]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/bset.c
New upstream snapshot
[bcachefs-tools-debian] / libbcachefs / bset.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "util.h"
14
15 #include <asm/unaligned.h>
16 #include <linux/console.h>
17 #include <linux/random.h>
18 #include <linux/prefetch.h>
19
20 /* hack.. */
21 #include "alloc_types.h"
22 #include <trace/events/bcachefs.h>
23
24 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
25                                                   struct btree *);
26
27 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
28 {
29         unsigned n = ARRAY_SIZE(iter->data);
30
31         while (n && __btree_node_iter_set_end(iter, n - 1))
32                 --n;
33
34         return n;
35 }
36
37 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
38 {
39         unsigned offset = __btree_node_key_to_offset(b, k);
40         struct bset_tree *t;
41
42         for_each_bset(b, t)
43                 if (offset <= t->end_offset) {
44                         EBUG_ON(offset < btree_bkey_first_offset(t));
45                         return t;
46                 }
47
48         BUG();
49 }
50
51 /*
52  * There are never duplicate live keys in the btree - but including keys that
53  * have been flagged as deleted (and will be cleaned up later) we _will_ see
54  * duplicates.
55  *
56  * Thus the sort order is: usual key comparison first, but for keys that compare
57  * equal the deleted key(s) come first, and the (at most one) live version comes
58  * last.
59  *
60  * The main reason for this is insertion: to handle overwrites, we first iterate
61  * over keys that compare equal to our insert key, and then insert immediately
62  * prior to the first key greater than the key we're inserting - our insert
63  * position will be after all keys that compare equal to our insert key, which
64  * by the time we actually do the insert will all be deleted.
65  */
66
67 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
68                     struct bset *i, unsigned set)
69 {
70         struct bkey_packed *_k, *_n;
71         struct bkey uk, n;
72         struct bkey_s_c k;
73         char buf[200];
74
75         if (!i->u64s)
76                 return;
77
78         for (_k = i->start;
79              _k < vstruct_last(i);
80              _k = _n) {
81                 _n = bkey_next(_k);
82
83                 k = bkey_disassemble(b, _k, &uk);
84                 if (c)
85                         bch2_bkey_val_to_text(&PBUF(buf), c, k);
86                 else
87                         bch2_bkey_to_text(&PBUF(buf), k.k);
88                 printk(KERN_ERR "block %u key %5zu: %s\n", set,
89                        _k->_data - i->_data, buf);
90
91                 if (_n == vstruct_last(i))
92                         continue;
93
94                 n = bkey_unpack_key(b, _n);
95
96                 if (bpos_cmp(n.p, k.k->p) < 0) {
97                         printk(KERN_ERR "Key skipped backwards\n");
98                         continue;
99                 }
100
101                 if (!bkey_deleted(k.k) &&
102                     !bpos_cmp(n.p, k.k->p))
103                         printk(KERN_ERR "Duplicate keys\n");
104         }
105 }
106
107 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
108 {
109         struct bset_tree *t;
110
111         console_lock();
112         for_each_bset(b, t)
113                 bch2_dump_bset(c, b, bset(b, t), t - b->set);
114         console_unlock();
115 }
116
117 void bch2_dump_btree_node_iter(struct btree *b,
118                               struct btree_node_iter *iter)
119 {
120         struct btree_node_iter_set *set;
121
122         printk(KERN_ERR "btree node iter with %u/%u sets:\n",
123                __btree_node_iter_used(iter), b->nsets);
124
125         btree_node_iter_for_each(iter, set) {
126                 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
127                 struct bset_tree *t = bch2_bkey_to_bset(b, k);
128                 struct bkey uk = bkey_unpack_key(b, k);
129                 char buf[100];
130
131                 bch2_bkey_to_text(&PBUF(buf), &uk);
132                 printk(KERN_ERR "set %zu key %u: %s\n",
133                        t - b->set, set->k, buf);
134         }
135 }
136
137 #ifdef CONFIG_BCACHEFS_DEBUG
138
139 void __bch2_verify_btree_nr_keys(struct btree *b)
140 {
141         struct bset_tree *t;
142         struct bkey_packed *k;
143         struct btree_nr_keys nr = { 0 };
144
145         for_each_bset(b, t)
146                 bset_tree_for_each_key(b, t, k)
147                         if (!bkey_deleted(k))
148                                 btree_keys_account_key_add(&nr, t - b->set, k);
149
150         BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
151 }
152
153 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
154                                             struct btree *b)
155 {
156         struct btree_node_iter iter = *_iter;
157         const struct bkey_packed *k, *n;
158
159         k = bch2_btree_node_iter_peek_all(&iter, b);
160         __bch2_btree_node_iter_advance(&iter, b);
161         n = bch2_btree_node_iter_peek_all(&iter, b);
162
163         bkey_unpack_key(b, k);
164
165         if (n &&
166             bkey_iter_cmp(b, k, n) > 0) {
167                 struct btree_node_iter_set *set;
168                 struct bkey ku = bkey_unpack_key(b, k);
169                 struct bkey nu = bkey_unpack_key(b, n);
170                 char buf1[80], buf2[80];
171
172                 bch2_dump_btree_node(NULL, b);
173                 bch2_bkey_to_text(&PBUF(buf1), &ku);
174                 bch2_bkey_to_text(&PBUF(buf2), &nu);
175                 printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
176                        buf1, buf2);
177                 printk(KERN_ERR "iter was:");
178
179                 btree_node_iter_for_each(_iter, set) {
180                         struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
181                         struct bset_tree *t = bch2_bkey_to_bset(b, k);
182                         printk(" [%zi %zi]", t - b->set,
183                                k->_data - bset(b, t)->_data);
184                 }
185                 panic("\n");
186         }
187 }
188
189 void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
190                                  struct btree *b)
191 {
192         struct btree_node_iter_set *set, *s2;
193         struct bkey_packed *k, *p;
194         struct bset_tree *t;
195
196         if (bch2_btree_node_iter_end(iter))
197                 return;
198
199         /* Verify no duplicates: */
200         btree_node_iter_for_each(iter, set) {
201                 BUG_ON(set->k > set->end);
202                 btree_node_iter_for_each(iter, s2)
203                         BUG_ON(set != s2 && set->end == s2->end);
204         }
205
206         /* Verify that set->end is correct: */
