8  * OVERVIEW:
9  *
10  * There are three main types of on disk data structures in bcachefs (this is
11  * reduced from 5 in bcache)
12  *
13  *  - superblock
14  *  - journal
15  *  - btree
16  *
17  * The btree is the primary structure; most metadata exists as keys in the
18  * various btrees. There are only a small number of btrees, they're not
19  * sharded - we have one btree for extents, another for inodes, et cetera.
20  *
21  * SUPERBLOCK:
22  *
23  * The superblock contains the location of the journal, the list of devices in
24  * the filesystem, and in general any metadata we need in order to decide
25  * whether we can start a filesystem or prior to reading the journal/btree
26  * roots.
27  *
28  * The superblock is extensible, and most of the contents of the superblock are
29  * in variable length, type tagged fields; see struct bch_sb_field.
30  *
31  * Backup superblocks do not reside in a fixed location; also, superblocks do
32  * not have a fixed size. To locate backup superblocks we have struct
33  * bch_sb_layout; we store a copy of this inside every superblock, and also
34  * before the first superblock.
35  *
36  * JOURNAL:
37  *
38  * The journal primarily records btree updates in the order they occurred;
39  * journal replay consists of just iterating over all the keys in the open
40  * journal entries and re-inserting them into the btrees.
41  *
42  * The journal also contains entry types for the btree roots, and blacklisted
43  * journal sequence numbers (see journal_seq_blacklist.c).
44  *
45  * BTREE:
46  *
47  * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48  * 128k-256k) and log structured. We use struct btree_node for writing the first
49  * entry in a given node (offset 0), and struct btree_node_entry for all
50  * subsequent writes.
51  *
52  * After the header, btree node entries contain a list of keys in sorted order.
53  * Values are stored inline with the keys; since values are variable length (and
54  * keys effectively are variable length too, due to packing) we can't do random
55  * access without building up additional in memory tables in the btree node read
56  * path.
57  *
58  * BTREE KEYS (struct bkey):
59  *
60  * The various btrees share a common format for the key - so as to avoid
61  * switching in fastpath lookup/comparison code - but define their own
62  * structures for the key values.
63  *
64  * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65  * size is just under 2k. The common part also contains a type tag for the
66  * value, and a format field indicating whether the key is packed or not (and
67  * also meant to allow adding new key fields in the future, if desired).
68  *
69  * bkeys, when stored within a btree node, may also be packed. In that case, the
70  * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71  * be generous with field sizes in the common part of the key format (64 bit
72  * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73  */
74
75 #include <asm/types.h>
76 #include <asm/byteorder.h>
77 #include <linux/kernel.h>
78 #include <linux/uuid.h>
79 #include "vstructs.h"
80
81 #define BITMASK(name, type, field, offset, end)                         \
82 static const unsigned   name##_OFFSET = offset;                         \
83 static const unsigned   name##_BITS = (end - offset);                   \
84                                                                         \
85 static inline __u64 name(const type *k)                                 \
86 {                                                                       \
87         return (k->field >> offset) & ~(~0ULL << (end - offset));       \
88 }                                                                       \
89                                                                         \
90 static inline void SET_##name(type *k, __u64 v)                         \
91 {                                                                       \
92         k->field &= ~(~(~0ULL << (end - offset)) << offset);            \
93         k->field |= (v & ~(~0ULL << (end - offset))) << offset;         \
94 }
95
96 #define LE_BITMASK(_bits, name, type, field, offset, end)               \
97 static const unsigned   name##_OFFSET = offset;                         \
98 static const unsigned   name##_BITS = (end - offset);                   \
99 static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;      \
100                                                                         \
101 static inline __u64 name(const type *k)                                 \
102 {                                                                       \
103         return (__le##_bits##_to_cpu(k->field) >> offset) &             \
104                 ~(~0ULL << (end - offset));                             \
105 }                                                                       \
106                                                                         \
107 static inline void SET_##name(type *k, __u64 v)                         \
108 {                                                                       \
109         __u##_bits new = __le##_bits##_to_cpu(k->field);                \
110                                                                         \
111         new &= ~(~(~0ULL << (end - offset)) << offset);                 \
112         new |= (v & ~(~0ULL << (end - offset))) << offset;              \
113         k->field = __cpu_to_le##_bits(new);                             \
114 }
115
116 #define LE16_BITMASK(n, t, f, o, e)     LE_BITMASK(16, n, t, f, o, e)
117 #define LE32_BITMASK(n, t, f, o, e)     LE_BITMASK(32, n, t, f, o, e)
118 #define LE64_BITMASK(n, t, f, o, e)     LE_BITMASK(64, n, t, f, o, e)
119
120 struct bkey_format {
121         __u8            key_u64s;
122         __u8            nr_fields;
123         /* One unused slot for now: */
124         __u8            bits_per_field[6];
125         __le64          field_offset[6];
126 };
127
128 /* Btree keys - all units are in sectors */
129
130 struct bpos {
131         /*
132          * Word order matches machine byte order - btree code treats a bpos as a
133          * single large integer, for search/comparison purposes
134          *
135          * Note that wherever a bpos is embedded in another on disk data
136          * structure, it has to be byte swabbed when reading in metadata that
137          * wasn't written in native endian order:
138          */
139 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
140         __u32           snapshot;
141         __u64           offset;
142         __u64           inode;
143 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
144         __u64           inode;
145         __u64           offset;         /* Points to end of extent - sectors */
146         __u32           snapshot;
147 #else
148 #error edit for your odd byteorder.
149 #endif
150 } __packed __aligned(4);
151
152 #define KEY_INODE_MAX                   ((__u64)~0ULL)
153 #define KEY_OFFSET_MAX                  ((__u64)~0ULL)
154 #define KEY_SNAPSHOT_MAX                ((__u32)~0U)
155 #define KEY_SIZE_MAX                    ((__u32)~0U)
156
157 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
158 {
159         return (struct bpos) {
160                 .inode          = inode,
161                 .offset         = offset,
162                 .snapshot       = snapshot,
163         };
164 }
165
166 #define POS_MIN                         SPOS(0, 0, 0)
167 #define POS_MAX                         SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
168 #define SPOS_MAX                        SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
169 #define POS(_inode, _offset)            SPOS(_inode, _offset, 0)
170
171 /* Empty placeholder struct, for container_of() */
172 struct bch_val {
173         __u64           __nothing[0];
174 };
175
176 struct bversion {
177 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
178         __u64           lo;
179         __u32           hi;
180 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
181         __u32           hi;
182         __u64           lo;
183 #endif
184 } __packed __aligned(4);
185
186 struct bkey {
187         /* Size of combined key and value, in u64s */
188         __u8            u64s;
189
190         /* Format of key (0 for format local to btree node) */
191 #if defined(__LITTLE_ENDIAN_BITFIELD)
192         __u8            format:7,
193                         needs_whiteout:1;
194 #elif defined (__BIG_ENDIAN_BITFIELD)
195         __u8            needs_whiteout:1,
196                         format:7;
197 #else
198 #error edit for your odd byteorder.
199 #endif
200
201         /* Type of the value */
202         __u8            type;
203
204 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
205         __u8            pad[1];
206
207         struct bversion version;
208         __u32           size;           /* extent size, in sectors */
209         struct bpos     p;
210 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
211         struct bpos     p;
212         __u32           size;           /* extent size, in sectors */
213         struct bversion version;
214
215         __u8            pad[1];
216 #endif
217 } __packed __aligned(8);
218
219 struct bkey_packed {
220         __u64           _data[0];
221
222         /* Size of combined key and value, in u64s */
223         __u8            u64s;
224
225         /* Format of key (0 for format local to btree node) */
226
227         /*
228          * XXX: next incompat on disk format change, switch format and
229          * needs_whiteout - bkey_packed() will be cheaper if format is the high
230          * bits of the bitfield
231          */
232 #if defined(__LITTLE_ENDIAN_BITFIELD)
233         __u8            format:7,
234                         needs_whiteout:1;
235 #elif defined (__BIG_ENDIAN_BITFIELD)
236         __u8            needs_whiteout:1,
237                         format:7;
238 #endif
239
240         /* Type of the value */
241         __u8            type;
242         __u8            key_start[0];
243
244         /*
245          * We copy bkeys with struct assignment in various places, and while
246          * that shouldn't be done with packed bkeys we can't disallow it in C,
247          * and it's legal to cast a bkey to a bkey_packed  - so padding it out
248          * to the same size as struct bkey should hopefully be safest.
249          */
250         __u8            pad[sizeof(struct bkey) - 3];
251 } __packed __aligned(8);
252
253 #define BKEY_U64s                       (sizeof(struct bkey) / sizeof(__u64))
254 #define BKEY_U64s_MAX                   U8_MAX
255 #define BKEY_VAL_U64s_MAX               (BKEY_U64s_MAX - BKEY_U64s)
256
257 #define KEY_PACKED_BITS_START           24
258
259 #define KEY_FORMAT_LOCAL_BTREE          0
260 #define KEY_FORMAT_CURRENT              1
261
262 enum bch_bkey_fields {
263         BKEY_FIELD_INODE,
264         BKEY_FIELD_OFFSET,
265         BKEY_FIELD_SNAPSHOT,
266         BKEY_FIELD_SIZE,
267         BKEY_FIELD_VERSION_HI,
268         BKEY_FIELD_VERSION_LO,
269         BKEY_NR_FIELDS,
270 };
271
272 #define bkey_format_field(name, field)                                  \
273         [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
274
275 #define BKEY_FORMAT_CURRENT                                             \
276 ((struct bkey_format) {                                                 \
277         .key_u64s       = BKEY_U64s,                                    \
278         .nr_fields      = BKEY_NR_FIELDS,                               \
279         .bits_per_field = {                                             \
280                 bkey_format_field(INODE,        p.inode),               \
281                 bkey_format_field(OFFSET,       p.offset),              \
282                 bkey_format_field(SNAPSHOT,     p.snapshot),            \
283                 bkey_format_field(SIZE,         size),                  \
284                 bkey_format_field(VERSION_HI,   version.hi),            \
285                 bkey_format_field(VERSION_LO,   version.lo),            \
286         },                                                              \
287 })
288
289 /* bkey with inline value */
290 struct bkey_i {
291         __u64                   _data[0];
292
293         union {
294         struct {
295                 /* Size of combined key and value, in u64s */
296                 __u8            u64s;
297         };
298         struct {
299                 struct bkey     k;
300                 struct bch_val  v;
301         };
302         };
303 };
304
305 #define KEY(_inode, _offset, _size)                                     \
306 ((struct bkey) {                                                        \
307         .u64s           = BKEY_U64s,                                    \
308         .format         = KEY_FORMAT_CURRENT,                           \
309         .p              = POS(_inode, _offset),                         \
310         .size           = _size,                                        \
311 })
312
313 static inline void bkey_init(struct bkey *k)
314 {
315         *k = KEY(0, 0, 0);
316 }
317
318 #define bkey_bytes(_k)          ((_k)->u64s * sizeof(__u64))
319
320 #define __BKEY_PADDED(key, pad)                                 \
321         struct { struct bkey_i key; __u64 key ## _pad[pad]; }
322
323 /*
324  * - DELETED keys are used internally to mark keys that should be ignored but
325  *   override keys in composition order.  Their version number is ignored.