207         btree_node_iter_for_each(iter, set) {
208                 for_each_bset(b, t)
209                         if (set->end == t->end_offset)
210                                 goto found;
211                 BUG();
212 found:
213                 BUG_ON(set->k < btree_bkey_first_offset(t) ||
214                        set->k >= t->end_offset);
215         }
216
217         /* Verify iterator is sorted: */
218         btree_node_iter_for_each(iter, set)
219                 BUG_ON(set != iter->data &&
220                        btree_node_iter_cmp(b, set[-1], set[0]) > 0);
221
222         k = bch2_btree_node_iter_peek_all(iter, b);
223
224         for_each_bset(b, t) {
225                 if (iter->data[0].end == t->end_offset)
226                         continue;
227
228                 p = bch2_bkey_prev_all(b, t,
229                         bch2_btree_node_iter_bset_pos(iter, b, t));
230
231                 BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
232         }
233 }
234
235 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
236                             struct bkey_packed *insert, unsigned clobber_u64s)
237 {
238         struct bset_tree *t = bch2_bkey_to_bset(b, where);
239         struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
240         struct bkey_packed *next = (void *) (where->_data + clobber_u64s);
241 #if 0
242         BUG_ON(prev &&
243                bkey_iter_cmp(b, prev, insert) > 0);
244 #else
245         if (prev &&
246             bkey_iter_cmp(b, prev, insert) > 0) {
247                 struct bkey k1 = bkey_unpack_key(b, prev);
248                 struct bkey k2 = bkey_unpack_key(b, insert);
249                 char buf1[100];
250                 char buf2[100];
251
252                 bch2_dump_btree_node(NULL, b);
253                 bch2_bkey_to_text(&PBUF(buf1), &k1);
254                 bch2_bkey_to_text(&PBUF(buf2), &k2);
255
256                 panic("prev > insert:\n"
257                       "prev    key %s\n"
258                       "insert  key %s\n",
259                       buf1, buf2);
260         }
261 #endif
262 #if 0
263         BUG_ON(next != btree_bkey_last(b, t) &&
264                bkey_iter_cmp(b, insert, next) > 0);
265 #else
266         if (next != btree_bkey_last(b, t) &&
267             bkey_iter_cmp(b, insert, next) > 0) {
268                 struct bkey k1 = bkey_unpack_key(b, insert);
269                 struct bkey k2 = bkey_unpack_key(b, next);
270                 char buf1[100];
271                 char buf2[100];
272
273                 bch2_dump_btree_node(NULL, b);
274                 bch2_bkey_to_text(&PBUF(buf1), &k1);
275                 bch2_bkey_to_text(&PBUF(buf2), &k2);
276
277                 panic("insert > next:\n"
278                       "insert  key %s\n"
279                       "next    key %s\n",
280                       buf1, buf2);
281         }
282 #endif
283 }
284
285 #else
286
287 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
288                                                    struct btree *b) {}
289
290 #endif
291
292 /* Auxiliary search trees */
293
294 #define BFLOAT_FAILED_UNPACKED  U8_MAX
295 #define BFLOAT_FAILED           U8_MAX
296
297 struct bkey_float {
298         u8              exponent;
299         u8              key_offset;
300         u16             mantissa;
301 };
302 #define BKEY_MANTISSA_BITS      16
303
304 static unsigned bkey_float_byte_offset(unsigned idx)
305 {
306         return idx * sizeof(struct bkey_float);
307 }
308
309 struct ro_aux_tree {
310         struct bkey_float       f[0];
311 };
312
313 struct rw_aux_tree {
314         u16             offset;
315         struct bpos     k;
316 };
317
318 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
319 {
320         BUG_ON(t->aux_data_offset == U16_MAX);
321
322         switch (bset_aux_tree_type(t)) {
323         case BSET_NO_AUX_TREE:
324                 return t->aux_data_offset;
325         case BSET_RO_AUX_TREE:
326                 return t->aux_data_offset +
327                         DIV_ROUND_UP(t->size * sizeof(struct bkey_float) +
328                                      t->size * sizeof(u8), 8);
329         case BSET_RW_AUX_TREE:
330                 return t->aux_data_offset +
331                         DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
332         default:
333                 BUG();
334         }
335 }
336
337 static unsigned bset_aux_tree_buf_start(const struct btree *b,
338                                         const struct bset_tree *t)
339 {
340         return t == b->set
341                 ? DIV_ROUND_UP(b->unpack_fn_len, 8)
342                 : bset_aux_tree_buf_end(t - 1);
343 }
344
345 static void *__aux_tree_base(const struct btree *b,
346                              const struct bset_tree *t)
347 {
348         return b->aux_data + t->aux_data_offset * 8;
349 }
350
351 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
352                                             const struct bset_tree *t)
353 {
354         EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
355
356         return __aux_tree_base(b, t);
357 }
358
359 static u8 *ro_aux_tree_prev(const struct btree *b,
360                             const struct bset_tree *t)
361 {
362         EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
363
364         return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
365 }
366
367 static struct bkey_float *bkey_float(const struct btree *b,
368                                      const struct bset_tree *t,
369                                      unsigned idx)
370 {
371         return ro_aux_tree_base(b, t)->f + idx;
372 }
373
374 static void bset_aux_tree_verify(const struct btree *b)
375 {
376 #ifdef CONFIG_BCACHEFS_DEBUG
377         const struct bset_tree *t;
378
379         for_each_bset(b, t) {
380                 if (t->aux_data_offset == U16_MAX)
381                         continue;
382
383                 BUG_ON(t != b->set &&
384                        t[-1].aux_data_offset == U16_MAX);
385
386                 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
387                 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
388                 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
389         }
390 #endif
391 }
392
393 void bch2_btree_keys_init(struct btree *b)
394 {
395         unsigned i;
396
397         b->nsets                = 0;
398         memset(&b->nr, 0, sizeof(b->nr));
399
400         for (i = 0; i < MAX_BSETS; i++)
401                 b->set[i].data_offset = U16_MAX;
402
403         bch2_bset_set_no_aux_tree(b, b->set);
404 }
405
406 /* Binary tree stuff for auxiliary search trees */
407
408 /*
409  * Cacheline/offset <-> bkey pointer arithmetic:
410  *
411  * t->tree is a binary search tree in an array; each node corresponds to a key
412  * in one cacheline in t->set (BSET_CACHELINE bytes).