326  *
327  * - DISCARDED keys indicate that the data is all 0s because it has been
328  *   discarded. DISCARDs may have a version; if the version is nonzero the key
329  *   will be persistent, otherwise the key will be dropped whenever the btree
330  *   node is rewritten (like DELETED keys).
331  *
332  * - ERROR: any read of the data returns a read error, as the data was lost due
333  *   to a failing device. Like DISCARDED keys, they can be removed (overridden)
334  *   by new writes or cluster-wide GC. Node repair can also overwrite them with
335  *   the same or a more recent version number, but not with an older version
336  *   number.
337  *
338  * - WHITEOUT: for hash table btrees
339  */
340 #define BCH_BKEY_TYPES()                                \
341         x(deleted,              0)                      \
342         x(whiteout,             1)                      \
343         x(error,                2)                      \
344         x(cookie,               3)                      \
345         x(hash_whiteout,        4)                      \
346         x(btree_ptr,            5)                      \
347         x(extent,               6)                      \
348         x(reservation,          7)                      \
349         x(inode,                8)                      \
350         x(inode_generation,     9)                      \
351         x(dirent,               10)                     \
352         x(xattr,                11)                     \
353         x(alloc,                12)                     \
354         x(quota,                13)                     \
355         x(stripe,               14)                     \
356         x(reflink_p,            15)                     \
357         x(reflink_v,            16)                     \
358         x(inline_data,          17)                     \
359         x(btree_ptr_v2,         18)                     \
360         x(indirect_inline_data, 19)                     \
361         x(alloc_v2,             20)                     \
362         x(subvolume,            21)                     \
363         x(snapshot,             22)                     \
364         x(inode_v2,             23)                     \
365         x(alloc_v3,             24)                     \
366         x(set,                  25)                     \
367         x(lru,                  26)                     \
368         x(alloc_v4,             27)                     \
369         x(backpointer,          28)                     \
370         x(inode_v3,             29)                     \
371         x(bucket_gens,          30)
372
373 enum bch_bkey_type {
374 #define x(name, nr) KEY_TYPE_##name     = nr,
375         BCH_BKEY_TYPES()
376 #undef x
377         KEY_TYPE_MAX,
378 };
379
380 struct bch_deleted {
381         struct bch_val          v;
382 };
383
384 struct bch_whiteout {
385         struct bch_val          v;
386 };
387
388 struct bch_error {
389         struct bch_val          v;
390 };
391
392 struct bch_cookie {
393         struct bch_val          v;
394         __le64                  cookie;
395 };
396
397 struct bch_hash_whiteout {
398         struct bch_val          v;
399 };
400
401 struct bch_set {
402         struct bch_val          v;
403 };
404
405 /* Extents */
406
407 /*
408  * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
409  * preceded by checksum/compression information (bch_extent_crc32 or
410  * bch_extent_crc64).
411  *
412  * One major determining factor in the format of extents is how we handle and
413  * represent extents that have been partially overwritten and thus trimmed:
414  *
415  * If an extent is not checksummed or compressed, when the extent is trimmed we
416  * don't have to remember the extent we originally allocated and wrote: we can
417  * merely adjust ptr->offset to point to the start of the data that is currently
418  * live. The size field in struct bkey records the current (live) size of the
419  * extent, and is also used to mean "size of region on disk that we point to" in
420  * this case.
421  *
422  * Thus an extent that is not checksummed or compressed will consist only of a
423  * list of bch_extent_ptrs, with none of the fields in
424  * bch_extent_crc32/bch_extent_crc64.
425  *
426  * When an extent is checksummed or compressed, it's not possible to read only
427  * the data that is currently live: we have to read the entire extent that was
428  * originally written, and then return only the part of the extent that is
429  * currently live.
430  *
431  * Thus, in addition to the current size of the extent in struct bkey, we need
432  * to store the size of the originally allocated space - this is the
433  * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
434  * when the extent is trimmed, instead of modifying the offset field of the
435  * pointer, we keep a second smaller offset field - "offset into the original
436  * extent of the currently live region".
437  *
438  * The other major determining factor is replication and data migration:
439  *
440  * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
441  * write, we will initially write all the replicas in the same format, with the
442  * same checksum type and compression format - however, when copygc runs later (or
443  * tiering/cache promotion, anything that moves data), it is not in general
444  * going to rewrite all the pointers at once - one of the replicas may be in a
445  * bucket on one device that has very little fragmentation while another lives
446  * in a bucket that has become heavily fragmented, and thus is being rewritten
447  * sooner than the rest.
448  *
449  * Thus it will only move a subset of the pointers (or in the case of
450  * tiering/cache promotion perhaps add a single pointer without dropping any
451  * current pointers), and if the extent has been partially overwritten it must
452  * write only the currently live portion (or copygc would not be able to reduce
453  * fragmentation!) - which necessitates a different bch_extent_crc format for
454  * the new pointer.
455  *
456  * But in the interests of space efficiency, we don't want to store one
457  * bch_extent_crc for each pointer if we don't have to.
458  *
459  * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
460  * bch_extent_ptrs appended arbitrarily one after the other. We determine the
461  * type of a given entry with a scheme similar to utf8 (except we're encoding a
462  * type, not a size), encoding the type in the position of the first set bit:
463  *
464  * bch_extent_crc32     - 0b1
465  * bch_extent_ptr       - 0b10
466  * bch_extent_crc64     - 0b100
467  *
468  * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
469  * bch_extent_crc64 is the least constrained).
470  *
471  * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
472  * until the next bch_extent_crc32/64.
473  *
474  * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
475  * is neither checksummed nor compressed.
476  */
477
478 /* 128 bits, sufficient for cryptographic MACs: */
479 struct bch_csum {
480         __le64                  lo;
481         __le64                  hi;
482 } __packed __aligned(8);
483
484 #define BCH_EXTENT_ENTRY_TYPES()                \
485         x(ptr,                  0)              \
486         x(crc32,                1)              \
487         x(crc64,                2)              \
488         x(crc128,               3)              \
489         x(stripe_ptr,           4)
490 #define BCH_EXTENT_ENTRY_MAX    5
491
492 enum bch_extent_entry_type {
493 #define x(f, n) BCH_EXTENT_ENTRY_##f = n,
494         BCH_EXTENT_ENTRY_TYPES()
495 #undef x
496 };
497
498 /* Compressed/uncompressed size are stored biased by 1: */
499 struct bch_extent_crc32 {
500 #if defined(__LITTLE_ENDIAN_BITFIELD)
501         __u32                   type:2,
502                                 _compressed_size:7,
503                                 _uncompressed_size:7,
504                                 offset:7,
505                                 _unused:1,
506                                 csum_type:4,
507                                 compression_type:4;
508         __u32                   csum;
509 #elif defined (__BIG_ENDIAN_BITFIELD)
510         __u32                   csum;
511         __u32                   compression_type:4,
512                                 csum_type:4,
513                                 _unused:1,
514                                 offset:7,
515                                 _uncompressed_size:7,
516                                 _compressed_size:7,
517                                 type:2;
518 #endif
519 } __packed __aligned(8);
520
521 #define CRC32_SIZE_MAX          (1U << 7)
522 #define CRC32_NONCE_MAX         0
523
524 struct bch_extent_crc64 {
525 #if defined(__LITTLE_ENDIAN_BITFIELD)
526         __u64                   type:3,
527                                 _compressed_size:9,
528                                 _uncompressed_size:9,
529                                 offset:9,
530                                 nonce:10,
531                                 csum_type:4,
532                                 compression_type:4,
533                                 csum_hi:16;
534 #elif defined (__BIG_ENDIAN_BITFIELD)
535         __u64                   csum_hi:16,
536                                 compression_type:4,
537                                 csum_type:4,
538                                 nonce:10,
539                                 offset:9,
540                                 _uncompressed_size:9,
541                                 _compressed_size:9,
542                                 type:3;
543 #endif
544         __u64                   csum_lo;
545 } __packed __aligned(8);
546
547 #define CRC64_SIZE_MAX          (1U << 9)
548 #define CRC64_NONCE_MAX         ((1U << 10) - 1)
549
550 struct bch_extent_crc128 {
551 #if defined(__LITTLE_ENDIAN_BITFIELD)
552         __u64                   type:4,
553                                 _compressed_size:13,
554                                 _uncompressed_size:13,
555                                 offset:13,
556                                 nonce:13,
557                                 csum_type:4,
558                                 compression_type:4;
559 #elif defined (__BIG_ENDIAN_BITFIELD)
560         __u64                   compression_type:4,
561                                 csum_type:4,
562                                 nonce:13,
563                                 offset:13,
564                                 _uncompressed_size:13,
565                                 _compressed_size:13,
566                                 type:4;
567 #endif
568         struct bch_csum         csum;
569 } __packed __aligned(8);
570
571 #define CRC128_SIZE_MAX         (1U << 13)
572 #define CRC128_NONCE_MAX        ((1U << 13) - 1)
573
574 /*
575  * @reservation - pointer hasn't been written to, just reserved
576  */
577 struct bch_extent_ptr {
578 #if defined(__LITTLE_ENDIAN_BITFIELD)
579         __u64                   type:1,
580                                 cached:1,
581                                 unused:1,
582                                 unwritten:1,
583                                 offset:44, /* 8 petabytes */
584                                 dev:8,
585                                 gen:8;
586 #elif defined (__BIG_ENDIAN_BITFIELD)
587         __u64                   gen:8,
588                                 dev:8,
589                                 offset:44,
590                                 unwritten:1,
591                                 unused:1,
592                                 cached:1,
593                                 type:1;
594 #endif
595 } __packed __aligned(8);
596
597 struct bch_extent_stripe_ptr {
598 #if defined(__LITTLE_ENDIAN_BITFIELD)
599         __u64                   type:5,
600                                 block:8,
601                                 redundancy:4,
602                                 idx:47;
603 #elif defined (__BIG_ENDIAN_BITFIELD)
604         __u64                   idx:47,
605                                 redundancy:4,
606                                 block:8,
607                                 type:5;
608 #endif
609 };
610
611 struct bch_extent_reservation {
612 #if defined(__LITTLE_ENDIAN_BITFIELD)
613         __u64                   type:6,
614                                 unused:22,
615                                 replicas:4,
616                                 generation:32;
617 #elif defined (__BIG_ENDIAN_BITFIELD)
618         __u64                   generation:32,
619                                 replicas:4,
620                                 unused:22,
621                                 type:6;
622 #endif
623 };
624
625 union bch_extent_entry {
626 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ||  __BITS_PER_LONG == 64
627         unsigned long                   type;
628 #elif __BITS_PER_LONG == 32
629         struct {
630                 unsigned long           pad;
631                 unsigned long           type;
632         };
633 #else
634 #error edit for your odd byteorder.