413  *
414  * This means we don't have to store the full index of the key that a node in
415  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
416  * then bkey_float->m gives us the offset within that cacheline, in units of 8
417  * bytes.
418  *
419  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
420  * make this work.
421  *
422  * To construct the bfloat for an arbitrary key we need to know what the key
423  * immediately preceding it is: we have to check if the two keys differ in the
424  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
425  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
426  */
427
428 static inline void *bset_cacheline(const struct btree *b,
429                                    const struct bset_tree *t,
430                                    unsigned cacheline)
431 {
432         return (void *) round_down((unsigned long) btree_bkey_first(b, t),
433                                    L1_CACHE_BYTES) +
434                 cacheline * BSET_CACHELINE;
435 }
436
437 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
438                                              const struct bset_tree *t,
439                                              unsigned cacheline,
440                                              unsigned offset)
441 {
442         return bset_cacheline(b, t, cacheline) + offset * 8;
443 }
444
445 static unsigned bkey_to_cacheline(const struct btree *b,
446                                   const struct bset_tree *t,
447                                   const struct bkey_packed *k)
448 {
449         return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
450 }
451
452 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
453                                           const struct bset_tree *t,
454                                           unsigned cacheline,
455                                           const struct bkey_packed *k)
456 {
457         return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
458 }
459
460 static unsigned bkey_to_cacheline_offset(const struct btree *b,
461                                          const struct bset_tree *t,
462                                          unsigned cacheline,
463                                          const struct bkey_packed *k)
464 {
465         size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
466
467         EBUG_ON(m > U8_MAX);
468         return m;
469 }
470
471 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
472                                                const struct bset_tree *t,
473                                                unsigned j)
474 {
475         return cacheline_to_bkey(b, t,
476                         __eytzinger1_to_inorder(j, t->size - 1, t->extra),
477                         bkey_float(b, t, j)->key_offset);
478 }
479
480 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
481                                              const struct bset_tree *t,
482                                              unsigned j)
483 {
484         unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
485
486         return (void *) (tree_to_bkey(b, t, j)->_data - prev_u64s);
487 }
488
489 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
490                                        const struct bset_tree *t)
491 {
492         EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
493
494         return __aux_tree_base(b, t);
495 }
496
497 /*
498  * For the write set - the one we're currently inserting keys into - we don't
499  * maintain a full search tree, we just keep a simple lookup table in t->prev.
500  */
501 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
502                                           struct bset_tree *t,
503                                           unsigned j)
504 {
505         return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
506 }
507
508 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
509                             unsigned j, struct bkey_packed *k)
510 {
511         EBUG_ON(k >= btree_bkey_last(b, t));
512
513         rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
514                 .offset = __btree_node_key_to_offset(b, k),
515                 .k      = bkey_unpack_pos(b, k),
516         };
517 }
518
519 static void bch2_bset_verify_rw_aux_tree(struct btree *b,
520                                         struct bset_tree *t)
521 {
522         struct bkey_packed *k = btree_bkey_first(b, t);
523         unsigned j = 0;
524
525         if (!bch2_expensive_debug_checks)
526                 return;
527
528         BUG_ON(bset_has_ro_aux_tree(t));
529
530         if (!bset_has_rw_aux_tree(t))
531                 return;
532
533         BUG_ON(t->size < 1);
534         BUG_ON(rw_aux_to_bkey(b, t, j) != k);
535
536         goto start;
537         while (1) {
538                 if (rw_aux_to_bkey(b, t, j) == k) {
539                         BUG_ON(bpos_cmp(rw_aux_tree(b, t)[j].k,
540                                         bkey_unpack_pos(b, k)));
541 start:
542                         if (++j == t->size)
543                                 break;
544
545                         BUG_ON(rw_aux_tree(b, t)[j].offset <=
546                                rw_aux_tree(b, t)[j - 1].offset);
547                 }
548
549                 k = bkey_next(k);
550                 BUG_ON(k >= btree_bkey_last(b, t));
551         }
552 }
553
554 /* returns idx of first entry >= offset: */
555 static unsigned rw_aux_tree_bsearch(struct btree *b,
556                                     struct bset_tree *t,
557                                     unsigned offset)
558 {
559         unsigned bset_offs = offset - btree_bkey_first_offset(t);
560         unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
561         unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
562
563         EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
564         EBUG_ON(!t->size);
565         EBUG_ON(idx > t->size);
566
567         while (idx < t->size &&
568                rw_aux_tree(b, t)[idx].offset < offset)
569                 idx++;
570
571         while (idx &&
572                rw_aux_tree(b, t)[idx - 1].offset >= offset)
573                 idx--;
574
575         EBUG_ON(idx < t->size &&
576                 rw_aux_tree(b, t)[idx].offset < offset);
577         EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
578         EBUG_ON(idx + 1 < t->size &&
579                 rw_aux_tree(b, t)[idx].offset ==
580                 rw_aux_tree(b, t)[idx + 1].offset);
581
582         return idx;
583 }
584
585 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
586                                      const struct bkey_float *f,
587                                      unsigned idx)
588 {
589         u64 v;
590
591         EBUG_ON(!bkey_packed(k));
592
593         v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
594
595         /*
596          * In little endian, we're shifting off low bits (and then the bits we
597          * want are at the low end), in big endian we're shifting off high bits
598          * (and then the bits we want are at the high end, so we shift them
599          * back down):
600          */
601 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
602         v >>= f->exponent & 7;
603 #else
604         v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
605 #endif
606         return (u16) v;
607 }
608
609 __always_inline
610 static inline void make_bfloat(struct btree *b, struct bset_tree *t,
611                                unsigned j,
612                                struct bkey_packed *min_key,
613                                struct bkey_packed *max_key)
614 {
615         struct bkey_float *f = bkey_float(b, t, j);
616         struct bkey_packed *m = tree_to_bkey(b, t, j);
617         struct bkey_packed *l = is_power_of_2(j)
618                 ? min_key
619                 : tree_to_prev_bkey(b, t, j >> ffs(j));
620         struct bkey_packed *r = is_power_of_2(j + 1)
621                 ? max_key
622                 : tree_to_bkey(b, t, j >> (ffz(j) + 1));
623         unsigned mantissa;
624         int shift, exponent, high_bit;
625
626         /*
627          * for failed bfloats, the lookup code falls back to comparing against
628          * the original key.