635 #endif
636
637 #define x(f, n) struct bch_extent_##f   f;
638         BCH_EXTENT_ENTRY_TYPES()
639 #undef x
640 };
641
642 struct bch_btree_ptr {
643         struct bch_val          v;
644
645         __u64                   _data[0];
646         struct bch_extent_ptr   start[];
647 } __packed __aligned(8);
648
649 struct bch_btree_ptr_v2 {
650         struct bch_val          v;
651
652         __u64                   mem_ptr;
653         __le64                  seq;
654         __le16                  sectors_written;
655         __le16                  flags;
656         struct bpos             min_key;
657         __u64                   _data[0];
658         struct bch_extent_ptr   start[];
659 } __packed __aligned(8);
660
661 LE16_BITMASK(BTREE_PTR_RANGE_UPDATED,   struct bch_btree_ptr_v2, flags, 0, 1);
662
663 struct bch_extent {
664         struct bch_val          v;
665
666         __u64                   _data[0];
667         union bch_extent_entry  start[];
668 } __packed __aligned(8);
669
670 struct bch_reservation {
671         struct bch_val          v;
672
673         __le32                  generation;
674         __u8                    nr_replicas;
675         __u8                    pad[3];
676 } __packed __aligned(8);
677
678 /* Maximum size (in u64s) a single pointer could be: */
679 #define BKEY_EXTENT_PTR_U64s_MAX\
680         ((sizeof(struct bch_extent_crc128) +                    \
681           sizeof(struct bch_extent_ptr)) / sizeof(u64))
682
683 /* Maximum possible size of an entire extent value: */
684 #define BKEY_EXTENT_VAL_U64s_MAX                                \
685         (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
686
687 /* * Maximum possible size of an entire extent, key + value: */
688 #define BKEY_EXTENT_U64s_MAX            (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
689
690 /* Btree pointers don't carry around checksums: */
691 #define BKEY_BTREE_PTR_VAL_U64s_MAX                             \
692         ((sizeof(struct bch_btree_ptr_v2) +                     \
693           sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64))
694 #define BKEY_BTREE_PTR_U64s_MAX                                 \
695         (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
696
697 /* Inodes */
698
699 #define BLOCKDEV_INODE_MAX      4096
700
701 #define BCACHEFS_ROOT_INO       4096
702
703 struct bch_inode {
704         struct bch_val          v;
705
706         __le64                  bi_hash_seed;
707         __le32                  bi_flags;
708         __le16                  bi_mode;
709         __u8                    fields[0];
710 } __packed __aligned(8);
711
712 struct bch_inode_v2 {
713         struct bch_val          v;
714
715         __le64                  bi_journal_seq;
716         __le64                  bi_hash_seed;
717         __le64                  bi_flags;
718         __le16                  bi_mode;
719         __u8                    fields[0];
720 } __packed __aligned(8);
721
722 struct bch_inode_v3 {
723         struct bch_val          v;
724
725         __le64                  bi_journal_seq;
726         __le64                  bi_hash_seed;
727         __le64                  bi_flags;
728         __le64                  bi_sectors;
729         __le64                  bi_size;
730         __le64                  bi_version;
731         __u8                    fields[0];
732 } __packed __aligned(8);
733
734 #define INODEv3_FIELDS_START_INITIAL    6
735 #define INODEv3_FIELDS_START_CUR        (offsetof(struct bch_inode_v3, fields) / sizeof(u64))
736
737 struct bch_inode_generation {
738         struct bch_val          v;
739
740         __le32                  bi_generation;
741         __le32                  pad;
742 } __packed __aligned(8);
743
744 /*
745  * bi_subvol and bi_parent_subvol are only set for subvolume roots:
746  */
747
748 #define BCH_INODE_FIELDS_v2()                   \
749         x(bi_atime,                     96)     \
750         x(bi_ctime,                     96)     \
751         x(bi_mtime,                     96)     \
752         x(bi_otime,                     96)     \
753         x(bi_size,                      64)     \
754         x(bi_sectors,                   64)     \
755         x(bi_uid,                       32)     \
756         x(bi_gid,                       32)     \
757         x(bi_nlink,                     32)     \
758         x(bi_generation,                32)     \
759         x(bi_dev,                       32)     \
760         x(bi_data_checksum,             8)      \
761         x(bi_compression,               8)      \
762         x(bi_project,                   32)     \
763         x(bi_background_compression,    8)      \
764         x(bi_data_replicas,             8)      \
765         x(bi_promote_target,            16)     \
766         x(bi_foreground_target,         16)     \
767         x(bi_background_target,         16)     \
768         x(bi_erasure_code,              16)     \
769         x(bi_fields_set,                16)     \
770         x(bi_dir,                       64)     \
771         x(bi_dir_offset,                64)     \
772         x(bi_subvol,                    32)     \
773         x(bi_parent_subvol,             32)
774
775 #define BCH_INODE_FIELDS_v3()                   \
776         x(bi_atime,                     96)     \
777         x(bi_ctime,                     96)     \
778         x(bi_mtime,                     96)     \
779         x(bi_otime,                     96)     \
780         x(bi_uid,                       32)     \
781         x(bi_gid,                       32)     \
782         x(bi_nlink,                     32)     \
783         x(bi_generation,                32)     \
784         x(bi_dev,                       32)     \
785         x(bi_data_checksum,             8)      \
786         x(bi_compression,               8)      \
787         x(bi_project,                   32)     \
788         x(bi_background_compression,    8)      \
789         x(bi_data_replicas,             8)      \
790         x(bi_promote_target,            16)     \
791         x(bi_foreground_target,         16)     \
792         x(bi_background_target,         16)     \
793         x(bi_erasure_code,              16)     \
794         x(bi_fields_set,                16)     \
795         x(bi_dir,                       64)     \
796         x(bi_dir_offset,                64)     \
797         x(bi_subvol,                    32)     \
798         x(bi_parent_subvol,             32)     \
799         x(bi_nocow,                     8)
800
801 /* subset of BCH_INODE_FIELDS */
802 #define BCH_INODE_OPTS()                        \
803         x(data_checksum,                8)      \
804         x(compression,                  8)      \
805         x(project,                      32)     \
806         x(background_compression,       8)      \
807         x(data_replicas,                8)      \
808         x(promote_target,               16)     \
809         x(foreground_target,            16)     \
810         x(background_target,            16)     \
811         x(erasure_code,                 16)     \
812         x(nocow,                        8)
813
814 enum inode_opt_id {
815 #define x(name, ...)                            \
816         Inode_opt_##name,
817         BCH_INODE_OPTS()
818 #undef  x
819         Inode_opt_nr,
820 };
821
822 enum {
823         /*
824          * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
825          * flags)
826          */
827         __BCH_INODE_SYNC                = 0,
828         __BCH_INODE_IMMUTABLE           = 1,
829         __BCH_INODE_APPEND              = 2,
830         __BCH_INODE_NODUMP              = 3,
831         __BCH_INODE_NOATIME             = 4,
832
833         __BCH_INODE_I_SIZE_DIRTY        = 5,
834         __BCH_INODE_I_SECTORS_DIRTY     = 6,
835         __BCH_INODE_UNLINKED            = 7,
836         __BCH_INODE_BACKPTR_UNTRUSTED   = 8,
837
838         /* bits 20+ reserved for packed fields below: */
839 };
840
841 #define BCH_INODE_SYNC          (1 << __BCH_INODE_SYNC)
842 #define BCH_INODE_IMMUTABLE     (1 << __BCH_INODE_IMMUTABLE)
843 #define BCH_INODE_APPEND        (1 << __BCH_INODE_APPEND)
844 #define BCH_INODE_NODUMP        (1 << __BCH_INODE_NODUMP)
845 #define BCH_INODE_NOATIME       (1 << __BCH_INODE_NOATIME)
846 #define BCH_INODE_I_SIZE_DIRTY  (1 << __BCH_INODE_I_SIZE_DIRTY)
847 #define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
848 #define BCH_INODE_UNLINKED      (1 << __BCH_INODE_UNLINKED)
849 #define BCH_INODE_BACKPTR_UNTRUSTED (1 << __BCH_INODE_BACKPTR_UNTRUSTED)
850
851 LE32_BITMASK(INODE_STR_HASH,    struct bch_inode, bi_flags, 20, 24);
852 LE32_BITMASK(INODE_NR_FIELDS,   struct bch_inode, bi_flags, 24, 31);
853 LE32_BITMASK(INODE_NEW_VARINT,  struct bch_inode, bi_flags, 31, 32);
854
855 LE64_BITMASK(INODEv2_STR_HASH,  struct bch_inode_v2, bi_flags, 20, 24);
856 LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31);
857
858 LE64_BITMASK(INODEv3_STR_HASH,  struct bch_inode_v3, bi_flags, 20, 24);
859 LE64_BITMASK(INODEv3_NR_FIELDS, struct bch_inode_v3, bi_flags, 24, 31);
860
861 LE64_BITMASK(INODEv3_FIELDS_START,
862                                 struct bch_inode_v3, bi_flags, 31, 36);
863 LE64_BITMASK(INODEv3_MODE,      struct bch_inode_v3, bi_flags, 36, 52);
864
865 /* Dirents */
866
867 /*
868  * Dirents (and xattrs) have to implement string lookups; since our b-tree
869  * doesn't support arbitrary length strings for the key, we instead index by a
870  * 64 bit hash (currently truncated sha1) of the string, stored in the offset
871  * field of the key - using linear probing to resolve hash collisions. This also
872  * provides us with the readdir cookie posix requires.