629          */
630
631         if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
632             !b->nr_key_bits) {
633                 f->exponent = BFLOAT_FAILED_UNPACKED;
634                 return;
635         }
636
637         /*
638          * The greatest differing bit of l and r is the first bit we must
639          * include in the bfloat mantissa we're creating in order to do
640          * comparisons - that bit always becomes the high bit of
641          * bfloat->mantissa, and thus the exponent we're calculating here is
642          * the position of what will become the low bit in bfloat->mantissa:
643          *
644          * Note that this may be negative - we may be running off the low end
645          * of the key: we handle this later:
646          */
647         high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
648                        min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
649         exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
650
651         /*
652          * Then we calculate the actual shift value, from the start of the key
653          * (k->_data), to get the key bits starting at exponent:
654          */
655 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
656         shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
657
658         EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
659 #else
660         shift = high_bit_offset +
661                 b->nr_key_bits -
662                 exponent -
663                 BKEY_MANTISSA_BITS;
664
665         EBUG_ON(shift < KEY_PACKED_BITS_START);
666 #endif
667         EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
668
669         f->exponent = shift;
670         mantissa = bkey_mantissa(m, f, j);
671
672         /*
673          * If we've got garbage bits, set them to all 1s - it's legal for the
674          * bfloat to compare larger than the original key, but not smaller:
675          */
676         if (exponent < 0)
677                 mantissa |= ~(~0U << -exponent);
678
679         f->mantissa = mantissa;
680 }
681
682 /* bytes remaining - only valid for last bset: */
683 static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t)
684 {
685         bset_aux_tree_verify(b);
686
687         return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
688 }
689
690 static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t)
691 {
692         return __bset_tree_capacity(b, t) /
693                 (sizeof(struct bkey_float) + sizeof(u8));
694 }
695
696 static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t)
697 {
698         return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
699 }
700
701 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
702 {
703         struct bkey_packed *k;
704
705         t->size = 1;
706         t->extra = BSET_RW_AUX_TREE_VAL;
707         rw_aux_tree(b, t)[0].offset =
708                 __btree_node_key_to_offset(b, btree_bkey_first(b, t));
709
710         bset_tree_for_each_key(b, t, k) {
711                 if (t->size == bset_rw_tree_capacity(b, t))
712                         break;
713
714                 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
715                     L1_CACHE_BYTES)
716                         rw_aux_tree_set(b, t, t->size++, k);
717         }
718 }
719
720 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
721 {
722         struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
723         struct bkey_i min_key, max_key;
724         unsigned j, cacheline = 1;
725
726         t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
727                       bset_ro_tree_capacity(b, t));
728 retry:
729         if (t->size < 2) {
730                 t->size = 0;
731                 t->extra = BSET_NO_AUX_TREE_VAL;
732                 return;
733         }
734
735         t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
736
737         /* First we figure out where the first key in each cacheline is */
738         eytzinger1_for_each(j, t->size - 1) {
739                 while (bkey_to_cacheline(b, t, k) < cacheline)
740                         prev = k, k = bkey_next(k);
741
742                 if (k >= btree_bkey_last(b, t)) {
743                         /* XXX: this path sucks */
744                         t->size--;
745                         goto retry;
746                 }
747
748                 ro_aux_tree_prev(b, t)[j] = prev->u64s;
749                 bkey_float(b, t, j)->key_offset =
750                         bkey_to_cacheline_offset(b, t, cacheline++, k);
751
752                 EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
753                 EBUG_ON(tree_to_bkey(b, t, j) != k);
754         }
755
756         while (k != btree_bkey_last(b, t))
757                 prev = k, k = bkey_next(k);
758
759         if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
760                 bkey_init(&min_key.k);
761                 min_key.k.p = b->data->min_key;
762         }
763
764         if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
765                 bkey_init(&max_key.k);
766                 max_key.k.p = b->data->max_key;
767         }
768
769         /* Then we build the tree */
770         eytzinger1_for_each(j, t->size - 1)
771                 make_bfloat(b, t, j,
772                             bkey_to_packed(&min_key),
773                             bkey_to_packed(&max_key));
774 }
775
776 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
777 {
778         struct bset_tree *i;
779
780         for (i = b->set; i != t; i++)
781                 BUG_ON(bset_has_rw_aux_tree(i));
782
783         bch2_bset_set_no_aux_tree(b, t);
784
785         /* round up to next cacheline: */
786         t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
787                                       SMP_CACHE_BYTES / sizeof(u64));
788
789         bset_aux_tree_verify(b);
790 }
791
792 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
793                              bool writeable)
794 {
795         if (writeable
796             ? bset_has_rw_aux_tree(t)
797             : bset_has_ro_aux_tree(t))
798                 return;
799
800         bset_alloc_tree(b, t);
801
802         if (!__bset_tree_capacity(b, t))
803                 return;
804
805         if (writeable)
806                 __build_rw_aux_tree(b, t);
807         else
808                 __build_ro_aux_tree(b, t);
809
810         bset_aux_tree_verify(b);
811 }
812
813 void bch2_bset_init_first(struct btree *b, struct bset *i)
814 {
815         struct bset_tree *t;
816
817         BUG_ON(b->nsets);
818
819         memset(i, 0, sizeof(*i));
820         get_random_bytes(&i->seq, sizeof(i->seq));
821         SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