873  *
874  * Linear probing requires us to use whiteouts for deletions, in the event of a
875  * collision:
876  */
877
878 struct bch_dirent {
879         struct bch_val          v;
880
881         /* Target inode number: */
882         union {
883         __le64                  d_inum;
884         struct {                /* DT_SUBVOL */
885         __le32                  d_child_subvol;
886         __le32                  d_parent_subvol;
887         };
888         };
889
890         /*
891          * Copy of mode bits 12-15 from the target inode - so userspace can get
892          * the filetype without having to do a stat()
893          */
894         __u8                    d_type;
895
896         __u8                    d_name[];
897 } __packed __aligned(8);
898
899 #define DT_SUBVOL       16
900 #define BCH_DT_MAX      17
901
902 #define BCH_NAME_MAX    ((unsigned) (U8_MAX * sizeof(u64) -             \
903                          sizeof(struct bkey) -                          \
904                          offsetof(struct bch_dirent, d_name)))
905
906 /* Xattrs */
907
908 #define KEY_TYPE_XATTR_INDEX_USER                       0
909 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS   1
910 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT  2
911 #define KEY_TYPE_XATTR_INDEX_TRUSTED                    3
912 #define KEY_TYPE_XATTR_INDEX_SECURITY           4
913
914 struct bch_xattr {
915         struct bch_val          v;
916         __u8                    x_type;
917         __u8                    x_name_len;
918         __le16                  x_val_len;
919         __u8                    x_name[];
920 } __packed __aligned(8);
921
922 /* Bucket/allocation information: */
923
924 struct bch_alloc {
925         struct bch_val          v;
926         __u8                    fields;
927         __u8                    gen;
928         __u8                    data[];
929 } __packed __aligned(8);
930
931 #define BCH_ALLOC_FIELDS_V1()                   \
932         x(read_time,            16)             \
933         x(write_time,           16)             \
934         x(data_type,            8)              \
935         x(dirty_sectors,        16)             \
936         x(cached_sectors,       16)             \
937         x(oldest_gen,           8)              \
938         x(stripe,               32)             \
939         x(stripe_redundancy,    8)
940
941 enum {
942 #define x(name, _bits) BCH_ALLOC_FIELD_V1_##name,
943         BCH_ALLOC_FIELDS_V1()
944 #undef x
945 };
946
947 struct bch_alloc_v2 {
948         struct bch_val          v;
949         __u8                    nr_fields;
950         __u8                    gen;
951         __u8                    oldest_gen;
952         __u8                    data_type;
953         __u8                    data[];
954 } __packed __aligned(8);
955
956 #define BCH_ALLOC_FIELDS_V2()                   \
957         x(read_time,            64)             \
958         x(write_time,           64)             \
959         x(dirty_sectors,        32)             \
960         x(cached_sectors,       32)             \
961         x(stripe,               32)             \
962         x(stripe_redundancy,    8)
963
964 struct bch_alloc_v3 {
965         struct bch_val          v;
966         __le64                  journal_seq;
967         __le32                  flags;
968         __u8                    nr_fields;
969         __u8                    gen;
970         __u8                    oldest_gen;
971         __u8                    data_type;
972         __u8                    data[];
973 } __packed __aligned(8);
974
975 LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags,  0,  1)
976 LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags,  1,  2)
977
978 struct bch_alloc_v4 {
979         struct bch_val          v;
980         __u64                   journal_seq;
981         __u32                   flags;
982         __u8                    gen;
983         __u8                    oldest_gen;
984         __u8                    data_type;
985         __u8                    stripe_redundancy;
986         __u32                   dirty_sectors;
987         __u32                   cached_sectors;
988         __u64                   io_time[2];
989         __u32                   stripe;
990         __u32                   nr_external_backpointers;
991         __u64                   fragmentation_lru;
992 } __packed __aligned(8);
993
994 #define BCH_ALLOC_V4_U64s_V0    6
995 #define BCH_ALLOC_V4_U64s       (sizeof(struct bch_alloc_v4) / sizeof(u64))
996
997 BITMASK(BCH_ALLOC_V4_NEED_DISCARD,      struct bch_alloc_v4, flags,  0,  1)
998 BITMASK(BCH_ALLOC_V4_NEED_INC_GEN,      struct bch_alloc_v4, flags,  1,  2)
999 BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags,  2,  8)
1000 BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS,   struct bch_alloc_v4, flags,  8,  14)
1001
1002 #define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX        40
1003
1004 struct bch_backpointer {
1005         struct bch_val          v;
1006         __u8                    btree_id;
1007         __u8                    level;
1008         __u8                    data_type;
1009         __u64                   bucket_offset:40;
1010         __u32                   bucket_len;
1011         struct bpos             pos;
1012 } __packed __aligned(8);
1013
1014 #define KEY_TYPE_BUCKET_GENS_BITS       8
1015 #define KEY_TYPE_BUCKET_GENS_NR         (1U << KEY_TYPE_BUCKET_GENS_BITS)
1016 #define KEY_TYPE_BUCKET_GENS_MASK       (KEY_TYPE_BUCKET_GENS_NR - 1)
1017
1018 struct bch_bucket_gens {
1019         struct bch_val          v;
1020         u8                      gens[KEY_TYPE_BUCKET_GENS_NR];
1021 } __packed __aligned(8);
1022
1023 /* Quotas: */
1024
1025 enum quota_types {
1026         QTYP_USR                = 0,
1027         QTYP_GRP                = 1,
1028         QTYP_PRJ                = 2,
1029         QTYP_NR                 = 3,
1030 };
1031
1032 enum quota_counters {
1033         Q_SPC                   = 0,
1034         Q_INO                   = 1,
1035         Q_COUNTERS              = 2,
1036 };
1037
1038 struct bch_quota_counter {
1039         __le64                  hardlimit;
1040         __le64                  softlimit;
1041 };
1042
1043 struct bch_quota {
1044         struct bch_val          v;
1045         struct bch_quota_counter c[Q_COUNTERS];
1046 } __packed __aligned(8);
1047
1048 /* Erasure coding */
1049
1050 struct bch_stripe {
1051         struct bch_val          v;
1052         __le16                  sectors;
1053         __u8                    algorithm;
1054         __u8                    nr_blocks;
1055         __u8                    nr_redundant;
1056
1057         __u8                    csum_granularity_bits;
1058         __u8                    csum_type;
1059         __u8                    pad;
1060
1061         struct bch_extent_ptr   ptrs[];
1062 } __packed __aligned(8);
1063
1064 /* Reflink: */
1065
1066 struct bch_reflink_p {
1067         struct bch_val          v;
1068         __le64                  idx;
1069         /*
1070          * A reflink pointer might point to an indirect extent which is then
1071          * later split (by copygc or rebalance). If we only pointed to part of
1072          * the original indirect extent, and then one of the fragments is
1073          * outside the range we point to, we'd leak a refcount: so when creating
1074          * reflink pointers, we need to store pad values to remember the full
1075          * range we were taking a reference on.