822
823         t = &b->set[b->nsets++];
824         set_btree_bset(b, t, i);
825 }
826
827 void bch2_bset_init_next(struct bch_fs *c, struct btree *b,
828                          struct btree_node_entry *bne)
829 {
830         struct bset *i = &bne->keys;
831         struct bset_tree *t;
832
833         BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c));
834         BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
835         BUG_ON(b->nsets >= MAX_BSETS);
836
837         memset(i, 0, sizeof(*i));
838         i->seq = btree_bset_first(b)->seq;
839         SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
840
841         t = &b->set[b->nsets++];
842         set_btree_bset(b, t, i);
843 }
844
845 /*
846  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
847  * immediate predecessor:
848  */
849 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
850                                        struct bkey_packed *k)
851 {
852         struct bkey_packed *p;
853         unsigned offset;
854         int j;
855
856         EBUG_ON(k < btree_bkey_first(b, t) ||
857                 k > btree_bkey_last(b, t));
858
859         if (k == btree_bkey_first(b, t))
860                 return NULL;
861
862         switch (bset_aux_tree_type(t)) {
863         case BSET_NO_AUX_TREE:
864                 p = btree_bkey_first(b, t);
865                 break;
866         case BSET_RO_AUX_TREE:
867                 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
868
869                 do {
870                         p = j ? tree_to_bkey(b, t,
871                                         __inorder_to_eytzinger1(j--,
872                                                         t->size - 1, t->extra))
873                               : btree_bkey_first(b, t);
874                 } while (p >= k);
875                 break;
876         case BSET_RW_AUX_TREE:
877                 offset = __btree_node_key_to_offset(b, k);
878                 j = rw_aux_tree_bsearch(b, t, offset);
879                 p = j ? rw_aux_to_bkey(b, t, j - 1)
880                       : btree_bkey_first(b, t);
881                 break;
882         }
883
884         return p;
885 }
886
887 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
888                                           struct bset_tree *t,
889                                           struct bkey_packed *k,
890                                           unsigned min_key_type)
891 {
892         struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
893
894         while ((p = __bkey_prev(b, t, k)) && !ret) {
895                 for (i = p; i != k; i = bkey_next(i))
896                         if (i->type >= min_key_type)
897                                 ret = i;
898
899                 k = p;
900         }
901
902         if (bch2_expensive_debug_checks) {
903                 BUG_ON(ret >= orig_k);
904
905                 for (i = ret
906                         ? bkey_next(ret)
907                         : btree_bkey_first(b, t);
908                      i != orig_k;
909                      i = bkey_next(i))
910                         BUG_ON(i->type >= min_key_type);
911         }
912
913         return ret;
914 }
915
916 /* Insert */
917
918 static void bch2_bset_fix_lookup_table(struct btree *b,
919                                        struct bset_tree *t,
920                                        struct bkey_packed *_where,
921                                        unsigned clobber_u64s,
922                                        unsigned new_u64s)
923 {
924         int shift = new_u64s - clobber_u64s;
925         unsigned l, j, where = __btree_node_key_to_offset(b, _where);
926
927         EBUG_ON(bset_has_ro_aux_tree(t));
928
929         if (!bset_has_rw_aux_tree(t))
930                 return;
931
932         /* returns first entry >= where */
933         l = rw_aux_tree_bsearch(b, t, where);
934
935         if (!l) /* never delete first entry */
936                 l++;
937         else if (l < t->size &&
938                  where < t->end_offset &&
939                  rw_aux_tree(b, t)[l].offset == where)
940                 rw_aux_tree_set(b, t, l++, _where);
941
942         /* l now > where */
943
944         for (j = l;
945              j < t->size &&
946              rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
947              j++)
948                 ;
949
950         if (j < t->size &&
951             rw_aux_tree(b, t)[j].offset + shift ==
952             rw_aux_tree(b, t)[l - 1].offset)
953                 j++;
954
955         memmove(&rw_aux_tree(b, t)[l],
956                 &rw_aux_tree(b, t)[j],
957                 (void *) &rw_aux_tree(b, t)[t->size] -
958                 (void *) &rw_aux_tree(b, t)[j]);
959         t->size -= j - l;
960
961         for (j = l; j < t->size; j++)
962                rw_aux_tree(b, t)[j].offset += shift;
963
964         EBUG_ON(l < t->size &&
965                 rw_aux_tree(b, t)[l].offset ==
966                 rw_aux_tree(b, t)[l - 1].offset);
967
968         if (t->size < bset_rw_tree_capacity(b, t) &&
969             (l < t->size
970              ? rw_aux_tree(b, t)[l].offset
971              : t->end_offset) -
972             rw_aux_tree(b, t)[l - 1].offset >
973             L1_CACHE_BYTES / sizeof(u64)) {
974                 struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
975                 struct bkey_packed *end = l < t->size
976                         ? rw_aux_to_bkey(b, t, l)
977                         : btree_bkey_last(b, t);
978                 struct bkey_packed *k = start;
979
980                 while (1) {
981                         k = bkey_next(k);
982                         if (k == end)
983                                 break;
984
985                         if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
986                                 memmove(&rw_aux_tree(b, t)[l + 1],
987                                         &rw_aux_tree(b, t)[l],
988                                         (void *) &rw_aux_tree(b, t)[t->size] -
989                                         (void *) &rw_aux_tree(b, t)[l]);
990                                 t->size++;
991                                 rw_aux_tree_set(b, t, l, k);
992                                 break;
993                         }
994                 }
995         }
996
997         bch2_bset_verify_rw_aux_tree(b, t);
998         bset_aux_tree_verify(b);
999 }
1000
1001 void bch2_bset_insert(struct btree *b,
1002                       struct btree_node_iter *iter,
1003                       struct bkey_packed *where,
1004                       struct bkey_i *insert,
1005                       unsigned clobber_u64s)
1006 {
1007         struct bkey_format *f = &b->format;
1008         struct bset_tree *t = bset_tree_last(b);
1009         struct bkey_packed packed, *src = bkey_to_packed(insert);
1010
1011         bch2_bset_verify_rw_aux_tree(b, t);
1012         bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
1013
1014         if (bch2_bkey_pack_key(&packed, &insert->k, f))
1015                 src = &packed;
1016
1017         if (!bkey_deleted(&insert->k))
1018                 btree_keys_account_key_add(&b->nr, t - b->set, src);
1019
1020         if (src->u64s != clobber_u64s) {
1021                 u64 *src_p = where->_data + clobber_u64s;
1022                 u64 *dst_p = where->_data + src->u64s;
1023
1024                 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1025                         (int) clobber_u64s - src->u64s);
1026
1027                 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1028                 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1029                 set_btree_bset_end(b, t);
1030         }
1031
1032         memcpy_u64s(where, src,
1033                     bkeyp_key_u64s(f, src));
1034         memcpy_u64s(bkeyp_val(f, where), &insert->v,
1035                     bkeyp_val_u64s(f, src));
1036
1037         if (src->u64s != clobber_u64s)
1038                 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1039
1040         bch2_verify_btree_nr_keys(b);
1041 }
1042
1043 void bch2_bset_delete(struct btree *b,
1044                       struct bkey_packed *where,
1045                       unsigned clobber_u64s)
1046 {
1047         struct bset_tree *t = bset_tree_last(b);
1048         u64 *src_p = where->_data + clobber_u64s;
1049         u64 *dst_p = where->_data;
1050
1051         bch2_bset_verify_rw_aux_tree(b, t);
1052
1053         EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1054
1055         memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1056         le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1057         set_btree_bset_end(b, t);
1058
1059         bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1060 }
1061
1062 /* Lookup */
1063
1064 __flatten
1065 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1066                                 struct bset_tree *t,
1067                                 struct bpos *search)
1068 {
1069         unsigned l = 0, r = t->size;
1070
1071         while (l + 1 != r) {
1072                 unsigned m = (l + r) >> 1;
1073
1074                 if (bpos_cmp(rw_aux_tree(b, t)[m].k, *search) < 0)
1075                         l = m;
1076                 else
1077                         r = m;
1078         }
1079
1080         return rw_aux_to_bkey(b, t, l);
1081 }
1082
1083 static inline void prefetch_four_cachelines(void *p)
1084 {
1085 #ifdef CONFIG_X86_64
1086         asm("prefetcht0 (-127 + 64 * 0)(%0);"
1087             "prefetcht0 (-127 + 64 * 1)(%0);"
1088             "prefetcht0 (-127 + 64 * 2)(%0);"
1089             "prefetcht0 (-127 + 64 * 3)(%0);"
1090             :
1091             : "r" (p + 127));
1092 #else
1093         prefetch(p + L1_CACHE_BYTES * 0);
1094         prefetch(p + L1_CACHE_BYTES * 1);
1095         prefetch(p + L1_CACHE_BYTES * 2);
1096         prefetch(p + L1_CACHE_BYTES * 3);
1097 #endif
1098 }
1099
1100 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1101                                               const struct bkey_float *f,
1102                                               unsigned idx)
1103 {
1104 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1105         unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1106
1107         return f->exponent > key_bits_start;
1108 #else
1109         unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1110
1111         return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1112 #endif
1113 }
1114
1115 __flatten
1116 static struct bkey_packed *bset_search_tree(const struct btree *b,
1117                                 const struct bset_tree *t,
1118                                 const struct bpos *search,
1119                                 const struct bkey_packed *packed_search)
1120 {
1121         struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1122         struct bkey_float *f;
1123         struct bkey_packed *k;
1124         unsigned inorder, n = 1, l, r;
1125         int cmp;
1126
1127         do {
1128                 if (likely(n << 4 < t->size))
1129                         prefetch(&base->f[n << 4]);
1130
1131                 f = &base->f[n];
1132                 if (unlikely(f->exponent >= BFLOAT_FAILED))
1133                         goto slowpath;
1134
1135                 l = f->mantissa;
1136                 r = bkey_mantissa(packed_search, f, n);
1137
1138                 if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n))
1139                         goto slowpath;
1140
1141                 n = n * 2 + (l < r);
1142                 continue;
1143 slowpath:
1144                 k = tree_to_bkey(b, t, n);
1145                 cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1146                 if (!cmp)
1147                         return k;
1148
1149                 n = n * 2 + (cmp < 0);
1150         } while (n < t->size);
1151
1152         inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1153
1154         /*
1155          * n would have been the node we recursed to - the low bit tells us if
1156          * we recursed left or recursed right.
1157          */
1158         if (likely(!(n & 1))) {
1159                 --inorder;
1160                 if (unlikely(!inorder))
1161                         return btree_bkey_first(b, t);
1162
1163                 f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1164         }
1165
1166         return cacheline_to_bkey(b, t, inorder, f->key_offset);
1167 }
1168
1169 static __always_inline __flatten
1170 struct bkey_packed *__bch2_bset_search(struct btree *b,
1171                                 struct bset_tree *t,
1172                                 struct bpos *search,
1173                                 const struct bkey_packed *lossy_packed_search)
1174 {
1175
1176         /*
1177          * First, we search for a cacheline, then lastly we do a linear search
1178          * within that cacheline.
1179          *
1180          * To search for the cacheline, there's three different possibilities:
1181          *  * The set is too small to have a search tree, so we just do a linear
1182          *    search over the whole set.
1183          *  * The set is the one we're currently inserting into; keeping a full
1184          *    auxiliary search tree up to date would be too expensive, so we
1185          *    use a much simpler lookup table to do a binary search -
1186          *    bset_search_write_set().