1076          */
1077         __le32                  front_pad;
1078         __le32                  back_pad;
1079 } __packed __aligned(8);
1080
1081 struct bch_reflink_v {
1082         struct bch_val          v;
1083         __le64                  refcount;
1084         union bch_extent_entry  start[0];
1085         __u64                   _data[0];
1086 } __packed __aligned(8);
1087
1088 struct bch_indirect_inline_data {
1089         struct bch_val          v;
1090         __le64                  refcount;
1091         u8                      data[0];
1092 };
1093
1094 /* Inline data */
1095
1096 struct bch_inline_data {
1097         struct bch_val          v;
1098         u8                      data[0];
1099 };
1100
1101 /* Subvolumes: */
1102
1103 #define SUBVOL_POS_MIN          POS(0, 1)
1104 #define SUBVOL_POS_MAX          POS(0, S32_MAX)
1105 #define BCACHEFS_ROOT_SUBVOL    1
1106
1107 struct bch_subvolume {
1108         struct bch_val          v;
1109         __le32                  flags;
1110         __le32                  snapshot;
1111         __le64                  inode;
1112 };
1113
1114 LE32_BITMASK(BCH_SUBVOLUME_RO,          struct bch_subvolume, flags,  0,  1)
1115 /*
1116  * We need to know whether a subvolume is a snapshot so we can know whether we
1117  * can delete it (or whether it should just be rm -rf'd)
1118  */
1119 LE32_BITMASK(BCH_SUBVOLUME_SNAP,        struct bch_subvolume, flags,  1,  2)
1120 LE32_BITMASK(BCH_SUBVOLUME_UNLINKED,    struct bch_subvolume, flags,  2,  3)
1121
1122 /* Snapshots */
1123
1124 struct bch_snapshot {
1125         struct bch_val          v;
1126         __le32                  flags;
1127         __le32                  parent;
1128         __le32                  children[2];
1129         __le32                  subvol;
1130         __le32                  pad;
1131 };
1132
1133 LE32_BITMASK(BCH_SNAPSHOT_DELETED,      struct bch_snapshot, flags,  0,  1)
1134
1135 /* True if a subvolume points to this snapshot node: */
1136 LE32_BITMASK(BCH_SNAPSHOT_SUBVOL,       struct bch_snapshot, flags,  1,  2)
1137
1138 /* LRU btree: */
1139
1140 struct bch_lru {
1141         struct bch_val          v;
1142         __le64                  idx;
1143 } __packed __aligned(8);
1144
1145 #define LRU_ID_STRIPES          (1U << 16)
1146
1147 /* Optional/variable size superblock sections: */
1148
1149 struct bch_sb_field {
1150         __u64                   _data[0];
1151         __le32                  u64s;
1152         __le32                  type;
1153 };
1154
1155 #define BCH_SB_FIELDS()                         \
1156         x(journal,      0)                      \
1157         x(members,      1)                      \
1158         x(crypt,        2)                      \
1159         x(replicas_v0,  3)                      \
1160         x(quota,        4)                      \
1161         x(disk_groups,  5)                      \
1162         x(clean,        6)                      \
1163         x(replicas,     7)                      \
1164         x(journal_seq_blacklist, 8)             \
1165         x(journal_v2,   9)                      \
1166         x(counters,     10)
1167
1168 enum bch_sb_field_type {
1169 #define x(f, nr)        BCH_SB_FIELD_##f = nr,
1170         BCH_SB_FIELDS()
1171 #undef x
1172         BCH_SB_FIELD_NR
1173 };
1174
1175 /*
1176  * Most superblock fields are replicated in all device's superblocks - a few are
1177  * not:
1178  */
1179 #define BCH_SINGLE_DEVICE_SB_FIELDS             \
1180         ((1U << BCH_SB_FIELD_journal)|          \
1181          (1U << BCH_SB_FIELD_journal_v2))
1182
1183 /* BCH_SB_FIELD_journal: */
1184
1185 struct bch_sb_field_journal {
1186         struct bch_sb_field     field;
1187         __le64                  buckets[0];
1188 };
1189
1190 struct bch_sb_field_journal_v2 {
1191         struct bch_sb_field     field;
1192
1193         struct bch_sb_field_journal_v2_entry {
1194                 __le64          start;
1195                 __le64          nr;
1196         }                       d[0];
1197 };
1198
1199 /* BCH_SB_FIELD_members: */
1200
1201 #define BCH_MIN_NR_NBUCKETS     (1 << 6)
1202
1203 struct bch_member {
1204         uuid_le                 uuid;
1205         __le64                  nbuckets;       /* device size */
1206         __le16                  first_bucket;   /* index of first bucket used */
1207         __le16                  bucket_size;    /* sectors */
1208         __le32                  pad;
1209         __le64                  last_mount;     /* time_t */
1210
1211         __le64                  flags[2];
1212 };
1213
1214 LE64_BITMASK(BCH_MEMBER_STATE,          struct bch_member, flags[0],  0,  4)
1215 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
1216 LE64_BITMASK(BCH_MEMBER_DISCARD,        struct bch_member, flags[0], 14, 15)
1217 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED,   struct bch_member, flags[0], 15, 20)
1218 LE64_BITMASK(BCH_MEMBER_GROUP,          struct bch_member, flags[0], 20, 28)
1219 LE64_BITMASK(BCH_MEMBER_DURABILITY,     struct bch_member, flags[0], 28, 30)
1220 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
1221                                         struct bch_member, flags[0], 30, 31)
1222
1223 #if 0
1224 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0,  20);
1225 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
1226 #endif
1227
1228 #define BCH_MEMBER_STATES()                     \
1229         x(rw,           0)                      \
1230         x(ro,           1)                      \
1231         x(failed,       2)                      \
1232         x(spare,        3)
1233
1234 enum bch_member_state {
1235 #define x(t, n) BCH_MEMBER_STATE_##t = n,
1236         BCH_MEMBER_STATES()
1237 #undef x
1238         BCH_MEMBER_STATE_NR
1239 };
1240
1241 struct bch_sb_field_members {
1242         struct bch_sb_field     field;
1243         struct bch_member       members[0];
1244 };
1245
1246 /* BCH_SB_FIELD_crypt: */
1247
1248 struct nonce {
1249         __le32                  d[4];
1250 };
1251
1252 struct bch_key {
1253         __le64                  key[4];
1254 };
1255
1256 #define BCH_KEY_MAGIC                                   \
1257         (((u64) 'b' <<  0)|((u64) 'c' <<  8)|           \
1258          ((u64) 'h' << 16)|((u64) '*' << 24)|           \
1259          ((u64) '*' << 32)|((u64) 'k' << 40)|           \
1260          ((u64) 'e' << 48)|((u64) 'y' << 56))
1261
1262 struct bch_encrypted_key {
1263         __le64                  magic;
1264         struct bch_key          key;
1265 };
1266
1267 /*
1268  * If this field is present in the superblock, it stores an encryption key which
1269  * is used encrypt all other data/metadata. The key will normally be encrypted
1270  * with the key userspace provides, but if encryption has been turned off we'll
1271  * just store the master key unencrypted in the superblock so we can access the
1272  * previously encrypted data.
1273  */
1274 struct bch_sb_field_crypt {
1275         struct bch_sb_field     field;
1276
1277         __le64                  flags;
1278         __le64                  kdf_flags;
1279         struct bch_encrypted_key key;
1280 };
1281
1282 LE64_BITMASK(BCH_CRYPT_KDF_TYPE,        struct bch_sb_field_crypt, flags, 0, 4);
1283
1284 enum bch_kdf_types {
1285         BCH_KDF_SCRYPT          = 0,
1286         BCH_KDF_NR              = 1,
1287 };
1288
1289 /* stored as base 2 log of scrypt params: */
1290 LE64_BITMASK(BCH_KDF_SCRYPT_N,  struct bch_sb_field_crypt, kdf_flags,  0, 16);
1291 LE64_BITMASK(BCH_KDF_SCRYPT_R,  struct bch_sb_field_crypt, kdf_flags, 16, 32);
1292 LE64_BITMASK(BCH_KDF_SCRYPT_P,  struct bch_sb_field_crypt, kdf_flags, 32, 48);
1293
1294 /* BCH_SB_FIELD_replicas: */
1295
1296 #define BCH_DATA_TYPES()                \
1297         x(free,         0)              \
1298         x(sb,           1)              \
1299         x(journal,      2)              \
1300         x(btree,        3)              \
1301         x(user,         4)              \
1302         x(cached,       5)              \
1303         x(parity,       6)              \
1304         x(stripe,       7)              \
1305         x(need_gc_gens, 8)              \
1306         x(need_discard, 9)
1307
1308 enum bch_data_type {
1309 #define x(t, n) BCH_DATA_##t,
1310         BCH_DATA_TYPES()
1311 #undef x
1312         BCH_DATA_NR
1313 };
1314
1315 static inline bool data_type_is_empty(enum bch_data_type type)
1316 {
1317         switch (type) {
1318         case BCH_DATA_free:
1319         case BCH_DATA_need_gc_gens:
1320         case BCH_DATA_need_discard:
1321                 return true;
1322         default:
1323                 return false;
1324         }
1325 }
1326
1327 static inline bool data_type_is_hidden(enum bch_data_type type)
1328 {
1329         switch (type) {
1330         case BCH_DATA_sb:
1331         case BCH_DATA_journal:
1332                 return true;
1333         default:
1334                 return false;
1335         }
1336 }
1337
1338 struct bch_replicas_entry_v0 {
1339         __u8                    data_type;
1340         __u8                    nr_devs;
1341         __u8                    devs[];
1342 } __packed;
1343
1344 struct bch_sb_field_replicas_v0 {
1345         struct bch_sb_field     field;
1346         struct bch_replicas_entry_v0 entries[];
1347 } __packed __aligned(8);
1348
1349 struct bch_replicas_entry {
1350         __u8                    data_type;
1351         __u8                    nr_devs;
1352         __u8                    nr_required;
1353         __u8                    devs[];
1354 } __packed;
1355
1356 #define replicas_entry_bytes(_i)                                        \
1357         (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
1358
1359 struct bch_sb_field_replicas {
1360         struct bch_sb_field     field;
1361         struct bch_replicas_entry entries[];
1362 } __packed __aligned(8);
1363
1364 /* BCH_SB_FIELD_quota: */
1365
1366 struct bch_sb_quota_counter {
1367         __le32                          timelimit;
1368         __le32                          warnlimit;
1369 };
1370
1371 struct bch_sb_quota_type {
1372         __le64                          flags;
1373         struct bch_sb_quota_counter     c[Q_COUNTERS];
1374 };
1375
1376 struct bch_sb_field_quota {
1377         struct bch_sb_field             field;
1378         struct bch_sb_quota_type        q[QTYP_NR];
1379 } __packed __aligned(8);
1380
1381 /* BCH_SB_FIELD_disk_groups: */
1382
1383 #define BCH_SB_LABEL_SIZE               32
1384
1385 struct bch_disk_group {
1386         __u8                    label[BCH_SB_LABEL_SIZE];
1387         __le64                  flags[2];
1388 } __packed __aligned(8);
1389
1390 LE64_BITMASK(BCH_GROUP_DELETED,         struct bch_disk_group, flags[0], 0,  1)
1391 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED,    struct bch_disk_group, flags[0], 1,  6)
1392 LE64_BITMASK(BCH_GROUP_PARENT,          struct bch_disk_group, flags[0], 6, 24)
1393
1394 struct bch_sb_field_disk_groups {
1395         struct bch_sb_field     field;
1396         struct bch_disk_group   entries[0];
1397 } __packed __aligned(8);
1398
1399 /* BCH_SB_FIELD_counters */
1400
1401 #define BCH_PERSISTENT_COUNTERS()                               \
1402         x(io_read,                                      0)      \
1403         x(io_write,                                     1)      \
1404         x(io_move,                                      2)      \
1405         x(bucket_invalidate,                            3)      \
1406         x(bucket_discard,                               4)      \
1407         x(bucket_alloc,                                 5)      \
1408         x(bucket_alloc_fail,                            6)      \
1409         x(btree_cache_scan,                             7)      \
1410         x(btree_cache_reap,                             8)      \
1411         x(btree_cache_cannibalize,                      9)      \
1412         x(btree_cache_cannibalize_lock,                 10)     \
1413         x(btree_cache_cannibalize_lock_fail,            11)     \