1187          *  * Or we use the auxiliary search tree we constructed earlier -
1188          *    bset_search_tree()
1189          */
1190
1191         switch (bset_aux_tree_type(t)) {
1192         case BSET_NO_AUX_TREE:
1193                 return btree_bkey_first(b, t);
1194         case BSET_RW_AUX_TREE:
1195                 return bset_search_write_set(b, t, search);
1196         case BSET_RO_AUX_TREE:
1197                 return bset_search_tree(b, t, search, lossy_packed_search);
1198         default:
1199                 unreachable();
1200         }
1201 }
1202
1203 static __always_inline __flatten
1204 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1205                                 struct bset_tree *t,
1206                                 struct bpos *search,
1207                                 struct bkey_packed *packed_search,
1208                                 const struct bkey_packed *lossy_packed_search,
1209                                 struct bkey_packed *m)
1210 {
1211         if (lossy_packed_search)
1212                 while (m != btree_bkey_last(b, t) &&
1213                        bkey_iter_cmp_p_or_unp(b, m,
1214                                         lossy_packed_search, search) < 0)
1215                         m = bkey_next(m);
1216
1217         if (!packed_search)
1218                 while (m != btree_bkey_last(b, t) &&
1219                        bkey_iter_pos_cmp(b, m, search) < 0)
1220                         m = bkey_next(m);
1221
1222         if (bch2_expensive_debug_checks) {
1223                 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1224
1225                 BUG_ON(prev &&
1226                        bkey_iter_cmp_p_or_unp(b, prev,
1227                                         packed_search, search) >= 0);
1228         }
1229
1230         return m;
1231 }
1232
1233 /* Btree node iterator */
1234
1235 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1236                               struct btree *b,
1237                               const struct bkey_packed *k,
1238                               const struct bkey_packed *end)
1239 {
1240         if (k != end) {
1241                 struct btree_node_iter_set *pos;
1242
1243                 btree_node_iter_for_each(iter, pos)
1244                         ;
1245
1246                 BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1247                 *pos = (struct btree_node_iter_set) {
1248                         __btree_node_key_to_offset(b, k),
1249                         __btree_node_key_to_offset(b, end)
1250                 };
1251         }
1252 }
1253
1254 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1255                                struct btree *b,
1256                                const struct bkey_packed *k,
1257                                const struct bkey_packed *end)
1258 {
1259         __bch2_btree_node_iter_push(iter, b, k, end);
1260         bch2_btree_node_iter_sort(iter, b);
1261 }
1262
1263 noinline __flatten __attribute__((cold))
1264 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1265                               struct btree *b, struct bpos *search)
1266 {
1267         struct bkey_packed *k;
1268
1269         trace_bkey_pack_pos_fail(search);
1270
1271         bch2_btree_node_iter_init_from_start(iter, b);
1272
1273         while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1274                bkey_iter_pos_cmp(b, k, search) < 0)
1275                 bch2_btree_node_iter_advance(iter, b);
1276 }
1277
1278 /**
1279  * bch_btree_node_iter_init - initialize a btree node iterator, starting from a
1280  * given position
1281  *
1282  * Main entry point to the lookup code for individual btree nodes:
1283  *
1284  * NOTE:
1285  *
1286  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1287  * keys. This doesn't matter for most code, but it does matter for lookups.
1288  *
1289  * Some adjacent keys with a string of equal keys:
1290  *      i j k k k k l m
1291  *
1292  * If you search for k, the lookup code isn't guaranteed to return you any
1293  * specific k. The lookup code is conceptually doing a binary search and
1294  * iterating backwards is very expensive so if the pivot happens to land at the
1295  * last k that's what you'll get.
1296  *
1297  * This works out ok, but it's something to be aware of:
1298  *
1299  *  - For non extents, we guarantee that the live key comes last - see
1300  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1301  *    see will only be deleted keys you don't care about.
1302  *
1303  *  - For extents, deleted keys sort last (see the comment at the top of this
1304  *    file). But when you're searching for extents, you actually want the first
1305  *    key strictly greater than your search key - an extent that compares equal
1306  *    to the search key is going to have 0 sectors after the search key.
1307  *
1308  *    But this does mean that we can't just search for
1309  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1310  *    the range we want - if we're unlucky and there's an extent that ends
1311  *    exactly where we searched, then there could be a deleted key at the same
1312  *    position and we'd get that when we search instead of the preceding extent
1313  *    we needed.
1314  *
1315  *    So we've got to search for start_of_range, then after the lookup iterate
1316  *    past any extents that compare equal to the position we searched for.
1317  */
1318 __flatten
1319 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1320                                struct btree *b, struct bpos *search)
1321 {
1322         struct bkey_packed p, *packed_search = NULL;
1323         struct btree_node_iter_set *pos = iter->data;
1324         struct bkey_packed *k[MAX_BSETS];
1325         unsigned i;
1326
1327         EBUG_ON(bpos_cmp(*search, b->data->min_key) < 0);
1328         EBUG_ON(bpos_cmp(*search, b->data->max_key) > 0);
1329         bset_aux_tree_verify(b);
1330
1331         memset(iter, 0, sizeof(*iter));
1332
1333         switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1334         case BKEY_PACK_POS_EXACT:
1335                 packed_search = &p;
1336                 break;
1337         case BKEY_PACK_POS_SMALLER:
1338                 packed_search = NULL;
1339                 break;
1340         case BKEY_PACK_POS_FAIL:
1341                 btree_node_iter_init_pack_failed(iter, b, search);
1342                 return;
1343         }
1344
1345         for (i = 0; i < b->nsets; i++) {
1346                 k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1347                 prefetch_four_cachelines(k[i]);
1348         }
1349
1350         for (i = 0; i < b->nsets; i++) {
1351                 struct bset_tree *t = b->set + i;
1352                 struct bkey_packed *end = btree_bkey_last(b, t);
1353
1354                 k[i] = bch2_bset_search_linear(b, t, search,
1355                                                packed_search, &p, k[i]);
1356                 if (k[i] != end)
1357                         *pos++ = (struct btree_node_iter_set) {
1358                                 __btree_node_key_to_offset(b, k[i]),
1359                                 __btree_node_key_to_offset(b, end)
1360                         };
1361         }
1362
1363         bch2_btree_node_iter_sort(iter, b);
1364 }
1365
1366 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1367                                           struct btree *b)
1368 {
1369         struct bset_tree *t;
1370
1371         memset(iter, 0, sizeof(*iter));
1372
1373         for_each_bset(b, t)
1374                 __bch2_btree_node_iter_push(iter, b,
1375                                            btree_bkey_first(b, t),
1376                                            btree_bkey_last(b, t));
1377         bch2_btree_node_iter_sort(iter, b);
1378 }
1379
1380 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1381                                                   struct btree *b,
1382                                                   struct bset_tree *t)
1383 {
1384         struct btree_node_iter_set *set;
1385
1386         btree_node_iter_for_each(iter, set)
1387                 if (set->end == t->end_offset)
1388                         return __btree_node_offset_to_key(b, set->k);
1389
1390         return btree_bkey_last(b, t);
1391 }
1392
1393 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1394                                             struct btree *b,
1395                                             unsigned first)
1396 {
1397         bool ret;
1398
1399         if ((ret = (btree_node_iter_cmp(b,
1400                                         iter->data[first],
1401                                         iter->data[first + 1]) > 0)))
1402                 swap(iter->data[first], iter->data[first + 1]);
1403         return ret;
1404 }
1405
1406 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1407                                struct btree *b)
1408 {
1409         /* unrolled bubble sort: */
1410
1411         if (!__btree_node_iter_set_end(iter, 2)) {
1412                 btree_node_iter_sort_two(iter, b, 0);
1413                 btree_node_iter_sort_two(iter, b, 1);
1414         }
1415
1416         if (!__btree_node_iter_set_end(iter, 1))
1417                 btree_node_iter_sort_two(iter, b, 0);
1418 }
1419
1420 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1421                                    struct btree_node_iter_set *set)
1422 {
1423         struct btree_node_iter_set *last =
1424                 iter->data + ARRAY_SIZE(iter->data) - 1;
1425
1426         memmove(&set[0], &set[1], (void *) last - (void *) set);
1427         *last = (struct btree_node_iter_set) { 0, 0 };
1428 }
1429
1430 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1431                                                   struct btree *b)
1432 {
1433         iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1434
1435         EBUG_ON(iter->data->k > iter->data->end);
1436
1437         if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1438                 bch2_btree_node_iter_set_drop(iter, iter->data);
1439                 return;
1440         }
1441
1442         if (__btree_node_iter_set_end(iter, 1))
1443                 return;
1444
1445         if (!btree_node_iter_sort_two(iter, b, 0))
1446                 return;
1447
1448         if (__btree_node_iter_set_end(iter, 2))
1449                 return;
1450
1451         btree_node_iter_sort_two(iter, b, 1);
1452 }
1453
1454 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1455                                   struct btree *b)
1456 {
1457         if (bch2_expensive_debug_checks) {
1458                 bch2_btree_node_iter_verify(iter, b);
1459                 bch2_btree_node_iter_next_check(iter, b);
1460         }
1461
1462         __bch2_btree_node_iter_advance(iter, b);
1463 }
1464
1465 /*
1466  * Expensive:
1467  */
1468 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1469                                                   struct btree *b)
1470 {
1471         struct bkey_packed *k, *prev = NULL;
1472         struct btree_node_iter_set *set;
1473         struct bset_tree *t;
1474         unsigned end = 0;
1475
1476         if (bch2_expensive_debug_checks)
1477                 bch2_btree_node_iter_verify(iter, b);
1478
1479         for_each_bset(b, t) {
1480                 k = bch2_bkey_prev_all(b, t,
1481                         bch2_btree_node_iter_bset_pos(iter, b, t));
1482                 if (k &&
1483                     (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1484                         prev = k;
1485                         end = t->end_offset;
1486                 }
1487         }
1488
1489         if (!prev)
1490                 return NULL;
1491
1492         /*
1493          * We're manually memmoving instead of just calling sort() to ensure the
1494          * prev we picked ends up in slot 0 - sort won't necessarily put it
1495          * there because of duplicate deleted keys:
1496          */
1497         btree_node_iter_for_each(iter, set)
1498                 if (set->end == end)
1499                         goto found;
1500
1501         BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1502 found:
1503         BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1504
1505         memmove(&iter->data[1],
1506                 &iter->data[0],
1507                 (void *) set - (void *) &iter->data[0]);
1508
1509         iter->data[0].k = __btree_node_key_to_offset(b, prev);
1510         iter->data[0].end = end;
1511
1512         if (bch2_expensive_debug_checks)
1513                 bch2_btree_node_iter_verify(iter, b);
1514         return prev;
1515 }
1516
1517 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1518                                               struct btree *b)
1519 {
1520         struct bkey_packed *prev;
1521
1522         do {
1523                 prev = bch2_btree_node_iter_prev_all(iter, b);
1524         } while (prev && bkey_deleted(prev));
1525
1526         return prev;
1527 }
1528
1529 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1530                                                  struct btree *b,
1531                                                  struct bkey *u)
1532 {
1533         struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1534
1535         return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1536 }
1537
1538 /* Mergesort */
1539
1540 void bch2_btree_keys_stats(struct btree *b, struct bset_stats *stats)
1541 {
1542         struct bset_tree *t;
1543
1544         for_each_bset(b, t) {
1545                 enum bset_aux_tree_type type = bset_aux_tree_type(t);
1546                 size_t j;
1547
1548                 stats->sets[type].nr++;
1549                 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1550                         sizeof(u64);
1551
1552                 if (bset_has_ro_aux_tree(t)) {
1553                         stats->floats += t->size - 1;
1554
1555                         for (j = 1; j < t->size; j++)
1556                                 stats->failed +=
1557                                         bkey_float(b, t, j)->exponent ==
1558                                         BFLOAT_FAILED;
1559                 }
1560         }
1561 }
1562
1563 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1564                          struct bkey_packed *k)
1565 {
1566         struct bset_tree *t = bch2_bkey_to_bset(b, k);
1567         struct bkey uk;
1568         unsigned j, inorder;
1569
1570         if (out->pos != out->end)
1571                 *out->pos = '\0';
1572
1573         if (!bset_has_ro_aux_tree(t))
1574                 return;
1575
1576         inorder = bkey_to_cacheline(b, t, k);
1577         if (!inorder || inorder >= t->size)
1578                 return;
1579
1580         j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1581         if (k != tree_to_bkey(b, t, j))
1582                 return;
1583
1584         switch (bkey_float(b, t, j)->exponent) {
1585         case BFLOAT_FAILED:
1586                 uk = bkey_unpack_key(b, k);
1587                 pr_buf(out,
1588                        "    failed unpacked at depth %u\n"
1589                        "\t",
1590                        ilog2(j));
1591                 bch2_bpos_to_text(out, uk.p);
1592                 pr_buf(out, "\n");
1593                 break;
1594         }
1595 }