1414         x(btree_cache_cannibalize_unlock,               12)     \
1415         x(btree_node_write,                             13)     \
1416         x(btree_node_read,                              14)     \
1417         x(btree_node_compact,                           15)     \
1418         x(btree_node_merge,                             16)     \
1419         x(btree_node_split,                             17)     \
1420         x(btree_node_rewrite,                           18)     \
1421         x(btree_node_alloc,                             19)     \
1422         x(btree_node_free,                              20)     \
1423         x(btree_node_set_root,                          21)     \
1424         x(btree_path_relock_fail,                       22)     \
1425         x(btree_path_upgrade_fail,                      23)     \
1426         x(btree_reserve_get_fail,                       24)     \
1427         x(journal_entry_full,                           25)     \
1428         x(journal_full,                                 26)     \
1429         x(journal_reclaim_finish,                       27)     \
1430         x(journal_reclaim_start,                        28)     \
1431         x(journal_write,                                29)     \
1432         x(read_promote,                                 30)     \
1433         x(read_bounce,                                  31)     \
1434         x(read_split,                                   33)     \
1435         x(read_retry,                                   32)     \
1436         x(read_reuse_race,                              34)     \
1437         x(move_extent_read,                             35)     \
1438         x(move_extent_write,                            36)     \
1439         x(move_extent_finish,                           37)     \
1440         x(move_extent_fail,                             38)     \
1441         x(move_extent_alloc_mem_fail,                   39)     \
1442         x(copygc,                                       40)     \
1443         x(copygc_wait,                                  41)     \
1444         x(gc_gens_end,                                  42)     \
1445         x(gc_gens_start,                                43)     \
1446         x(trans_blocked_journal_reclaim,                44)     \
1447         x(trans_restart_btree_node_reused,              45)     \
1448         x(trans_restart_btree_node_split,               46)     \
1449         x(trans_restart_fault_inject,                   47)     \
1450         x(trans_restart_iter_upgrade,                   48)     \
1451         x(trans_restart_journal_preres_get,             49)     \
1452         x(trans_restart_journal_reclaim,                50)     \
1453         x(trans_restart_journal_res_get,                51)     \
1454         x(trans_restart_key_cache_key_realloced,        52)     \
1455         x(trans_restart_key_cache_raced,                53)     \
1456         x(trans_restart_mark_replicas,                  54)     \
1457         x(trans_restart_mem_realloced,                  55)     \
1458         x(trans_restart_memory_allocation_failure,      56)     \
1459         x(trans_restart_relock,                         57)     \
1460         x(trans_restart_relock_after_fill,              58)     \
1461         x(trans_restart_relock_key_cache_fill,          59)     \
1462         x(trans_restart_relock_next_node,               60)     \
1463         x(trans_restart_relock_parent_for_fill,         61)     \
1464         x(trans_restart_relock_path,                    62)     \
1465         x(trans_restart_relock_path_intent,             63)     \
1466         x(trans_restart_too_many_iters,                 64)     \
1467         x(trans_restart_traverse,                       65)     \
1468         x(trans_restart_upgrade,                        66)     \
1469         x(trans_restart_would_deadlock,                 67)     \
1470         x(trans_restart_would_deadlock_write,           68)     \
1471         x(trans_restart_injected,                       69)     \
1472         x(trans_restart_key_cache_upgrade,              70)     \
1473         x(trans_traverse_all,                           71)     \
1474         x(transaction_commit,                           72)     \
1475         x(write_super,                                  73)     \
1476         x(trans_restart_would_deadlock_recursion_limit, 74)     \
1477         x(trans_restart_write_buffer_flush,             75)     \
1478         x(trans_restart_split_race,                     76)
1479
1480 enum bch_persistent_counters {
1481 #define x(t, n, ...) BCH_COUNTER_##t,
1482         BCH_PERSISTENT_COUNTERS()
1483 #undef x
1484         BCH_COUNTER_NR
1485 };
1486
1487 struct bch_sb_field_counters {
1488         struct bch_sb_field     field;
1489         __le64                  d[0];
1490 };
1491
1492 /*
1493  * On clean shutdown, store btree roots and current journal sequence number in
1494  * the superblock:
1495  */
1496 struct jset_entry {
1497         __le16                  u64s;
1498         __u8                    btree_id;
1499         __u8                    level;
1500         __u8                    type; /* designates what this jset holds */
1501         __u8                    pad[3];
1502
1503         union {
1504                 struct bkey_i   start[0];
1505                 __u64           _data[0];
1506         };
1507 };
1508
1509 struct bch_sb_field_clean {
1510         struct bch_sb_field     field;
1511
1512         __le32                  flags;
1513         __le16                  _read_clock; /* no longer used */
1514         __le16                  _write_clock;
1515         __le64                  journal_seq;
1516
1517         union {
1518                 struct jset_entry start[0];
1519                 __u64           _data[0];
1520         };
1521 };
1522
1523 struct journal_seq_blacklist_entry {
1524         __le64                  start;
1525         __le64                  end;
1526 };
1527
1528 struct bch_sb_field_journal_seq_blacklist {
1529         struct bch_sb_field     field;
1530
1531         union {
1532                 struct journal_seq_blacklist_entry start[0];
1533                 __u64           _data[0];
1534         };
1535 };
1536
1537 /* Superblock: */
1538
1539 /*
1540  * New versioning scheme:
1541  * One common version number for all on disk data structures - superblock, btree
1542  * nodes, journal entries
1543  */
1544 #define BCH_JSET_VERSION_OLD                    2
1545 #define BCH_BSET_VERSION_OLD                    3
1546
1547 #define BCH_METADATA_VERSIONS()                         \
1548         x(bkey_renumber,                10)             \
1549         x(inode_btree_change,           11)             \
1550         x(snapshot,                     12)             \
1551         x(inode_backpointers,           13)             \
1552         x(btree_ptr_sectors_written,    14)             \
1553         x(snapshot_2,                   15)             \
1554         x(reflink_p_fix,                16)             \
1555         x(subvol_dirent,                17)             \
1556         x(inode_v2,                     18)             \
1557         x(freespace,                    19)             \
1558         x(alloc_v4,                     20)             \
1559         x(new_data_types,               21)             \
1560         x(backpointers,                 22)             \
1561         x(inode_v3,                     23)             \
1562         x(unwritten_extents,            24)             \
1563         x(bucket_gens,                  25)             \
1564         x(lru_v2,                       26)             \
1565         x(fragmentation_lru,            27)
1566
1567 enum bcachefs_metadata_version {
1568         bcachefs_metadata_version_min = 9,
1569 #define x(t, n) bcachefs_metadata_version_##t = n,
1570         BCH_METADATA_VERSIONS()
1571 #undef x
1572         bcachefs_metadata_version_max
1573 };
1574
1575 #define bcachefs_metadata_version_current       (bcachefs_metadata_version_max - 1)
1576
1577 #define BCH_SB_SECTOR                   8
1578 #define BCH_SB_MEMBERS_MAX              64 /* XXX kill */
1579
1580 struct bch_sb_layout {
1581         uuid_le                 magic;  /* bcachefs superblock UUID */
1582         __u8                    layout_type;
1583         __u8                    sb_max_size_bits; /* base 2 of 512 byte sectors */
1584         __u8                    nr_superblocks;
1585         __u8                    pad[5];
1586         __le64                  sb_offset[61];
1587 } __packed __aligned(8);
1588
1589 #define BCH_SB_LAYOUT_SECTOR    7
1590
1591 /*
1592  * @offset      - sector where this sb was written
1593  * @version     - on disk format version
1594  * @version_min - Oldest metadata version this filesystem contains; so we can
1595  *                safely drop compatibility code and refuse to mount filesystems
1596  *                we'd need it for
1597  * @magic       - identifies as a bcachefs superblock (BCHFS_MAGIC)
1598  * @seq         - incremented each time superblock is written
1599  * @uuid        - used for generating various magic numbers and identifying
1600  *                member devices, never changes
1601  * @user_uuid   - user visible UUID, may be changed
1602  * @label       - filesystem label
1603  * @seq         - identifies most recent superblock, incremented each time
1604  *                superblock is written
1605  * @features    - enabled incompatible features
1606  */
1607 struct bch_sb {
1608         struct bch_csum         csum;
1609         __le16                  version;
1610         __le16                  version_min;
1611         __le16                  pad[2];
1612         uuid_le                 magic;
1613         uuid_le                 uuid;
1614         uuid_le                 user_uuid;
1615         __u8                    label[BCH_SB_LABEL_SIZE];
1616         __le64                  offset;
1617         __le64                  seq;
1618
1619         __le16                  block_size;
1620         __u8                    dev_idx;
1621         __u8                    nr_devices;
1622         __le32                  u64s;
1623
1624         __le64                  time_base_lo;
1625         __le32                  time_base_hi;
1626         __le32                  time_precision;
1627
1628         __le64                  flags[8];
1629         __le64                  features[2];
1630         __le64                  compat[2];
1631
1632         struct bch_sb_layout    layout;
1633
1634         union {
1635                 struct bch_sb_field start[0];
1636                 __le64          _data[0];
1637         };
1638 } __packed __aligned(8);
1639
1640 /*
1641  * Flags:
1642  * BCH_SB_INITALIZED    - set on first mount
1643  * BCH_SB_CLEAN         - did we shut down cleanly? Just a hint, doesn't affect
1644  *                        behaviour of mount/recovery path:
1645  * BCH_SB_INODE_32BIT   - limit inode numbers to 32 bits
1646  * BCH_SB_128_BIT_MACS  - 128 bit macs instead of 80
1647  * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
1648  *                         DATA/META_CSUM_TYPE. Also indicates encryption
1649  *                         algorithm in use, if/when we get more than one
1650  */
1651
1652 LE16_BITMASK(BCH_SB_BLOCK_SIZE,         struct bch_sb, block_size, 0, 16);
1653
1654 LE64_BITMASK(BCH_SB_INITIALIZED,        struct bch_sb, flags[0],  0,  1);
1655 LE64_BITMASK(BCH_SB_CLEAN,              struct bch_sb, flags[0],  1,  2);
1656 LE64_BITMASK(BCH_SB_CSUM_TYPE,          struct bch_sb, flags[0],  2,  8);
1657 LE64_BITMASK(BCH_SB_ERROR_ACTION,       struct bch_sb, flags[0],  8, 12);
1658
1659 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE,    struct bch_sb, flags[0], 12, 28);
1660
1661 LE64_BITMASK(BCH_SB_GC_RESERVE,         struct bch_sb, flags[0], 28, 33);
1662 LE64_BITMASK(BCH_SB_ROOT_RESERVE,       struct bch_sb, flags[0], 33, 40);
1663
1664 LE64_BITMASK(BCH_SB_META_CSUM_TYPE,     struct bch_sb, flags[0], 40, 44);
1665 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE,     struct bch_sb, flags[0], 44, 48);
1666
1667 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
1668 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
1669
1670 LE64_BITMASK(BCH_SB_POSIX_ACL,          struct bch_sb, flags[0], 56, 57);
1671 LE64_BITMASK(BCH_SB_USRQUOTA,           struct bch_sb, flags[0], 57, 58);
1672 LE64_BITMASK(BCH_SB_GRPQUOTA,           struct bch_sb, flags[0], 58, 59);
1673 LE64_BITMASK(BCH_SB_PRJQUOTA,           struct bch_sb, flags[0], 59, 60);
1674
1675 LE64_BITMASK(BCH_SB_HAS_ERRORS,         struct bch_sb, flags[0], 60, 61);
1676 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
1677
1678 LE64_BITMASK(BCH_SB_BIG_ENDIAN,         struct bch_sb, flags[0], 62, 63);
1679
1680 LE64_BITMASK(BCH_SB_STR_HASH_TYPE,      struct bch_sb, flags[1],  0,  4);
1681 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE,   struct bch_sb, flags[1],  4,  8);
1682 LE64_BITMASK(BCH_SB_INODE_32BIT,        struct bch_sb, flags[1],  8,  9);
1683
1684 LE64_BITMASK(BCH_SB_128_BIT_MACS,       struct bch_sb, flags[1],  9, 10);
1685 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE,    struct bch_sb, flags[1], 10, 14);
1686
1687 /*
1688  * Max size of an extent that may require bouncing to read or write
1689  * (checksummed, compressed): 64k
1690  */
1691 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1692                                         struct bch_sb, flags[1], 14, 20);
1693
1694 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ,  struct bch_sb, flags[1], 20, 24);
1695 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ,  struct bch_sb, flags[1], 24, 28);
1696
1697 LE64_BITMASK(BCH_SB_PROMOTE_TARGET,     struct bch_sb, flags[1], 28, 40);
1698 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET,  struct bch_sb, flags[1], 40, 52);
1699 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET,  struct bch_sb, flags[1], 52, 64);
1700
1701 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE,
1702                                         struct bch_sb, flags[2],  0,  4);
1703 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES,   struct bch_sb, flags[2],  4, 64);
1704
1705 LE64_BITMASK(BCH_SB_ERASURE_CODE,       struct bch_sb, flags[3],  0, 16);
1706 LE64_BITMASK(BCH_SB_METADATA_TARGET,    struct bch_sb, flags[3], 16, 28);
1707 LE64_BITMASK(BCH_SB_SHARD_INUMS,        struct bch_sb, flags[3], 28, 29);
1708 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
1709 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1710 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1711 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
1712 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
1713 LE64_BITMASK(BCH_SB_NOCOW,              struct bch_sb, flags[4], 33, 34);
1714 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE,  struct bch_sb, flags[4], 34, 54);
1715
1716 /*
1717  * Features:
1718  *
1719  * journal_seq_blacklist_v3:    gates BCH_SB_FIELD_journal_seq_blacklist
1720  * reflink:                     gates KEY_TYPE_reflink
1721  * inline_data:                 gates KEY_TYPE_inline_data
1722  * new_siphash:                 gates BCH_STR_HASH_siphash
1723  * new_extent_overwrite:        gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1724  */
1725 #define BCH_SB_FEATURES()                       \
1726         x(lz4,                          0)      \
1727         x(gzip,                         1)      \
1728         x(zstd,                         2)      \
1729         x(atomic_nlink,                 3)      \
1730         x(ec,                           4)      \
1731         x(journal_seq_blacklist_v3,     5)      \
1732         x(reflink,                      6)      \
1733         x(new_siphash,                  7)      \
1734         x(inline_data,                  8)      \
1735         x(new_extent_overwrite,         9)      \
1736         x(incompressible,               10)     \
1737         x(btree_ptr_v2,                 11)     \
1738         x(extents_above_btree_updates,  12)     \
1739         x(btree_updates_journalled,     13)     \
1740         x(reflink_inline_data,          14)     \
1741         x(new_varint,                   15)     \
1742         x(journal_no_flush,             16)     \
1743         x(alloc_v2,                     17)     \
1744         x(extents_across_btree_nodes,   18)
1745
1746 #define BCH_SB_FEATURES_ALWAYS                          \
1747         ((1ULL << BCH_FEATURE_new_extent_overwrite)|    \
1748          (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1749          (1ULL << BCH_FEATURE_btree_updates_journalled)|\
1750          (1ULL << BCH_FEATURE_alloc_v2)|\
1751          (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1752
1753 #define BCH_SB_FEATURES_ALL                             \
1754         (BCH_SB_FEATURES_ALWAYS|                        \
1755          (1ULL << BCH_FEATURE_new_siphash)|             \
1756          (1ULL << BCH_FEATURE_btree_ptr_v2)|            \
1757          (1ULL << BCH_FEATURE_new_varint)|              \
1758          (1ULL << BCH_FEATURE_journal_no_flush))
1759
1760 enum bch_sb_feature {
1761 #define x(f, n) BCH_FEATURE_##f,
1762         BCH_SB_FEATURES()
1763 #undef x
1764         BCH_FEATURE_NR,
1765 };
1766
1767 #define BCH_SB_COMPAT()                                 \
1768         x(alloc_info,                           0)      \
1769         x(alloc_metadata,                       1)      \
1770         x(extents_above_btree_updates_done,     2)      \
1771         x(bformat_overflow_done,                3)
1772
1773 enum bch_sb_compat {
1774 #define x(f, n) BCH_COMPAT_##f,
1775         BCH_SB_COMPAT()
1776 #undef x
1777         BCH_COMPAT_NR,
1778 };
1779
1780 /* options: */
1781
1782 #define BCH_REPLICAS_MAX                4U
1783
1784 #define BCH_BKEY_PTRS_MAX               16U
1785
1786 #define BCH_ERROR_ACTIONS()             \
1787         x(continue,             0)      \
1788         x(ro,                   1)      \
1789         x(panic,                2)
1790
1791 enum bch_error_actions {
1792 #define x(t, n) BCH_ON_ERROR_##t = n,
1793         BCH_ERROR_ACTIONS()
1794 #undef x
1795         BCH_ON_ERROR_NR
1796 };
1797
1798 #define BCH_STR_HASH_TYPES()            \
1799         x(crc32c,               0)      \
1800         x(crc64,                1)      \
1801         x(siphash_old,          2)      \
1802         x(siphash,              3)
1803
1804 enum bch_str_hash_type {
1805 #define x(t, n) BCH_STR_HASH_##t = n,
1806         BCH_STR_HASH_TYPES()
1807 #undef x
1808         BCH_STR_HASH_NR
1809 };
1810
1811 #define BCH_STR_HASH_OPTS()             \
1812         x(crc32c,               0)      \
1813         x(crc64,                1)      \
1814         x(siphash,              2)
1815
1816 enum bch_str_hash_opts {
1817 #define x(t, n) BCH_STR_HASH_OPT_##t = n,
1818         BCH_STR_HASH_OPTS()
1819 #undef x
1820         BCH_STR_HASH_OPT_NR
1821 };
1822
1823 #define BCH_CSUM_TYPES()                        \
1824         x(none,                         0)      \
1825         x(crc32c_nonzero,               1)      \
1826         x(crc64_nonzero,                2)      \
1827         x(chacha20_poly1305_80,         3)      \
1828         x(chacha20_poly1305_128,        4)      \
1829         x(crc32c,                       5)      \
1830         x(crc64,                        6)      \
1831         x(xxhash,                       7)
1832
1833 enum bch_csum_type {
1834 #define x(t, n) BCH_CSUM_##t = n,
1835         BCH_CSUM_TYPES()
1836 #undef x
1837         BCH_CSUM_NR
1838 };
1839
1840 static const unsigned bch_crc_bytes[] = {
1841         [BCH_CSUM_none]                         = 0,
1842         [BCH_CSUM_crc32c_nonzero]               = 4,
1843         [BCH_CSUM_crc32c]                       = 4,
1844         [BCH_CSUM_crc64_nonzero]                = 8,
1845         [BCH_CSUM_crc64]                        = 8,
1846         [BCH_CSUM_xxhash]                       = 8,
1847         [BCH_CSUM_chacha20_poly1305_80]         = 10,
1848         [BCH_CSUM_chacha20_poly1305_128]        = 16,
1849 };
1850
1851 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1852 {
1853         switch (type) {
1854         case BCH_CSUM_chacha20_poly1305_80:
1855         case BCH_CSUM_chacha20_poly1305_128:
1856                 return true;
1857         default:
1858                 return false;
1859         }
1860 }
1861
1862 #define BCH_CSUM_OPTS()                 \
1863         x(none,                 0)      \
1864         x(crc32c,               1)      \
1865         x(crc64,                2)      \
1866         x(xxhash,               3)
1867
1868 enum bch_csum_opts {
1869 #define x(t, n) BCH_CSUM_OPT_##t = n,
1870         BCH_CSUM_OPTS()
1871 #undef x
1872         BCH_CSUM_OPT_NR
1873 };
1874
1875 #define BCH_COMPRESSION_TYPES()         \
1876         x(none,                 0)      \
1877         x(lz4_old,              1)      \
1878         x(gzip,                 2)      \
1879         x(lz4,                  3)      \
1880         x(zstd,                 4)      \
1881         x(incompressible,       5)
1882
1883 enum bch_compression_type {
1884 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1885         BCH_COMPRESSION_TYPES()
1886 #undef x
1887         BCH_COMPRESSION_TYPE_NR
1888 };
1889
1890 #define BCH_COMPRESSION_OPTS()          \
1891         x(none,         0)              \
1892         x(lz4,          1)              \
1893         x(gzip,         2)              \
1894         x(zstd,         3)
1895
1896 enum bch_compression_opts {
1897 #define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1898         BCH_COMPRESSION_OPTS()
1899 #undef x
1900         BCH_COMPRESSION_OPT_NR
1901 };
1902
1903 /*
1904  * Magic numbers
1905  *
1906  * The various other data structures have their own magic numbers, which are
1907  * xored with the first part of the cache set's UUID
1908  */
1909
1910 #define BCACHE_MAGIC                                                    \
1911         UUID_LE(0xf67385c6, 0x1a4e, 0xca45,                             \
1912                 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1913 #define BCHFS_MAGIC                                                     \
1914         UUID_LE(0xf67385c6, 0xce66, 0xa990,                             \
1915                 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
1916
1917 #define BCACHEFS_STATFS_MAGIC           0xca451a4e
1918
1919 #define JSET_MAGIC              __cpu_to_le64(0x245235c1a3625032ULL)
1920 #define BSET_MAGIC              __cpu_to_le64(0x90135c78b99e07f5ULL)
1921
1922 static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
1923 {
1924         __le64 ret;
1925
1926         memcpy(&ret, &sb->uuid, sizeof(ret));
1927         return ret;
1928 }
1929
1930 static inline __u64 __jset_magic(struct bch_sb *sb)
1931 {
1932         return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
1933 }
1934
1935 static inline __u64 __bset_magic(struct bch_sb *sb)
1936 {
1937         return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
1938 }
1939
1940 /* Journal */
1941
1942 #define JSET_KEYS_U64s  (sizeof(struct jset_entry) / sizeof(__u64))
1943
1944 #define BCH_JSET_ENTRY_TYPES()                  \
1945         x(btree_keys,           0)              \
1946         x(btree_root,           1)              \
1947         x(prio_ptrs,            2)              \
1948         x(blacklist,            3)              \
1949         x(blacklist_v2,         4)              \
1950         x(usage,                5)              \
1951         x(data_usage,           6)              \
1952         x(clock,                7)              \
1953         x(dev_usage,            8)              \
1954         x(log,                  9)              \
1955         x(overwrite,            10)
1956
1957 enum {
1958 #define x(f, nr)        BCH_JSET_ENTRY_##f      = nr,
1959         BCH_JSET_ENTRY_TYPES()
1960 #undef x
1961         BCH_JSET_ENTRY_NR
1962 };
1963
1964 /*
1965  * Journal sequence numbers can be blacklisted: bsets record the max sequence
1966  * number of all the journal entries they contain updates for, so that on
1967  * recovery we can ignore those bsets that contain index updates newer that what
1968  * made it into the journal.
1969  *
1970  * This means that we can't reuse that journal_seq - we have to skip it, and
1971  * then record that we skipped it so that the next time we crash and recover we
1972  * don't think there was a missing journal entry.
1973  */
1974 struct jset_entry_blacklist {
1975         struct jset_entry       entry;
1976         __le64                  seq;
1977 };
1978
1979 struct jset_entry_blacklist_v2 {
1980         struct jset_entry       entry;
1981         __le64                  start;
1982         __le64                  end;
1983 };
1984
1985 #define BCH_FS_USAGE_TYPES()                    \
1986         x(reserved,             0)              \
1987         x(inodes,               1)              \
1988         x(key_version,          2)
1989
1990 enum {
1991 #define x(f, nr)        BCH_FS_USAGE_##f        = nr,
1992         BCH_FS_USAGE_TYPES()
1993 #undef x
1994         BCH_FS_USAGE_NR
1995 };
1996
1997 struct jset_entry_usage {
1998         struct jset_entry       entry;
1999         __le64                  v;
2000 } __packed;
2001
2002 struct jset_entry_data_usage {
2003         struct jset_entry       entry;
2004         __le64                  v;
2005         struct bch_replicas_entry r;
2006 } __packed;
2007
2008 struct jset_entry_clock {
2009         struct jset_entry       entry;
2010         __u8                    rw;
2011         __u8                    pad[7];
2012         __le64                  time;
2013 } __packed;
2014
2015 struct jset_entry_dev_usage_type {
2016         __le64                  buckets;
2017         __le64                  sectors;
2018         __le64                  fragmented;
2019 } __packed;
2020
2021 struct jset_entry_dev_usage {
2022         struct jset_entry       entry;
2023         __le32                  dev;
2024         __u32                   pad;
2025
2026         __le64                  buckets_ec;
2027         __le64                  _buckets_unavailable; /* No longer used */
2028
2029         struct jset_entry_dev_usage_type d[];
2030 } __packed;
2031
2032 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
2033 {
2034         return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
2035                 sizeof(struct jset_entry_dev_usage_type);
2036 }
2037
2038 struct jset_entry_log {
2039         struct jset_entry       entry;
2040         u8                      d[];
2041 } __packed;
2042
2043 /*
2044  * On disk format for a journal entry:
2045  * seq is monotonically increasing; every journal entry has its own unique
2046  * sequence number.
2047  *
2048  * last_seq is the oldest journal entry that still has keys the btree hasn't
2049  * flushed to disk yet.
2050  *
2051  * version is for on disk format changes.
2052  */
2053 struct jset {
2054         struct bch_csum         csum;
2055
2056         __le64                  magic;
2057         __le64                  seq;
2058         __le32                  version;
2059         __le32                  flags;
2060
2061         __le32                  u64s; /* size of d[] in u64s */
2062
2063         __u8                    encrypted_start[0];
2064
2065         __le16                  _read_clock; /* no longer used */
2066         __le16                  _write_clock;
2067
2068         /* Sequence number of oldest dirty journal entry */
2069         __le64                  last_seq;
2070
2071
2072         union {
2073                 struct jset_entry start[0];
2074                 __u64           _data[0];
2075         };
2076 } __packed __aligned(8);
2077
2078 LE32_BITMASK(JSET_CSUM_TYPE,    struct jset, flags, 0, 4);
2079 LE32_BITMASK(JSET_BIG_ENDIAN,   struct jset, flags, 4, 5);
2080 LE32_BITMASK(JSET_NO_FLUSH,     struct jset, flags, 5, 6);
2081
2082 #define BCH_JOURNAL_BUCKETS_MIN         8
2083
2084 /* Btree: */
2085
2086 #define BCH_BTREE_IDS()                         \
2087         x(extents,              0)              \
2088         x(inodes,               1)              \
2089         x(dirents,              2)              \
2090         x(xattrs,               3)              \
2091         x(alloc,                4)              \
2092         x(quotas,               5)              \
2093         x(stripes,              6)              \
2094         x(reflink,              7)              \
2095         x(subvolumes,           8)              \
2096         x(snapshots,            9)              \
2097         x(lru,                  10)             \
2098         x(freespace,            11)             \
2099         x(need_discard,         12)             \
2100         x(backpointers,         13)             \
2101         x(bucket_gens,          14)
2102
2103 enum btree_id {
2104 #define x(kwd, val) BTREE_ID_##kwd = val,
2105         BCH_BTREE_IDS()
2106 #undef x
2107         BTREE_ID_NR
2108 };
2109
2110 #define BTREE_MAX_DEPTH         4U
2111
2112 /* Btree nodes */
2113
2114 /*
2115  * Btree nodes
2116  *
2117  * On disk a btree node is a list/log of these; within each set the keys are
2118  * sorted
2119  */
2120 struct bset {
2121         __le64                  seq;
2122
2123         /*
2124          * Highest journal entry this bset contains keys for.
2125          * If on recovery we don't see that journal entry, this bset is ignored:
2126          * this allows us to preserve the order of all index updates after a
2127          * crash, since the journal records a total order of all index updates
2128          * and anything that didn't make it to the journal doesn't get used.
2129          */
2130         __le64                  journal_seq;
2131
2132         __le32                  flags;
2133         __le16                  version;
2134         __le16                  u64s; /* count of d[] in u64s */
2135
2136         union {
2137                 struct bkey_packed start[0];
2138                 __u64           _data[0];
2139         };
2140 } __packed __aligned(8);
2141
2142 LE32_BITMASK(BSET_CSUM_TYPE,    struct bset, flags, 0, 4);
2143
2144 LE32_BITMASK(BSET_BIG_ENDIAN,   struct bset, flags, 4, 5);
2145 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
2146                                 struct bset, flags, 5, 6);
2147
2148 /* Sector offset within the btree node: */
2149 LE32_BITMASK(BSET_OFFSET,       struct bset, flags, 16, 32);
2150
2151 struct btree_node {
2152         struct bch_csum         csum;
2153         __le64                  magic;
2154
2155         /* this flags field is encrypted, unlike bset->flags: */
2156         __le64                  flags;
2157
2158         /* Closed interval: */
2159         struct bpos             min_key;
2160         struct bpos             max_key;
2161         struct bch_extent_ptr   _ptr; /* not used anymore */
2162         struct bkey_format      format;
2163
2164         union {
2165         struct bset             keys;
2166         struct {
2167                 __u8            pad[22];
2168                 __le16          u64s;
2169                 __u64           _data[0];
2170
2171         };
2172         };
2173 } __packed __aligned(8);
2174
2175 LE64_BITMASK(BTREE_NODE_ID,     struct btree_node, flags,  0,  4);
2176 LE64_BITMASK(BTREE_NODE_LEVEL,  struct btree_node, flags,  4,  8);
2177 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
2178                                 struct btree_node, flags,  8,  9);
2179 /* 9-32 unused */
2180 LE64_BITMASK(BTREE_NODE_SEQ,    struct btree_node, flags, 32, 64);
2181
2182 struct btree_node_entry {
2183         struct bch_csum         csum;
2184
2185         union {
2186         struct bset             keys;
2187         struct {
2188                 __u8            pad[22];
2189                 __le16          u64s;
2190                 __u64           _data[0];
2191
2192         };
2193         };
2194 } __packed __aligned(8);
2195
2196 #endif /* _BCACHEFS_FORMAT_H */